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Abstract

This paper proposes a novel approach to automatic estimation of attention of students during lectures in the

classroom. The approach uses 2D and 3D data obtained by the Kinect One sensor to build a feature set characterizing

both facial and body properties of a student, including gaze point and body posture. Machine learning algorithms are

used to train classifiers which estimate time-varying attention levels of individual students. Human observers’

estimation of attention level is used as a reference. The comparison of attention prediction accuracy of seven classifiers

is done on a data set comprising 18 subjects. Our best person-independent three-level attention classifier achieved

moderate accuracy of 0.753, comparable to results of other studies in the field of student engagement. The results

indicate that Kinect-based attention monitoring system is able to predict both students’ attention over time as well as

average attention levels and could be applied as a tool for non-intrusive automated analytics of the learning process.
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1 Introduction
Automated learning analytics is becoming an important

topic in the educational community, which needs effective

systems to monitor learning process and provideş feed-

back to the teacher. Recent advances in visual sensors and

computer vision methods enabled automated monitoring

of behavior and affective states of learners at different lev-

els from the university level [1] to the pre-school level

[2]. Student affective states such as interested, tired, and

confused are automatically determined from facial expres-

sions [2–4], and attention state is computed from different

visual cues such as face gaze, head motion, and body

postures [1, 5].

The basic idea of our work is to utilize advanced capabil-

ities of Kinect One sensor to unobtrusively collect behav-

ioral data of multiple students during attending traditional

lectures in the classroom. We propose a methodology to

compute features from the Kinect data corresponding to

visually observable behaviors and to apply machine learn-

ing methods to build models to predict attentive state of

the individual students.
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The first issue was defining student attention in the

way to correspond to observations made by the teacher

or other human observer. We analyze attention scores

provided by human observers and match them with the

observable behaviors, activities, gestures, etc. of the stu-

dents (Section 3.4). Those results allow us to define a

meaning of observable attention levels in terms of student

behavior. The second issue was selection and derivation

of meaningful features which can effectively discrimi-

nate attention levels. We selected features, provided by

Kinect One feature detection system, which were corre-

lated to observable behaviors and attention levels. The

proposed set of features for attention estimation, derived

from low-level Kinect features, is described in Section 4.3.

The final issue was selection of the appropriate machine

learning method, which is able to learn a generalized

attention model, applicable to any student or person

in the classroom. We tackle this problem by preparing

five combinations of input features and machine learning

classifiers and data splitting strategies and analyze their

accuracy on the test set of 18 persons (Section 5). We

present detailed evaluation of results including compari-

son of performance of classifiers and discussion ofmethod

limitations.
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2 Related works

2.1 Student engagement and attention in the classroom

In the field of higher education, estimation of a long-term

student engagement in the learning process is needed in

order to evaluate courses and improve learning results

[6, 7]. This evaluation is usually done through question-

naires, but with the proliferation of modern e-learning,

it became possible to collect implicit usage data to esti-

mate activity and engagement of students or children

within learning activities [8]. A review of research onmea-

surement of student engagement in technology-mediated

learning [9] have provided a review of quantitative and

qualitative observational measures (instruments) to mea-

sure behavioral, cognitive, and emotional indicators of

student engagement. Attention was classified as one of the

factors of cognitive engagement, while interest, anxiety,

and boredom contributed to emotional engagement.

Attention is best described as the sustained focus of

cognitive resources on information, while ignoring dis-

tractions. In the field of education, the terms of sustained

attention or vigilance are used to describe the ability to

maintain concentration over prolonged periods of time,

such as during lectures in the classroom. Pedagogical

research is often focused onmaintaining student attention

(concentration, vigilance) during lectures [10], because

sustained attention is recognized as an important factor of

the learning success [11]. However, tracking of individual

students’ attentive state in the classroom by using self-

reports is difficult and interferes with the learning process,

which is also the case for using psychophysical data sen-

sors [12]. Visual observation is a non-intrusive method,

and real-time video recording and encoding [13–16] can

be used for manual attention coding; however, for long-

term observations, automatic computer vision methods

should be applied.

2.2 Automatedmeasurement of affective parameters

Non-intrusive visual observation and estimation of affec-

tive parameters is commonly using recorded video (RGB)

signal, for example, to estimate student engagement from

facial expressions [3, 17], to estimate mood of children

during one-to-one tutoring by using facial analysis [2], and

to estimate driver’s vigilance from his head pose [18]. A

survey of automatic affect detection methods [4] identi-

fied various types of signals (video, EKG, EMG...) used

in affect analysis. Video observation and face analysis

usually require high-quality image and are applicable to

single-person observation, which limits their usability or

reduces accuracy and available complexity of image anal-

ysis [1] in the classroom setting. Eye tracking devices are

very successful in measuring affective parameters such

as concentration in the computerized learning environ-

ments, and Bixler et al. were using eye tracking data detect

mind wandering during computerized reading [19]. Apart

from visual signals, other types of measurements such as

brainwaves (EEG) were utilized to assess attention level of

students [12, 20].

Two state-of-the-art studies use machine learning

methods to build models for automated estimation of

student engagement from facial features. Monkaresi

et al. [17] use combination of geometrical facial fea-

tures (detected by Kinect sensor), texture description fea-

tures (local binary patterns), and physiological features

(heart rate) to estimate two-level engagement of students.

Whitehill et al. [3] use computer vision methods to reg-

ister faces and extract Box Filter features (Haar wavelets)

and then train binary classifiers to estimate four states of

engagement. Both works are studying the engagement of a

single student during computerized learning which differs

from our use case of attention during classroom teaching.

