

Predicting Student Risks Through Longitudinal Analysis

Ashay Tamhane, IBM Research, Bangalore, India
Shajith Ikbal, IBM Research, Bangalore, India
Bikram Sengupta, IBM Research, Bangalore, India
Mayuri Duggirala, Tata Research, Pune, India
James Appleton, Gwinnett County Public Schools, GA, USA

Presentation @ ACM SIGKDD 2014, NYC, NY, USA 26 August 2014

Problem & Motivation

- Education domain is witnessing unprecedented transformation
- □ K-12 schooling crucial period in everyone's education life
- □ One of the major problems at K-12 level drop-outs
- Poor academic performance One of the key indicators of drop-out
- Predict potential risks in academic performance for early intervention

Predicting potential risks in performance of the students ahead in time!

IBM

Predicting Potential Risks in Academic Performance

□ Traditionally – Teachers predict

> Using recent past academic results, experience with similar students in the past

> Negatives:

- limited knowledge, not objective quantification
- Often do not leave enough time to apply appropriate intervention

□ Now – There is an opportunity to predict better and well ahead in time

- > With digitization of school records and the use of instrumented digital learning environments
- > Student's longitudinal journey through K-12 is captured
- > Data from thousands of students from the past is available
 - Including academic history and non-academic attributes such as demography, behavior.

This is what we tried to do in this work!! • In collaboration Gwinnett County Public Schools

IBM

Data from Gwinnett County Public Schools

One of the largest school districts in the US

- > 132 schools, serving ~168,000 students per year.
- Data related to students, teachers and assessments from all constituent schools are collated into hundreds of tables in a central data warehouse.
- > A snapshot of this warehouse was made available to IBM.

STUDENTS	company of the Association
	TESTS Details
Enrollment History	
Demography	Subtest Details
Disability	Strand Details
Test Performance	
Student Course History	
Discipline History	
Absenteeism	0011001
	SCHOOL
TEACHERS	Class
	Section
Teacher Course History	
Students Taught	Cluster

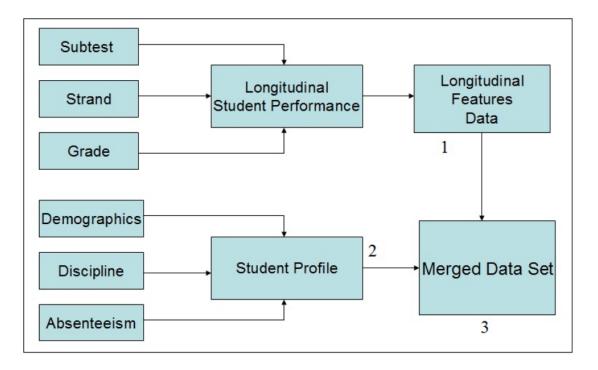
IBM

Specific Data Considered

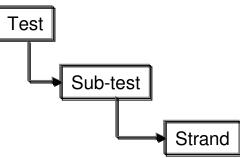
Grades: 1 to 8 (Primary & Middle school) Subjects: Mathematics, Science, Literature,

□ Tests:

- CRCT Criterion References Competency Test
- ITBS Iowa Test of Basic Skills
- CogAT Cognitive Ability Test



Test Hierarchy



Longitudinal view includes: - scores from all past grades, tests, subtests, and strands

~ 160,000 students max. 516 scores per student

Many missing scores!!

Prediction Task

□ Targets considered:

- CRCT 8th Grade Mathematics
- CRCT 8th Grade Science
- > ITBS 8th Grade Mathematics

Data Preparation:

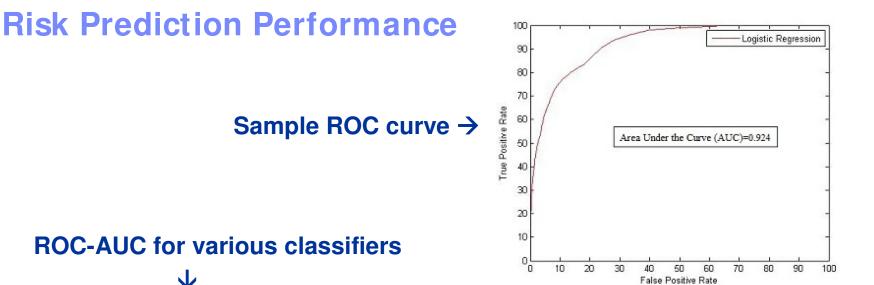
- Target: for CRCT score < 800 is considered 'at-risk'. For ITBS score < 25 is 'at-risk'</p>
- Features: all scores from grades < 8th grade + demography + behavior many scores missing
- Students chosen such that at least 20% features are present
- Missing features are mean imputed
- Data size: CRCT 58707 students and 342 features; ITBS 43310 students and 282 features
- Experimental setup: 5-fold cross validation

Prediction:

- Classifiers from IBM SPSS or WEKA: logistic regression, naïve bayes, decision tree
- To predict: 'at-risk' and 'no-risk' students.

