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Abstract 17 

Species distribution models (SDMs) are widely used to gain ecological understanding and 18 

guide conservation decisions. These models are developed with a wide variety of algorithms - from 19 

statistic-based approaches to more recent machine learning algorithms - but one property they all 20 

have in common is the use of predictors that strongly simplify the temporal variability of driving 21 

factors. On the other hand, recent architectures of deep learning neural networks allow dealing 22 

with fully explicit spatiotemporal dynamics and thus fitting SDMs without the need to simplify 23 

the temporal and spatial dimension of predictor data. We present a deep learning-based SDM 24 

approach that uses time series of spatial data as predictors, and compare it with conventional 25 

modelling approaches, using five well known invasive species. Deep learning approaches provided 26 

consistently high performing models while also avoiding the use of pre-processed predictor sets, 27 

that can obscure relevant aspects of environmental variation. 28 
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Introduction 34 

Species distribution models (SDMs) have become indispensable tools for predicting the 35 

current and future distribution of species. Correlative-based SDMs measure the association 36 

between environmental predictors and species observation records in order to determine the 37 

probability of occurrence of species or the environmental suitability in new areas (Guisan & 38 

Zimmermann 2000; Elith & Leathwick 2009; Peterson et al. 2011; Araújo et al. 2019).  These 39 

models can be built with statistic-based approaches and more recently,  machine learning 40 

algorithms that have the ability to detect patterns in the data for which they were not explicitly 41 

programmed to look for (LeCun et al. 2015; Zhang & Li 2017; Christin et al. 2019).  The flexibility 42 

and high performance of these latter approaches have made them the standard technique for several 43 

types of SDM-related biogeographical studies including estimating habitat suitability, species 44 

range expansion or contraction, invasion risk, and species co-occurrences (Pearson & Dawson 45 

2003; Elith et al. 2006; Elith & Leathwick 2009; Peterson et al. 2011; Norberg et al. 2019). 46 

Since their inception, the methods used in SDMs have improved considerably (Araújo et 47 

al. 2019), with many new techniques being proposed (e.g., Phillips et al. 2006; Renner et al. 2015; 48 

Norberg et al. 2019), modelling workflows and reporting protocols being refined and standardized 49 

(Thuiller et al. 2009; Araújo et al. 2019; Feng et al. 2019; Zurell et al. 2020), and thorough inter-50 

model comparisons of predictive accuracy being performed (Elith et al. 2006; Norberg et al. 2019).  51 

Thus, through this collective research effort and resulting improvements in model performance it 52 

is unclear whether there is room for substantial advancement in the performance or implementation 53 

of correlative SDMs.  In fact, there is an extensive literature pertaining to their methodological 54 

limitations (e.g., Pearson & Dawson 2003; Hijmans 2012; Norberg et al. 2019; Milanesi et al. 55 

2020).  Undoubtably, analytical pitfalls are present even with optimized modeling architectures; 56 
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however, model quality will always depend on the availability and use of comprehensive 57 

distribution data and ecologically informative predictor variables (Pearson & Dawson 2003).  58 

A common aim of SDMs is to identify the set of environmental combinations under which 59 

a species can occur and thrive (e.g., Guisan & Zimmermann 2000; Pearson et al. 2002; Pearson & 60 

Dawson 2003; Booth et al. 2014) and SDMs are typically built with temporally invariant 61 

summaries of multi-decadal long environmental variation by means of one or a few descriptive 62 

statistics, such as the mean and standard deviation (Elith & Leathwick 2009; Thuiller et al. 2009; 63 

Norberg et al. 2019).  However, there are several reasons to believe that these pre-processed 64 

features of environmental variation, formulated based on expert opinion, are often not optimal 65 

from a predictive perspective. For example, although studies have shown that extreme climatic 66 

conditions are highly informative for predicting species distributions, these extremes are often not 67 

included in readily available datasets of bioclimatic variables and in SDMs (Zimmermann et al. 68 