2.3 Kinect sensor and its usage

The introduction of low-cost depth sensors aimed at com-

puter games such as Microsoft Kinect inspired a lot of

research in various applications, especially those requiring

detection of body skeletons. A review paper [21] provided

an overview of usage of first-generation Kinect 360 sensor

for human activity analysis, including body pose and activ-

ity recognition, and hand gesture analysis; however, they

do not include any references on using head gaze informa-

tion. Recent studies have utilized Kinect for gait assess-

ment [22] and online human action recognition such as

writing and cooking [23], and Won et al. [5] utilized two

Kinect sensors to record body motions of teacher and

the student during dyadic learning interactions to predict

learning performance.

The review of affect estimation methods [4] states the

importance of face gaze and facial expression as clues to

assess cognitive engagement or inattention of students.

The gaze direction have been detected from combined

video and depth signals [24, 25] and utilized in the visual

attentionmodel to estimate human-to-human interaction.

Human gaze has also been used for semantic mapping

of human attention in the 3D environment [26]. Kinect

One sensor provides advanced capabilities to detect face

gaze and facial features, which have not yet been explored

in available literature and are utilized in the proposed

system.

3 Experimental methods
In this section, we present the experimental setup to

acquire the test dataset, methods of data annotation, anal-

ysis of attention levels as observed by annotators, and their

correspondence to student behavior.

3.1 Experimental setup

The goal of our experiments was to record student behav-

ior in the classroom during lecture, thus obtaining video
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and 3D data which would allow both human observation

as well as automated analysis of their attention. The Kinect

One sensor was set up to observe up to four students

acting as test persons.

The participants of the experiment were 22 undergradu-

ate engineering students from a public university in Slove-

nia; there were 20 males and 2 females. Video and 3D data

were recorded during 25-min lecturing sessions by Kinect

One sensor. The four students were not reliably detected

and tracked by Kinect body tracking engine, and they were

not included in the dataset. The experimental dataset was

obtained during four lecturing sessions in a classroom.

The first two sessions were using a single Kinect sensor

to frontally observe three students sitting behind a table

from a distance of 1.8 m. The last two sessions involved

two sensors, each one observing four students from the

same distance. Students were asked to follow a lecture

and take notes and answer questions prior and after

the experiment. The relation between learning gain and

observed attention was studied in our previous paper by

Burnik et al. [27].

3.2 Data collection methods

The Kinect data was recorded by Matlab scripts using

the methods provided by Kin2 Toolbox for Matlab, which

encapsulates the Microsoft Kinect SDK 2.0. The real-time

feature extraction phase captured the video and skeleton

data during the experiment and recorded data on the disk

drive. The offline processing and analysis of extracted data

was performed by Matlab scripts.

The recording system extracted and stored several

types od data provided by Kinect SDK’s body and face

tracking engine. Color frames with full HD resolu-

tion (1920 by 1080 pixels) were extracted at the frame

rates up to 15 frames per second, encoded and stored

as H.264 video file. Depth frames with resolution 512

by 424 pixels were recorded but were not used for

attention prediction.

Kinect body skeleton is the most exploited 3D feature

in literature [5, 22]. Skeleton is given as a set of 25 body

joints, where each body joint is represented by a vector

pj =[ pj,x, pj,y, pj,z] given in Kinect 3D coordinate system.

As shown in Fig. 1, the origin of the coordinate system

(x = 0, y = 0, z = 0) is located at the center of the

Kinect IR sensor, the x coordinate grows to the sensors

left, y grows up, and z grows out in the direction the sen-

sor is facing. The unit is 1 m. At each time instance t,

up to six skeletons can be detected and tracked. Skeleton

indexing is however not consistent through time due to

persons’ occlusions or disappearance from the scene. The

k-th skeleton at time t is given by 25 body joints, and we

denote it as Sk(t) = {p1,k(t), p2,k(t), · · · , p25,k(t)}. Upper

parts of the test persons’ skeletons are visualized on the

video frame in Fig. 5a.

Fig. 1 Student observation in the classroom. The Kinect One sensor is recording behavior of multiple students to enable analysis of their gaze point

and attention level during the lecture
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The second set of 3D features is provided by Kinect

SDK 2.0 face tracking engine. First, a detailed 3D face

model composed of 1347 mesh vertices was recorded for

each skeleton. Second, face orientation in 3D space was

recorded, given by face yaw, roll and pitch angles, shown

as lines in Fig. 2a. And third, 17 face Animation Units

(defined within Kinect SDK) were recorded, expressing

face deformations such as eye closed, lip corner depressed,

jaw open, and eyebrow lowered in terms of numeric

weights varying between 0 and 1.

We define a world coordinate system to estimate gaze

point location of individual test persons located in the

classroom (Fig. 1). The origin of a world coordinate sys-

tem is set at the floor level and at the left corner of the

classroom, with the x′-axis extending through the slide

display area and the white-board. The y′-axis represent a

height above the floor, and the z′-axis is extending towards

the persons within the classroom. The 3D coordinates of

a point within world (classroom) coordinate system are

given by vector p′ =[ p′
x, p

′
y, p

′
z].

3.3 Human estimation of attention level of students

The literature is lacking a consistent definition of the stu-

dent’s attention in the classroom. The review of video

recordings of students during lecture has shown that

students’ attention towards the lecture is manifested by

observable behavior such as gaze, writing, and mimics.