Evaluation metric:

- >ROC-AUC area under receiver operating curve true positives vs false positive
- > False positive rate for True positive rate of 90% or more



Classifier	CRCT 8th Grade	CRCT 8th Grade	ITBS 8th Grade
	Mathematics	Science	Mathematics
Naive Bayes	0.744	0.739	0.702
Decision Tree	0.822	0.774	0.766
Decision Table	0.933	0.902	0.893
Logistic Regression	0.924	0.907	0.896

True Positive False Positive Task Probability TP, in % Threshold FP, in % **FP** for **CRCT** 8th Mathematics 0.06 90.523.8TP>=90 → **CRCT** 8th Science 0.1890.0 24.7**ITBS 8th Mathematics** 0.190.728.8

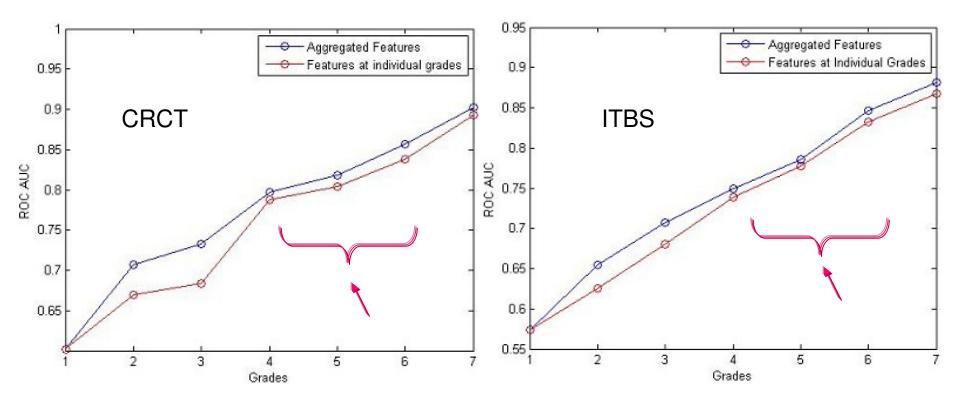
7

Feature Importance

Feature Type	CRCT 8th Grade	ITBS 8th Grade
	Mathematics	Mathematics
All Features	0.924	0.896
All Scores	0.902	0.882
All Demographics	0.866	0.814
All Behavioral	0.576	0.559
Scores - Maths	-	0.871
Scores - Science	-	0.828
Scores - Language	-	0.846
Scores - Others	-	0.829
Demography - Gender	0.547	0.537
Demography - Ethnicity	0.660	0.668
Demography - Gifted	0.622	0.630
Demography - Free Meal	0.646	0.640
Demography - Special Education Needs	0.721	0.637
Behavioral - Absence	0.537	0.542
Behavioral - Suspensions	0.588	0.578
Behavioral - Incidents Reported	0.583	0.569

Scores are important, demography information helps
Recent past scores are the most important

Early Prediction



At Grade 4, it is possible to predict for Grade 8 with reasonably high accuracy
Accuracy improves as more and more features are aggregated from lower grades

Summary

□ Problem: Predicting students at risk of poor academic performance

> To facilitate planning of effective personalized interventions

Conclusions from our study

- It is possible to predict at-risk students with high accuracy
- > Past scores are important indicators recent past scores are more important

It is possible to predict well ahead in time – thus providing enough time for effective interventions.
Highlight of our work

> The scale of our study, large amount of data from major US school district (Gwinnett County)

Potential future directions

- > To expand this to other grades / subjects taking in all other features available
- Prediction accuracy improvement
 - Improve missing value handling
 - Estimate student clusters and build prediction model per cluster
- Feature importance reasoning out a prediction
 - Discriminant analysis
 - Hierarchical prediction models to back-trace local decisions

Thank you!

IBM Research, Bangalore, India & Gwinnett County Public Schools, GA, USA | KDD'14 Paper id: 951 © 2014 IBM Corporation