2009; Reside et al. 2010; Morán‐Ordóñez et al. 2018; Stewart et al. 2021).   69 

It must also be acknowledged that most, if not all, factors driving species distributions (e.g., 70 

climate, land-use) are temporally dynamic. That is, their state varies along time, a property that is 71 

often poorly represented, or entirely missing from SDMs. For example, while the distribution of 72 

species is often dependent on both the short- and long-term climatological conditions (Pearson & 73 

Dawson 2003; Peterson et al. 2011; Stewart et al. 2021), SDMs rarely account explicitly for 74 

temporal variation in these factors.  Similarly, predictors representing recent patterns of land use 75 

can neglect the legacy of past land use patterns in shaping the observed species distributions 76 

(Polaina et al. 2019; Chen & Leites 2020). A more subtle common omission in predictors used in 77 

SDMs concerns the order in which events take place (Kriticos et al. 2012; Tyberghein et al. 2012; 78 

Assis et al. 2018; Title & Bemmels 2018).  For example, areas with similar averaged annual 79 
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precipitation could have substantially different seasonality in the occurrence and magnitude of this 80 

factor (Figure 1), likely resulting in relevant differences in environmental suitability for species. 81 

In summary, the high dimensionality of spatial time-series data contains properties that are relevant 82 

for species distributions, but that human expertise may be unable to identify and thus represent in 83 

temporally invariant predictor sets.   84 

One way to robustly address these limitations is by calibrating SDMs that consider the full 85 

representation of spatial and temporal variability in predictors sets. While this has been largely 86 

inaccessible owing to most predictive algorithms requiring tabular-type data, a structure inefficient 87 

in representing multidimensional data (Pebesma 2012), more recent deep learning-based models 88 

(Botella et al. 2018; Christin et al. 2019; Deneu et al. 2019; Alshahrani et al. 2021; Anand et al. 89 

2021; Borowiec et al. 2021; Huang & Basanta 2021) allow to express this high dimensionality 90 

with so called ‘tensor-type’ data structures. In simple terms, deep learning – a subfield of machine 91 

learning –  is mainly concerned with the development of models that can automatically process 92 

raw, complex, high-dimensional predictor data, and extract useful attributes from it (the so called 93 

‘features’) without user intervention (LeCun et al. 2015; Bengio et al. 2021). Recently, Capinha 94 

et al. (2021) demonstrated that some deep learning architectures allow using spatial time series 95 

data directly as predictors of ecological phenomena, hence overcoming the need of using 96 

temporally unvarying, pre-assembled, predictors sets. In addition, SDM practitioners have been 97 

also turning to deep learning (Anand et al. 2021), but as an alternative algorithms to use in 98 

conventional workflows with static predictors (e.g., Botella et al. 2018; Benkendorf & Hawkins 99 

2020; Rew et al. 2021). 100 

While time-series-based deep learning networks thence have apparent practical and 101 

conceptual advantages over conventional approaches in the development of SDMs, to our 102 
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knowledge there is no robust comparison of the predictive performance of the two approaches.  103 

Hence, we here perform this assessment. Specifically, we use data from a range of taxa and 104 

geographical regions and measure the accuracy of predictions of species distributions obtained 105 

from deep learning algorithms using spatial time series as predictor variables and from 106 

conventional machine learning algorithms using ‘standard’ predictor variables.  We compared and 107 

evaluated the results from both approaches to determine whether the theoretical advantages of deep 108 

learning with time-series data lead to practical benefits.  109 

 110 

Materials and methods  111 

Species data  112 

Our analyses used data for five globally introduced, invasive species: Cacyreus marshall 113 

(geranium bronze butterfly; Federica et al. 2019), Harmonia axyridis (Asian harlequin 114 

ladybird; Bidinger et al. 2012), ), Myiopsitta monachus (monk parakeet; Bohl et al. 2019),  115 

Pueraria montana (kudzu; Callen & Miller 2015), and Sus scrofa (wild boar; Sales et al. 2017).  116 