As a starting point of the research, we asked human

observers to estimate how attentive subjects appear to be

during lecture by observing video recordings (Fig. 2a). The

observed attention annotation procedure is described in

detail in [27].

The five human observers, j ∈ {1, 2, 3, 4, 5}, were asked

to estimate observed attention level of the students dur-

ing lecture on the scale 1..5 with a time granularity of 1 s.

We denote those estimates as observed attention Ao
u,j(t) ∈

{1, 2, 3, 4, 5}. To derive a mean attention score Am
u (t) of a

student u at time t, we removed minimum and maximum

estimate and calculated mean of the three visual attention

scores (see Fig. 2b). Since observed attention estimates

were not always consistent and in agreement, the mean

attention score exhibits short-term fluctuations. To regu-

larize estimated attention, we performed median filtering

with a time window of 10 s and thresholding to three lev-

els. The final reference attention of a student is denoted as

Ar
u(t) ∈ {1, 3, 5} and provides a human estimate of the cur-

rent attention level of a student on a three-level scale; an

example is shown in Fig. 2b.

3.4 Relation of attention to the behavioral cues

In addition to attention level, we labeled video clips for the

presence of specific behavior such as writing for each of

the test students. Starting and ending times were labeled,

and binary signals representing those actions were calcu-

lated. The set of behavior reference signals includes the

following features:

• Writing,Wu(t) ∈ {0, 1}, which was annotated when

pencil was writing on paper and student was

observing the notes

a

b

Fig. 2 Human estimation and annotation of person’s attention level. By observing video footage (a), five human coders estimated attention level of

each of the test persons. On graph (b), mean attention score Amu (t) is shown as a blue line and final three-level reference attention Aru(t) as a red line
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• Yawning, Yu(t) ∈ {0, 1}
• Supporting head, Su(t) ∈ {0, 1}, where one hand is

supporting or touching a face
• Leaning back, Lbu(t) ∈ {0, 1}, describing upper body

posture of the person
• Person’s gaze, where we distinguish between four

gaze directions (looking away, slides, white-board,

notes). The gaze is represented by four binary

features, GA
u (t),GS

u(t),G
W
u (t),GN

u (t) ∈ {0, 1}

In order to associate visually observable behaviors of the

test persons with the human-encoded attention level, we

calculated mean values of annotated behavior signals for

all levels of attention, over all test persons. In this way, we

produced average score of selected behavior such as writ-

ing at each attention level, which gives an indication how

observable behavior is related to observed attention. For

example, for writing signal Wu(t), we calculate writing-

attention level correspondence Aw(l), where l ∈ {1, 3, 5} is

an attention level:

Aw(l) =
1

Nu · Ns

Nu
∑

u=1

Ns
∑

t=1

Wu(t)|Ar
u(t)=l (1)

Correspondences between the specific behavior and the

attention level, calculated according to Eq. 1, are pre-

sented in Table 1. The values are interpreted as a rate of

time the specific behavior was observed during all periods

labeled with attention level l within our test set.

The results shown in Table 1 are graphically presented

in Fig. 3. By observing video footage, we were able to iden-

tify body, facial, and other visual behavioral cues which

correspond to levels of observed attention:

• High level of attention was associated with observing

slides, writing notes (52% of time), and body leaning

forward (88% of time).
• Medium level was associated with observing slides,

body leaning forward (84%), and head supported by a

hand (61%).
• Low level of attention was associated with gestures

expressing tiredness or boredom, such as leaning

Table 1 Relation between observed attention levels and

observable behaviors

Attention level (l)

Behavior Low (1) Medium (3) High (5)

Writing, Aw(l) 0.0 0.05 0.52

Yawning, Ay(l) 0.26 0.06 0.001

Supporting head, As(l) 0.21 0.61 0.11

Leaning back, Ab(l) 0.41 0.16 0.12

The values represent rate of time the behavior was present during the periods with

the specific attention level

back (41%), rubbing a neck, scratching head, yawning

(26%), and looking away.

Those observations allowed us to define a set of com-

puted features for automated attention estimation in

Section 4.3, which are closely related to the observed

student behaviors as shown in Fig. 3.

4 Automated attention estimation from Kinect

features

4.1 Kinect signal preprocessing

The frame-based Kinect data which were recorded dur-

ing the observation session must be processed in order

to extract specific features of interest and assign (map)

them to correct test persons. During each experiment, we

assigned an index u to each of the test persons.

The task of the mapping step at each time instance t is

to assign each of the detected skeletons k = 1..Nk to one

of the actual test persons u = 1..Nu. This requires a pre-

defined person setup which is given as an expected image

position of the person’s head. The mapping is done by

finding a closest head position among all detected skele-

tons for each of the test persons’ predefined positions.

After the mapping step, we assign feature values of the

k-th skeleton to the actual test person.

Kinect sensor provides skeleton and facial data at a rate

of 30 fps. However, due to processing time to extract and

store those features, the actual data rate is from 10 to

15 fps in our system. Data frames are lost due to lim-

ited processing speed and storage speed, causing dropped

frames and non-uniformly sampled data. Kinect features

also include certain level of noise, outliers are present in

case of detection errors, or no signal is available when

detection fails. Our attention estimation system deals with

effects which last at least several seconds, so we chose

1 s as a sampling rate. Kinect signals are thus resampled

at 1 frame per second by utilizing median filtering over

a 1 s time window in order to preserve signal dynam-

ics. The uniformly sampled Kinect feature signals are

denoted sj,u(t).