Using data for invasive species matches a common use of SDMs  (e.g., Elith & Graham 2009; 117 

Gallien et al. 2012; Mainali et al. 2015; Barbet-Massin et al. 2018; Liu et al. 2020), while also 118 

including common issues of non-stationarity and distribution data quality that may be absent from 119 

designed surveys. The number of occurrences and the extent of distribution ranges vary for each 120 

species and can be observed in Figure S1. 121 

Ideally, SDMs are built using both presence and absence records; however, most 122 

commonly species absences are not recorded. A reasonable alternative is to use pseudo-absences, 123 

which are data points pulled from areas lacking recorded occurrences and assumed to represent 124 
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unsuitable conditions (Phillips et al. 2006; Elith & Leathwick 2009; Hijmans et al. 2017; Valavi 125 

et al. 2022). Because SDM results can be sensitive to the spatial extent used for pseudo-absence 126 

extraction (VanDerWal et al. 2009; Barbet‐Massin et al. 2012), we performed this extraction from 127 

two sampling areas, each representing a distinct assumption. First, as invasive species are often 128 

transported widely across the globe (Liu et al. 2020), we randomly sampled 10,000 pseudo-129 

absence points worldwide, except in locations where the species is recorded. Alternatively, and 130 

considering that the former procedure may overestimate the actual spread of the species (i.e., their 131 

absence may be due to dispersal limitations and not to unsuitable conditions), we delimited a 132 

second sampling area by creating a 1000-kilometer buffer around each species occurrence point 133 

and merging the obtained polygons. By sampling closer to where the species has been recorded, 134 

we expect the pseudo-absences to more closely represent areas made available to the species. From 135 

these areas we sampled a second set of 10,000 pseudo-absence points, also excluding locations 136 

having species records. Importantly, it is common practice to have a significantly larger number 137 

of pseudo-absences than presence records; however, having an imbalanced data set can produce 138 

inflated statistical scores (Jiménez-Valverde et al. 2009; Lunardon et al. 2014; Menardi & Torelli 139 

2014).  Thus, for each species, we used the R package ‘ROSE’ (Random Over-Sampling 140 

Examples; Lunardon et al. 2014) to generated a bootstrap-sample of occurrences in each partition 141 

to match the number of pseudo-absence points to create a balanced data frame. 142 

Bioclimatic variables 143 

We used the WorldClim (https://www.worldclim.org) database, a collection of high-144 

resolution terrestrial climate and weather data, to build our SDMs.  WorldClim (Fick & Hijmans 145 

20170 provides both monthly weather maps (i.e., spatiotemporal time-series) spanning several 146 

decades, as well as set of 19 static spatial variables summarizing distinct aspects of the long-term 147 
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meteorological variation (the so-called 'bioclimatic' variables). These latter variables are derived 148 

from a 30-year spatial time series of monthly values of minimum, maximum temperature and 149 

precipitation recorded from 1970 to 2000 and are a widely used example of temporally static 150 

predictor data being used in conventional SDM approaches (e.g., Pearson & Dawson 2003; Elith 151 

et al. 2006; Phillips et al. 2006; Thuiller et al. 2009; Peterson et al. 2011; Booth et al. 2014; 152 

Hijmans et al. 2017; Morán‐Ordóñez et al. 2018; Liu et al. 2020). Using this data source allows 153 

us to evaluate time-series deep learning networks on an equal footing with conventional methods 154 

by using the 30-year spatial time series (i.e., a 360-time step spatial series for each factor) as 155 

predictors in the deep-learning models and the 19 static bioclimatic summary variables in 156 

conventional algorithms.  In addition, previous studies have shown that the inclusion of elevation 157 

data provides more accurate predictions (Hof et al. 2012; Oke & Thompson 2015; Kiser et al. 158 

2022); thus, we also used this data, as provided by WorldClim, in both sets of models. All predictor 159 

variables were extracted from 2.5 arc-minute spatial scale raster and polygon layers. 160 