4.2 Inter-person normalization and smoothing

Analysis of distribution of feature values revealed that

they contain significant inter-personal differences. Signals

differ either due to person-specific absolute values such

as head position in 3D space, or due to varying amplitude

of the signals (such as body lean back angle) between per-

sons. In order to build a general behavior model, we need

to align signals and normalize their range of values (Fig. 4).

We compute mean s̄j,u and standard deviation σj,u over

all samples and compute normalized feature signal as

f̃j,u(t) = (sj,u(t) − s̄j,u)/σj,u. Normalized features provide

better separation of attention classes. In order to improve

time consistency of results, we computed smoothed
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Skeleton Joints

Head Pt 3D

Gaze Point 2D

Head 

Displacement 3D

Computed FeaturesKinect Data 

Face Deformation

Mouth Open

Lean Back

Spine Base Pt 3D

Face Features

Eyes Closed

High Attention

Medium 

Attention

Low Attention / 

Inattention

Observing slides

Writing notes

Lean forward

Observing slides

Supporting Head

Lean forward

Behavioral Clues Attention States

Face gaze

Animation Units 

(17)

Leaning back

Looking away

Yawning

Fig. 3 Relation between computed features based on Kinect signals and the observable behavioral cues. High correlation between computed

feature and the behavior is shown as dotted line

versions of feature signals f̂j,u(t) by using Gaussian filter of

width 11 s. Normalized and smoothed feature signals are

shown in Fig. 5.

4.3 Computed feature set for attention estimation

The final feature set A consists of seven features

computed by combining different Kinect signals, which

are normalized over all persons. The feature set B consists

of the same signals which are temporally filtered using

weighted smoothing filter of the size of 11 s, see Fig. 5b.

4.3.1 Upper body posture

Upper body posture was found to be highly correlated

with student activities such as observing slides and writ-

Fig. 4 Data processing diagram. Feature set for machine learning is computed from pre-processed Kinect features, and reference attention is

provided by five human observers. Several classifiers are learned from the feature samples and the reference attention data, and model accuracy is

computed on the test data set
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a

b

c

Fig. 5 Examples of final feature set for test person 6. Image (a) represents a single frame of Kinect video with visualization of Kinect data including

face rectangles, face points, gaze vectors, and body skeletons. Graph (b) shows reference attention level, and graph (c) shows seven normalized and

smoothed feature signals

ing. Features were computed from body joints given in

3D camera space, pj,u(t). Leaning forward when observing

slides or writing resulted in changed head position in the

3D camera space.

Head displacement. In order to characterize changes

in the head position during activities such as writing,

we computed displacement vector of the current per-

son’s head position p4,u(t) from the mean position over

the experiment p̄4,u, resulting in 3D displacement vector

Du(t) = p4,u(t) − p̄4,u. Only head displacement in the

vertical direction (y-axis) was found to be significant, and

the feature 1 is normalized head displacement, f̃1,u(t) =

(Du,y(t) − D̄u,y)/σDu,y

Body lean indicator. In order to characterize the overall

upper body posture, we calculated the vector from head to

lower spine, du(t) = p4,u(t) − p1,u(t). We then calculated

body lean indicator as an angle to the vertical coordinate

axis y, Lu(t) = arctan
du,z(t)
du,y(t)

. Feature 3 f̃3,u(t) represents

normalized body angle.

Head angle indicator. Head angle in the z direction was

found to be correlated with writing and observing slides.

We calculated vector from head to upper spine point,

hu(t), and compute head angle to the vertical coordinate

axis y, Hi(t) = arctan
hu,z(t)
hu,y(t)

. Feature 4 f̃4,u(t) represents

normalized head angle.

4.3.2 Face gaze point

Kinect SDK provides an estimation of the relative

head gaze, given as a vector of angles gu(t) =

[ γx,u(t), γy,u(t), γz,u(t)], where γx,u(t) corresponds to head

yaw and γz,u(t) corresponds to pitch. Using the head posi-

tion in the 3D camera space p̄4,u and the Kinect sensor

position in the world space K ′, we calculate projection of

the head gaze onto the x − y plane in the world coordi-

nates, resulting in the 2D world gaze point coordinates

Pu(t) =[ p′
u,x(t), p

′
u,y(t)] (see Fig. 1). We use normalized

y coordinate of the gaze point within our feature set as

feature 2, f̃2,u(t) = (p′
u,y(t) − p̄′

u,y(t))/σp′
u,y
.

4.3.3 Facial features

Facial features are derived from the 17 animation unit

values which represent deformations of the detailed 3D

face model.

• Closed eyes feature is computed as a maximum value

of the two animation units, Right Eye Closed and Left

Eye Closed, and correlates to writing and observing

note activities.
• Mouth open feature is computed from the Jaw Open

animation unit, and corresponds to yawning.
• Face deformation is computed from the Left Cheek

Puff and Right Cheek Puff animation units and

corresponds to supporting head with the hand, which

causes 3D head model to become deformed.

The final set of seven normalized features

f̃1,u(t) . . . f̃7,u(t) for the person 6 (u = 6) is shown

in Fig. 5c.
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4.4 Classifiers for attention estimation

The goal of the study was to build attention classi-

fiers to automatically estimate three-level attention from

recorded Kinect features. The first issue was to select

optimal classifiers and their parameters in order to build

a general, person-independent attention model, which is

not over-fitted to the training data. The second issue was

to select proper preprocessing of the features to achieve

best prediction accuracy. We thus tested normalization

and smoothing of the computed features.