Time series deep learning  161 

Currently, there are several existing deep learning architectures able to deal with temporal 162 

variability in predictor data (Box 1.) However, it is generally difficult to know a priori which type 163 

of architecture will work best for each task (He et al. 2021). As an alternative, ‘Mcfly’ (Van 164 

Kuppevelt et al. 2020), a TensorFlow (https://www.tensorflow.org) wrapper package incorporates 165 

automatized model assembly and learning procedures (i.e., AutoML; He et al. 2021); this 166 

assembles a collection of candidate models of different architectures with randomly defined 167 

hyperparameters, which are then trained, tuned, and tested to determine the most suitable model 168 

architecture and parametrization for the data being modeled. Mcfly offers four deep learning 169 

architectures able to use time series as predictor variables: convolutional neural networks (CNN); 170 
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Residual networks, (ResNet); Inception Time (IT); and long short-term memory recurrent neural 171 

networks (LSTM) (Box 1.). We use the AutoML feature of this package to generate five randomly 172 

assembled candidate models of each architecture (i.e., 20 total candidate models) and applied them 173 

to each species and buffer combination.   174 

A standard way to evaluate the predictive accuracy of SDMs is to measure its ability to 175 

predict part of the distribution data left aside from model calibration (Guisan & Zimmermann 176 

2000; Norberg et al. 2019). As such, we partitioned our data into three sets; training data used for 177 

learning or calibrating a model; validation data for evaluating a model’s performance during 178 

training or hyperparameter tuning; and a test set to evaluate the final model.  Training, validation, 179 

and testing sets were 70%, 15%, 15% of the total dataset respectively.  To reduce the computational 180 

costs in candidate model selection phase, we trained each candidate model using a random subset 181 

of ~50% of the training data during four calibration epochs, allowing an initial tuning of 182 

hyperparameters. Each model was then evaluated using classification accuracy on the validation 183 

data. The candidate model (out of the initial 20) with the highest accuracy score, was then trained 184 

a model with the full training set during 50 epochs.  The predictive accuracy of the model in each 185 

epoch was evaluated using the validation data and measured with the area under the receiver 186 

operating curve (AUC).  The AUC is a favored metric in SDM studies since it is independent of 187 

class prevalence (McPherson et al. 2004) and is threshold independent as opposed to metrics based 188 

on a single, often, arbitrary threshold (Brotons et al. 2004; Shabani et al. 2018).  Finally, for each 189 

species and type of pseudo-absence data, we retained the epoch model with best AUC as our final 190 

model and evaluated it with the test data.    191 

All deep learning models were built in Python Ver. 3.7.1 with the Keras Ver. 2.2.4 192 

(https://keras.io) and TensorFlow Version 2.5 (https://www.tensorflow.org) deep learning suites, 193 
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and the Mcfly Ver. 3.1.0 (Van Kuppevelt et al. 2020).  For further review, model code and data 194 

can be found at Zenodo.org (DOI: 10.5281/zenodo.7255395), which should also allow non-experts 195 

to easily implement these methods.  196 

Conventional machine learning 197 

We used several geospatial packages for conventional ‘static’ species distribution modeling in 198 

R (Ver. 4.0.3) , most notably  ‘dismo’ (Hijmans et al. 2017).  The 19 bioclimatic predictors were 199 

used for training and testing these models and are extracted from the raw time series data used in 200 

the deep learning models. We used three popular and typically well performing machine learning 201 

algorithms: Gradient Boosting Machines (GBM; e.g., Friedman 2001); Maximum Entropy 202 

(MaxEnt; Phillips et al. 2006; Elith et al. 2011); and Random Forest (RF; Breiman 2001; Cutler et 203 

al. 2007). 204 

We used the same training and testing samples as for the deep learning models to build and 205 

test the static models. Note that, unlike the deep leaning networks, the conventional algorithms use 206 

internal validation metrics, and thus it is not necessary to manually define validation datasets. For 207 

both deep learning and conventional models, we created global prediction maps.  These maps are 208 

ranked gradient plots that represent variance and spatial uncertainty (Guisan & Zimmermann 209 

2000), which is often more important in studies pertaining to invasive species (Bidinger et al. 210 

2012; Sales et al. 2017; Barbet-Massin et al. 2018; Liu et al. 2020). We compared the deep learning 211 

predictions to the conventional predictions to measure model dissimilarity (Figure 2) by 212 

subtracting the raster pixel values of the conventional methods from those in deep learning rasters. 213 

Value of 0 indicated model agreement, positive values as areas where deep learning showed 214 

stronger suitability prediction, and negative values as areas where the conventional algorithm 215 

favored.   216 
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Results 217 

There were no clear patterns regarding which candidate deep learning architectures were 218 

selected for each species and pseudo-absence extraction strategy (Table 1). LSTMs were selected 219 

the most frequently (4), followed by CNN (3), IT (2), and ResNet (1).  LSTM were selected for 220 

two of five species, with CNN, IT, and ResNet being selected once for models using pseudo-221 

absences extracted from 1000km buffers.  Both LSTM and CNN were selected twice, and IT 222 

selected once for models using pseudo-absences extracted at the global scale. Myiopsitta monachus 223 

was the only species where both models were built using the same architecture, LSTM. 224 

The time-series deep learning models using pseudo-absences extracted at the global scale 225 

scored an average AUC of 0.977 across all five species, with the lowest AUC measured for the 226 

wild boar model (0.925) and highest being the kudzu model (0.994) (Figure 3A; Table 1). The 227 

performances of these models were consistently equal to or second to the best conventional 228 

method, with a small average deviance from the top scoring model of 0.002.  For the conventional 229 

models, RF scored the best for three species (Cacyreus marshall; Pueraria montana; and Sus 230 

scrofa) and MaxEnt for the other two species. GBM scored the lowest for all five species but only 231 

saw an average deviance of 0.014 and all species-model combinations scored an AUC above 0.9. 232 

When using pseudo-absences extracted from 1000km buffers, all algorithms achieved lower, but 233 

still very good AUC values (average AUC across all models = 0.932; Figure 3B).  The deep 234 

learning models scored AUC values above 0.9 for all five species, with only RF doing the same. 235 

Deep learning models scored the best for Cacyreus marshall, Harmonia axyridis, and Sus scrofa 236 

while RF and Maxent scored the best for Pueraria montana and Myiopsitta monachus respectively, 237 

though DL placed second in both cases. GBM consistently placed the lowest among the algorithms 238 

for all five species with an average deviance of 0.032 from the best scoring algorithm. 239 
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Each model produced a global prediction raster which ranked location suitability from 0 -240 

1 (Figures S2:S11). Deep learning models predicted higher suitability scores (0.8 -1) around 241 

occurrence points and a smoother gradient between them. MaxEnt and RF models most frequently 242 

showed higher suitability scores at more isolated locations, generally near the recorded 243 

occurrences.  GBM models were the most inconsistent as they showed some degree of suitability 244 

on all parts of the globe.  For all five species, models built with global background points showed 245 

more conservative ranges where models using background points pulled from a 1000km buffer 246 

showed a more expanded potential range. 247 

For both sets of models, deep learning ranked suitable locations higher than MaxEnt or RF 248 

even when model predictions agreed, while deep learning and GBM models showed a high degree 249 

of dissimilarity (Figures S12:S21).  When comparing the results using point from different spatial 250 

extents, deep learning models showed the most agreement between predictions, while conventional 251 

methods were more variable (Figure S22:S26). 252 

  253 

Discussion 254 

To our knowledge, this is the first study comparing SDMs built from spatial time series 255 

based deep-learning models to conventional machine learning algorithms. Deep learning can 256 

address several conceptual concerns seen in conventional modeling methods, especially potential 257 

human-mediated omissions, or bias in selection of features to represent in the predictor dataset.  258 