We have included seven classifiers in the comparison,

ranging in flexibility from simpler models such as decision

trees to more complex models. The training process was

using five-fold cross-validation to prevent model over-

fitting. The tested classifiers and their parameters are the

following:

1. Decision tree (simple). Split criterion is Gini’s

diversity index; maximum number of splits is 4.

2. Decision tree (medium). Maximum number of splits

is 20.

3. K-nearest neighbors (coarse). Distance metric is

Euclidean, distance weight is equal, and number of

neighbors is 100.

4. K-nearest neighbors (medium). Number of

neighbors is 10.

5. K-nearest neighbors (weighted). Number of

neighbors is 10, distance metric is Euclidean, and

distance weight is squared inverse.

6. Bag of decision trees. Ensemble method is bag;

learner type is decision tree. Number of learners is

30; max. number of splits is 20.

7. Subspace K-NN. Ensemble method is subspace;

learner type is nearest neighbor. Number of learners

is 30; subspace dimension is 4.

4.5 Training datasets and data splitting

We trained seven simple to complex classifiers and com-

pared their overall accuracy in predicting attention on the

testing data. All models were trained on the three differ-

ent training datasets denoted as A, B, and C. The datasets

are composed of two parts, set of seven features computed

from Kinect data for attention prediction, and reference

observed attention data. The general properties of the

datasets are as follows:

• Datasets A and B contain samples of six test subjects

recorded during two lecturing sessions. Each subject

was assigned observed attention levels during 260 s of

the lecture, leading to 260 data samples per subject

and a total of 1560 samples in the datasets A/B. The

difference between the two sets is in the

preprocessing of the samples. The samples of the

dataset A were normalized, while the dataset B

contains features which were normalized and

temporally smoothed (see Section 4.2).
• Dataset C contains samples of another 12 test

subjects recorded during two lecturing sessions. The

data of each subject were collected during 480 s, so

the total number of samples in dataset C is 5760. The

feature samples in the dataset were normalized and

temporally smoothed.

The datasets were split into training set used during

learning and the test set used during evaluation. For

datasets A and B, we used the following strategy to split

the data: training of the models was done on five per-

sons (1300 data samples) and the remaining person (260

samples) was used for evaluation of the accuracy of pre-

dictions. The training/evaluation was repeated six times,

and the results of accuracy of methods were averaged.

For the dataset C, we used time-based splitting (fold-

ing) of the data into training set containing 80% of samples

of all users and test set containing 20% of samples of all

users. In each of the five training/evaluation phases, atten-

tion level of all subjects was predicted from the testing set

data. This five-fold cross-validation strategy was used to

compute average accuracy of the classifiers.

5 Results
In this section, the performance of the proposed auto-

matic attention classifiers is reported on two data sets

involving 6 and 12 subjects and compared to the state-of-

the art methods.

5.1 Training, testing data sets, and result sets

The original data set collected from six subjects was used

to evaluate the effects of preprocessing of samples and

postprocessing of results on the accuracy of predictions.

Learning datasets A and B were created by normalization

(dataset A) and additional temporal smoothing of normal-

ized values (dataset B). The training/evaluation was done

in six iterations, and in each iteration, a different subject

u was used for evaluation of predictions. We denote pre-

dicted attention levels by classifierm for the test subject u

as A
(R)
u,m(t), where R denotes a specific result set.

Two additional sets of predictions were created from the

results of datasets A and B. In order to increase temporal

consistency of predictions, we employed post-processing

of predicted values by temporal median filtering with a

window of 11 s. We denote those results as A′ and B′.

The filtered attention levels are computed as A
(A′)
u,m (t) =

median(A
(A)
u,m(t)).

The dataset C was split into training and evaluation set

by time, and five iterations were performed. The predicted

attention of a subject u by a classifier m is denoted as

A
(C)
u,m(t), and the samples are collected from five iterations

of training and testing.
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5.2 Evaluation of attention estimation accuracy

Accuracy of the proposed system was evaluated by com-

paring the predicted attention levels Au,m(t) to the refer-

ence attention levels provided by human annotationAr
u(t).

We compute the accuracy of predictions of a classifier m

for the subject u on a dataset R, denoted as Acc
(R)
u,m, as a

rate of correct predictions over time,

Cu,m(t) =

{

1; Au,m(t) = Ar
u(t)

0; Au,m(t) �= Ar
u(t).

(2)

Acc(R)
u,m =

1

Ns

Ns
∑

t=1

Cu,m(t) (3)

The accuracy of predictions of tested classifiers for

each of the test persons is shown in Fig. 6a–e. Each

line connects results of a single classifier, allowing us to

observe inter-subject variations of accuracy of a selected

classifier, as well as range of prediction accuracies for a

selected person.

The overall accuracy of a classifier m on the selected

dataset Acc
(R)
m was computed as an average over test sub-

jects. The total number of predicted attention levels was

1560 for datasets A and B and 5760 for dataset C. Table 2

presents a comparison of attention estimation accura-

cies of seven evaluated classifiers for five data sets and

allows us to estimate the influence of several factors on the

accuracy of predictions.

Temporal smoothing of feature values (dataset B ver-

sus dataset A) improved the accuracy of four out of

seven methods, and the average gain was + 3.1%. Tem-

poral smoothing was also used in the dataset C which

achieved best overall accuracy. Temporal filtering of pre-

dictions in result sets A′ and B′ improved accuracy on

average for 7.8%. Both results indicate that the succes-

sive observed attention values are highly correlated, and

the actual attention level is sustained over longer periods

of time.

Model flexibility. In the dataset A/B, (simple) decision

tree classifier consistently provided best accuracy of pre-

dictions for the unknown person; thus, it achieved best

inter-subject generalization. It is interesting that low flex-

ibility model was superior over complex models, although

the training algorithm reported differently during learn-

ing. This indicates probable over-fitting of complex mod-

els to the training data due lower number (1300) of train-

ing samples. Different results on classifier accuracy were

observed on the dataset C, which is larger and includes

4560 training samples. The least flexible classifier (sim-

ple decision tree) produced lowest average accuracy, while

highly flexible model (bagged trees) produced best accu-

racy of 0.753. It is thus important to adjust model flexibil-

ity to the number of available training samples in order to

achieve inter-subject generalization.

Consistency and reliability of results. The results on the

larger dataset C proved to be more consistent among

the classifiers, as the range of results was much smaller

(from 0.708 to 0.753) and the overall accuracy was

higher. The larger dataset thus provided more reliable and

consistent results.
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Fig. 6 Results on accuracy of attention prediction. Attention estimation accuracies of seven classifiers are shown for each test subject on datasets: a

A (normalized features), b A’ (normalized with post-filtering), c B (normalized and smoothed features), d B’ (with post-filtering), and e C (normalized

and smoothed features). Graph f represents distributions (shown as boxes) and average accuracies of each classifier over all test subjects of dataset C
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Table 2 Comparison of attention prediction accuracies of tested machine learning methods

Dataset

Methodm A A’ B B’ C

1 (Simple tree) 0.694 0.740 0.756 0.771 0.708

2 (Medium tree) 0.638 0.712 0.636 0.674 0.717

3 (Coarse KNN) 0.654 0,701 0.717 0.731 0.734

4 (Medium KNN) 0.633 0.715 0.601 0.640 0.723

5 (Weight. KNN) 0.638 0.721 0.613 0.641 0.725

6 (Bagged trees) 0.655 0.734 0.706 0.747 0.753

7 (Subspace KNN) 0.615 0.703 0.680 0.712 0.738

5.3 Inter-personal differences

As we aimed to build a generalized attention prediction

model applicable to various persons, we have encountered

observable differences in the behavior of the test per-

sons. The frequency of specific behaviors varied among

test subjects, for example, yawning was only present at

three persons out of six (in dataset A). There were notable

differences in the dynamics and amplitude of head and

body motions. And not least important, the success of

Kinect feature detection (3D head model fitting, detection

of open eyes and mouth, etc.) varied for each test person.

All those factors influenced efficiency of attention pre-

diction for different subjects. Graphs a–e in Fig. 6 allow

us to estimate inter-subject differences in accuracy of the

predictions. In the dataset A/B, subject no. 3 was the most

difficult for attention estimation with an average accuracy

of 0.55. Visual observations confirmed that the behavior

of this person was most dissimilar to other persons, as

he exhibited longer periods of inattention and performed

tiredness gestures (yawning, looking away) which other-

wise appeared rarely in the training set (among other

persons). Person 3 was also writing while he was leaning

back on the chair, which was unusual in our dataset. On

the other hand, person 5 caused most dissimilar scores

among different classifiers, which indicates difficulties in

predicting attention due to very small amplitude of head

and body motion. He performed many subtle finger ges-

tures which influenced observers’ estimates but were not

captured within our feature set.

Similar observations can be made for larger dataset

C. While the consistency of results of tested classifiers

was higher, there was still a notable difference of 0.31

between the highest and lowest accuracy among 12 test

subjects. The predictions were more accurate for the per-

sons who appeared to be more attentive to observers and

were regularly taking notes. Upright body position, con-

sistent behavior over time, and large amplitudes of head

motion when changing gaze point all increased the suc-

cess of prediction. Four test subjects with lowest accuracy

of predictions also appeared to have low average atten-

tion to observers, as shown in Fig. 7. Figure 6f presents

distributions and average accuracies of seven classifiers

over 12 test subjects of dataset C. While the average accu-

racy of the best method is 0.753, the range of scores over

test persons is from 0.52 to 0.93.

5.4 Estimation of average attention of subjects

The proposed automatic attention estimation system is

able to predict time-varying attention Au(t) of a person u

by observing his body and facial features. In the context of

learning, it is however also important to provide a more

general average attention of a person during a specific

time period, for example, during a single lecture topic.

We thus calculate average attention prediction Āu(t1, t2)

of students during the observation time of 480 s and com-

pare those estimates with the reference averages Ār
u(t1, t2)

computed from reference attention.

The reference average attention scores for users 7 to

18 (shown in Fig. 7 as a dashed line) were in range from

2.1 to 4.1, while predicted attention averages (solid line)

were in range from 3.0 to 4.0. The error in predicting

average attention was in range from − 0.33 to 0.86, and

average error was 0.20. The system was less successful
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average attention of the test subjects calculated from human

observations, while red diamonds represent estimated average

attention of subjects by the best attention classifier (bagged trees)
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in predicting lower attention levels, so the students with

longer duration of low attention periods were predicted

attention level which was too high.

5.5 Comparison to state-of-the-art

Two recent studies by Whitehill et al. [3] and Monkaresi

et al. [17] propose systems for automatic estimation of stu-

dent engagement from face and other features in the con-

text of computerized learning. The experiments involve

cameras which observe subjects during playing cognitive

skills training game on iPad [3] and during writing an

essay on a computer. The first study [3] utilized human

labelers to estimate how engaged the subject appear to

be on a four-level scale from either 60- or 10-s video

clips, while our time resolution of annotations and pre-

dictions was 1 s. Their best model, SVM classifier with

Gabor features, achieved subject-independent engage-

ment recognition accuracy of 0.729 for detecting each

level from all the other levels. The second study [17]

uses concurrent self-reports on a two-level scale every

2 min, and retrospective self-reports after observing 10-

s clips as a reference data. They achieved an accuracy

of 0.758 for a person-independent two-level engagement

detection. Although it is difficult to directly compare the

results due to differences in tasks, datasets, and anno-

tation methods, our results are comparable in terms

of accuracy.