These methods also allow the model to account for temporal environmental variation, something 259 

known to be biologically relevant and not well-represented in pre-assembled sets of bioclimatic 260 

variables (Morán‐Ordóñez et al., 2018, Reside et al., 2010, Stewart et al., 2021, Zimmermann et 261 

al., 2009).  Here we show the performance of randomly generated deep learning models was 262 
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similar to or exceeded conventional static methods.  Our results extend the findings from previous 263 

studies (Botella et al. 2018; Benkendorf & Hawkins 2020; Anand et al. 2021; Capinha et al. 2021; 264 

Rew et al. 2021) showing that deep learning is an extremely powerful approach, and suggest that 265 

these models should be increasingly considered for species distribution modeling, especially with 266 

the use of spatial time series data.  267 

Each of the four deep learning architectures were selected for at least one species and 268 

pseudo-absence combination, with LSTM and CNN being the most commonly selected. 269 

Considering that we use a relatively small sample of candidate models (n = 20) for each species 270 

and type of pseudo-absence extraction strategy, there are likely to be significant gains in 271 

performance by understanding the strengths of different architectures and their components and 272 

doing more intensive optimization of hyper-parameters. Like conventional ANNs, the 273 

convergence of training and validation AUCs and model accuracy are dependent on the number of 274 

training epochs performed (Fawaz et al. 2019; Benkendorf & Hawkins 2020; Capinha et al. 2021). 275 

While our models ran 50 epochs, further analysis is recommended on the effect this has on time 276 

series DL-SDMs.  277 

We used a simple random subset of the data to select among candidate architectures of 278 

deep learning models and to determine the maximum number of epochs that the models should 279 

train for (i.e., the number of times the full set of training data passes through the network, adjusting 280 

model weights). This approach still prevails in the field (Araújo et al., 2019) and here has produced 281 

robust final models (e.g., when comparing its predictive performance to most of the conventional 282 

models); however, it might also be worth exploring data splitting strategies that more carefully 283 

consider the non-independence of data points, as caused for instance by spatial autocorrelation 284 

(Araújo et al., 2019; Ploton et al., 2020), including the spatial cross-validation method (Elith & 285 
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Leathwick 2009; Hijmans 2012; Wenger & Olden 2012; Roberts et al. 2017; Ploton et al. 2020).  286 

Thus, one challenge that deserves particular attention is that of model overfitting. Given the high 287 

number of trainable parameters found in deep learning models, particular care should be taken to 288 

prevent overfitting (Li et al. 2019; Benkendorf & Hawkins 2020). Under these circumstances, the 289 

data splitting strategies used to inform the model about ‘the reality it should search for’ takes on 290 

significant relevance.   291 

Measuring the differences in spatial predictions between suitability maps resulting from 292 

different algorithms trained on the same data is one way to assess predictive uncertainty (Kearney 293 

et al. 2010; Beale & Lennon 2012; Iturbide et al. 2018).  In this study, we compared prediction by 294 

calculating the difference between time series deep learning maps to the conventional algorithms, 295 

and by comparing the predictions across two different spatial extents.  Our results show that time 296 

series deep learning models generally predicted   an area of relatively high suitability intermediate 297 

to the range of some conventional algorithms.  Also, deep learning models were the most similar 298 

across both spatial extents, which can be a common problem in conventional workflows.  299 

However, we note that determining which model is not a trivial process but requires extensive 300 

validation assessment to remove uncertainty (Huang et al. 2018; Iturbide et al. 2018; Norberg et 301 

al. 2019; Grimmett et al. 2020).  Converting to binary maps can simplify the decision process, but 302 

only when an appropriate threshold is implemented, which is equally difficult to evaluate (Liu et 303 

al. 2005; Jiménez-Valverde & Lobo 2007; Liu et al. 2009).   Thus, further review of these methods 304 

should be explored, including whether it makes sense to make ensemble models between 305 

conventional and deep learning predictions, or between deep learning architectures.  306 