5.6 Discussion

In the following section, we discuss some of the limiting

factors which affect the automated estimation of attention

level in the classroom.

First, the ground truth data on attention computed

from human observer estimates is not entirely reliable.

In the absence of prior hard definition of how to anno-

tate attention from observable behavior human coders

have often disagreed on the level of attention at each

time instance. Our definition of three attention levels

was derived from the mean scores and their correspon-

dence to the observable behaviors. This however does not

mean that the actual annotated levels follow exactly this

definition, which affects the achievable accuracy of the

proposed system.

Second, the size of the training dataset is rather lim-

ited, and its total length for 18 persons is 122 min. The

variations of human behavior which are present within

the data set is limited and is not covering all possible stu-

dent behaviors. Furthermore, inter-personal differences in

behavior during lecture were clearly visible and influenced

the accuracy of a person-independent classifier.

We noticed the issue of reliability and accuracy of

Kinect data. Kinect sensor employs computer vision algo-

rithms to detect facial features, such as eyes, nose, and

mouth, and to fit a detailed 3D face model. The detection

sometimes fail and in other cases produce erroneous

results. The reliability of gaze detection depends on the

orientation of the face (frontal or not) and presence

of obstructing objects such as hands. The similar issue

is with person’s skeleton which is not accurate due to

obstructed view of the person sitting behind a table.

We could not include hand 3D coordinates due to low

reliability.

And finally, the exploited set of seven features com-

puted from low-level Kinect data was not comprehensive

enough to be able to describe all observed behavioral dif-

ferences of the test persons. More comprehensive feature

set would clearly be able to more reliably detect important

behavior such as writing, hand and finger gestures, and

facial expressions.

6 Conclusion
In this paper, we proposed a novel approach to estimate

the attention level of students in the classroom using a

set of features computed from the data obtained by the

Kinect One sensor. On the basis of visual observation of

behavioral cues and their correlation with the attention

level estimated by human observers, we derived a set of

body, gaze, and facial features related to observed stu-

dents’ behavior. This computed feature set was utilized

within seven machine learning algorithms to predict a

three-level attention score with a time resolution of 1 s.

We have evaluated several options for the preprocessing

of signals and post-processing of the results and compared

the efficiency of seven classifiers with different levels of

flexibility. The success of building a person-independent

attention prediction model was validated by testing atten-

tion prediction on the dataset of 18 persons withmoderate

accuracy of up to 0.753, comparable to the state-of-the-art

studies in the field.

The proposed automatic attention estimation system

has a clear potential usage as a tool for automated ana-

lytics of the learning process, providing a mechanism for

large-scale analytics of student behavior in the classroom

by using affordable but very capable hardware. This opens

a possibility for teachers to evaluate their lectures and

observe fine-grained effect on the students and possibly

adapt them to increase participation and attention of stu-

dents and thus improve results of the learning process, as

well as their teaching methods.

Acknowledgements

The authors would like to thank Dr. U.Burnik for preparing a lecture and the

participants who took part in the experiment.

Funding

This work was partially funded by the Slovenian Research Agency (Javna

agencija za raziskovalno dejavnost RS), grant no. P2-0246 (B), Algorithms and

optimization methods in telecommunications.

Availability of data andmaterials

The data is available upon request by e-mail.



Zaletelj and Košir EURASIP Journal on Image and Video Processing  (2017) 2017:80 Page 12 of 12

Authors’ contributions

Both authors contributed equally to this work. Both authors read and

approved the final manuscript.

Ethics approval and consent to participate

The study does not include medical research involving patients and does not

involve ethical issues related to such research. The participants provided an

informed consent prior to the study.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Received: 7 June 2017 Accepted: 12 November 2017

References

1. D Dinesh, A Narayanan, K Bijlani, in 2016 International Conference on

Information Science (ICIS), Kochi, India. Student analytics for productive

teaching/learning (Institute of Electrical and Electronics Engineers (IEEE),

Piscataway, 2016), pp. 97–102

2. NJ Butko, G Theocharous, M Philipose, JR Movellan, in Automatic Face &

Gesture Recognition andWorkshops (FG 2011), 2011 IEEE International

Conference On. Automated facial affect analysis for one-on-one tutoring

applications (Institute of Electrical and Electronics Engineers (IEEE),

Piscataway, 2011), pp. 382–287

3. J Whitehill, Z Serpell, Y-C Lin, A Foster, JR Movellan, The faces of

engagement: Automatic recognition of student engagement from facial

expressions. IEEE Trans. Affect. Comput. 5(1), 86–98 (2014)

4. RA Calvo, S D’Mello, Affect detection: An interdisciplinary review of

models, methods, and their applications. IEEE Trans. Affect. Comput. 1(1),

18–37 (2010)

5. AS Won, JN Bailenson, JH Janssen, Automatic detection of nonverbal

behavior predicts learning in dyadic interactions. IEEE Trans. Affect.