Despite the results obtained, it is unlikely that time-series models will always outperform 307 

conventional approaches. For example, in cases where deep learning models performed best, the 308 
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difference was generally small to the best performing conventional model.  This is likely to be the 309 

common case for large-scale distribution patterns, that respond strongly to general, long-term 310 

patterns of climate (Pearson & Dawson 2003), which tend to be well represented in the existing 311 

repositories of pre-processed climatic features. Instead, we argue that the capacity of time-series 312 

deep learning models for considering a higher dimensionality of possibly relevant features makes 313 

them better equipped to make accurate predictions under a wider diversity of settings, spanning 314 

from distributions shaped by the simpler patterns of climate to those resulting from an intricate 315 

web of relationships involving complex spatial and temporal dynamics of multiple factors.   316 

In addition, although time-series deep learning models could bring substantial benefits to 317 

SDMs, there are also several other limitations worth addressing, though most of these are also 318 

faced by conventional approaches. These include spatial autocorrelation (F. Dormann et al. 2007), 319 

extrapolation errors (Liu et al. 2020), data imbalance (Jiménez-Valverde et al. 2009), or sampling 320 

bias (Fithian et al. 2015).  This assumes particular significance if the predictions are aimed for new 321 

regions or time periods, i.e., are to be ‘transferred’ (e.g., Yates et al. 2018; Liu et al. 2020; Taheri 322 

et al. 2021).  The challenges imposed by these issues are inherent to the early stage of using these 323 

models for species distribution modelling. Hence, we expect that, as these issues become 324 

increasingly explored, the hurdles they cause will become resolved to some extent − in a similar 325 

manner to what occurred for conventional models. However, it is important not to underestimate 326 

the potential complexity of these tasks, particularly given the higher dimensionality of the 327 

predictor data that are now involved (for example, our conventional static machine learning models 328 

were given ~380,000 measurements to process i.e., 19 BIO variables × ~20,000 instances, where 329 

the time-series DL models were fed ~28,800,000 i.e., 4 time series × ~20,000 instances × 360 time 330 

steps. 331 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513922doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion 332 

We have described and demonstrated conceptual and practical benefits of deep learning 333 

models for predicting species distributions. The capacity of these models to automatically identify 334 

relevant features from, high-dimensional, temporal data reduces reliance on human supervision in 335 

the definition of relevant environmental features to include in the models. This can advance the 336 

field by providing robust predictions even when a priori knowledge about the features that are 337 

most influential in shaping species distributions is limited, while matching the performance of 338 

existing methods in well understood systems. However, several challenges still need to be 339 

addressed before the full potential of these models becomes realized. We hope to facilitate and 340 

encourage ecological modellers to explore, test and help overcome the limitations of deep learning 341 

models to advance understanding of species distributions, much in the way that conventional 342 

models were explored and improved over the last twenty years.  343 
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TABLE 1 Summary of deep learning model selection and performance statistics.  660 

Global   
   

Species Architecture  Accuracy Best epoch Validation AUC Test AUC 

Cacyreus marshall CNN 0.968 14 0.988 0.986 

Harmonia axyridis LSTM 0.933 2 0.989 0.988 

Myiopsitta monachus LSTM 0.963 38 0.997 0.991 

Pueraria montana CNN 0.979 3 0.995 0.994 

Sus scrofa  IT 0.786 6 0.92 0.925 

      

1000km Buffer 
     

Species Architecture  Accuracy Best epoch Validation AUC Test AUC 

Cacyreus marshall LSTM 0.843 46 0.923 0.924 

Harmonia axyridis LSTM 0.863 14 0.943 0.952 

Myiopsitta monachus CNN 0.889 50 0.966 0.962 

Pueraria montana IT 0.908 2 0.971 0.971 

Sus scrofa ResNet 0.731 26 0.901 0.908 

661 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.513922doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.26.513922
http://creativecommons.org/licenses/by-nc-nd/4.0/


 662 

 663 

 664 

  665 

FIGURE 1 A.) Precipitation data from the 1990 - 2000 for three locations that fall along the same 

lines of latitude.  The locations include Tampa, FL, US (green line), Nainapur, Uttar Pradesh, India 

(black line), and Songtao Miao Autonomous County, Tongren, Guizhou, China (red line). These 

points were extracted from WorldClim BIO12, which measured averaged annual precipitation. All 

three points have roughly the same pixel value of 1260 mm.  B.) precipitation for the year 1990 

and C.) 1991. Note, precipitation not only differs spatial, but also temporally. 
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 666 

FIGURE 2   Visual example of global predictions for global Sus scrofa models, with both A.) 667 

Deep Learning and B.) Random Forest, the best scoring conventional method. C.) Difference 668 

measure of the two models, which is produced by subtracting the pixel values of Random Forest 669 

from Deep Leaning.  Value of 0 indicates model agreement, where positive values (blue scale) 670 

are areas where Deep Learning has a stronger suitability prediction negative value (red scale) are 671 

areas where Random Forest favor.  D.) The raw occurrence data used in the modeling process.  672 

  673 
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 674 

FIGURE 3 A comparison of time series deep learning (TSDL) to gradient boosting machine 675 

(GBM), maximum entropy (MaxEnt), and random forest (RF) built using static bioclimatic 676 

variables.  Models were built from both A.) a global spatial extent and B.) a reduced, 1000-677 

kilometer extent.  Gray bars represent the average AUC across all species and include standard 678 

error bars.   679 

  680 
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BOX 1 Summary of deep learning architectures.  681 

Deep learning is a complex network of processing levels known as artificial neural 682 

networks (ANNs) meant to replicate the functions of the human brain.  ANNs are characterized 683 

by several stacked layers of information processing units or ‘neurons’, which are capable of 684 

transforming input data into simpler features. Traditional ANNs, like most modern algorithms, 685 

are constructed from pre-selected features and follow a feed-forward process; each iteration or 686 

epoch of the learning processes all the input data first, recalibrates internal hyperparameters, and 687 

then attempts to optimize until statistical convergence (Bishop 1995).  Deep learning neural 688 

networks, on the other hand, often consists of multiple layers of ANNs processing at each 689 

internal layer.  690 

Convolutional neural networks (CNNs) are one of two dominant categories of deep 691 

learning architectures.  As the name implies, CNNs refer to convolutional layers; in essence, 692 

internal filter functions of varying length convolve with patches of the time series data to 693 

measure how much these represent features of presumed relevance. The filtered features are then 694 

processed in rectification and pooling layers, which transform data and reduce feature 695 

dimensionality for further analysis. The procedure can be replicated along stacked layers, 696 

resulting in a hierarchy of increasingly complex features. The final processing layer is a fully 697 

connected network that resembles a conventional ANN and is where classification outputs are 698 

generated. To optimize the learning objectives, different layers are added to the standard CNN 699 

protocol. For example, Residual networks (ResNets) are CNNs with additional process known as 700 

Residual Blocks which allow networks to perform both a feed-forward process and data 701 

processed in layers several steps ahead simultaneously. Likewise, Inception Time networks are a 702 
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sort of hybrid with standard CNNs and ResNet such that they use components of CNN 703 

convolutions and ResNet Residual Blocks, but in parallel.    704 

The second category of architectures is recurrent neural networks (RNN), which were 705 

specifically designed to analyze sequential data (Fawaz et al. 2019).  These models incorporate 706 

feedback loops, which allow models to learn from their own predictions, as well as the general 707 

trends in each layer. Standard RNNs tend to prioritize short-term signals over long-term trends 708 

(Chung et al. 2014).  Therefore, the inclusion of “gated-units”, or algorithmic protocols that 709 

determine if networks should remember or forget information, were incorporated, thus forming 710 

the basis of LSTM models. 711 
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