Comput. 5(2), 112–25 (2014)

6. J Fredricks, W McColskey, J Meli, B Montrosse, J Mordica, K Mooney,

Measuring student engagement in upper elementary through high school: A

description of 21 instruments. (issues & answers report, rel 2011–no. 098),

(2011). Technical report, U.S. Department of Education, Institute of

Education Sciences, National Center for Education Evaluation and

Regional Assistance, Regional Educational Laboratory Southeast

7. JA Fredricks, PC Blumenfeld, AH Paris, School engagement: Potential of

the concept and state of the evidence. Rev. Educ. Res. Spring. 74(1),

59–109 (2004)

8. R Martinez-Maldonado, A Clayphan, K Yacef, J Kay, Mtfeedback: Providing

notifications to enhance teacher awareness of small group work in the

classroom. IEEE Trans. Learn. Technol. 8(2), 187–200 (2015)

9. CR Henrie, LR Halverson, CR Graham, Measuring student engagement in

technology-mediated learning: A review. Comput. Educ. 90, 36–53 (2015)

10. MS Young, S Robinson, P Alberts, Students pay attention!: Combating the

vigilance decrement to improve learning during lectures. Act. Learn.

High. Educ. 10(1), 41–55 (2009)

11. EF Risko, N Anderson, A Sarwal, M Engelhardt, A Kingstone, Everyday

attention: Variation in mind wandering and memory in a lecture. Appl.

Cogn. Psychol. 26(2), 234–42 (2012)

12. C-M Chen, J-Y Wang, C-M Yu, Assessing the attention levels of students

by using a novel attention aware system based on brainwave signals. Br.

J. Educ. Technol. 48(2), 348–469 (2015)

13. C Yan, Y Zhang, J Xu, F Dai, L Li, Q Dai, F Wu, A highly parallel framework

for HEVC coding unit partitioning tree decision on many-core processors.

IEEE Signal Proc. Lett. 21(5), 573–6 (2014)

14. C Yan, Y Zhang, J Xu, F Dai, J Zhang, Q Dai, F Wu, Efficient parallel

framework for hevc motion estimation on many-core processors. IEEE

Trans. Circ. Syst. Video Technol. 24(12), 2077–89 (2014)

15. C Yan, Y Zhang, F Dai, X Wang, L Li, Q Dai, Parallel deblocking filter for

HEVC on many-core processor. Electron. Lett. 50(5), 367–8 (2014)

16. C Yan, Y Zhang, F Dai, J Zhang, L Li, Q Dai, Efficient parallel hevc

intra-prediction on many-core processor. Electron. Lett. 50(11), 805–6

(2014)

17. H Monkaresi, N Bosch, RA Calvo, SK D’Mello, Automated detection of

engagement using video-based estimation of facial expressions and

heart rate. IEEE Trans. Affect. Comput. 8(1), 15–28 (2017)

18. N Alioua, A Amine, A Rogozan, A Bensrhair, M Rziza, Driver head pose

estimation using efficient descriptor fusion. EURASIP J. Image Video

Process. 2016(1), 1–14 (2016)

19. R Bixler, S D’Mello, Automatic gaze-based user-independent detection of

mind wandering during computerized reading. User Model. User-Adap.

Inter. 26(1), 33–68 (2016)

20. N-H Liu, C-Y Chiang, H-C Chu, Recognizing the degree of human attention

using EEG signals from mobile sensors. Sensors. 13(8), 10273 (2013)

21. J Han, L Shao, D Xu, J Shotton, Enhanced computer vision with microsoft

kinect sensor: A review. IEEE Trans. Cybern. 43(5), 1318–34 (2013)

22. S Springer, GY Seligmann, Validity of the kinect for gait assessment: A

focused review. Sensors. 16(2), 194 (2016)

23. G Zhu, L Zhang, P Shen, J Song, An online continuous human action

recognition algorithm based on the kinect sensor. Sensors. 16(2), 161

(2016)

24. SS Mukherjee, NM Robertson, Deep head pose: Gaze-direction estimation

in multimodal video. IEEE Trans. Multimed. 17(11), 2094–2107 (2015)

25. A Saeed, A Al-Hamadi, A Ghoneim, Head pose estimation on top of

haar-like face detection: A study using the kinect sensor. Sensors. 15(9),

20945–66 (2015)

26. L Paletta, K Santner, G Fritz, A Hofmann, G Lodron, G Thallinger, H Mayer,

in ICVS’13 Proceedings of the 9th International Conference on Computer

Vision System. Lecture Notes In Computer Science. Facts—a computer vision

system for 3D recovery and semantic mapping of human factors

(Springer-Verlag, Berlin, 2013), pp. 62–72

27. U Burnik, J Zaletelj, A Košir, Video-based learners’ observed attention

estimates for lecture learning gain evaluation. Multimedia Tools and

Applications (2017). https://doi.org/10.1007/s11042-017-5259-8

https://doi.org/10.1007/s11042-017-5259-8

	Abstract
	Keywords

	Introduction
	Related works
	Student engagement and attention in the classroom
	Automated measurement of affective parameters
	Kinect sensor and its usage

	Experimental methods
	Experimental setup
	Data collection methods
	Human estimation of attention level of students
	Relation of attention to the behavioral cues

	Automated attention estimation from Kinect features
	Kinect signal preprocessing
	Inter-person normalization and smoothing
	Computed feature set for attention estimation
	Upper body posture
	Face gaze point
	Facial features

	Classifiers for attention estimation
	Training datasets and data splitting

	Results
	Training, testing data sets, and result sets
	Evaluation of attention estimation accuracy
	Inter-personal differences
	Estimation of average attention of subjects
	Comparison to state-of-the-art
	Discussion

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

