
Citation: Oliveira, R.P.d.; Barbosa

Júnior, M.R.; Pinto, A.A.; Oliveira,

J.L.P.; Zerbato, C.; Furlani, C.E.A.

Predicting Sugarcane Biometric

Parameters by UAV Multispectral

Images and Machine Learning.

Agronomy 2022, 12, 1992. https://

doi.org/10.3390/agronomy12091992

Academic Editor: Paul Kwan

Received: 5 July 2022

Accepted: 18 August 2022

Published: 23 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Predicting Sugarcane Biometric Parameters by UAV
Multispectral Images and Machine Learning
Romário Porto de Oliveira * , Marcelo Rodrigues Barbosa Júnior , Antônio Alves Pinto, Jean Lucas
Pereira Oliveira, Cristiano Zerbato and Carlos Eduardo Angeli Furlani

Department of Engineering and Exact Sciences, School of Veterinarian and Agricultural Sciences,
São Paulo State University (Unesp), Jaboticabal 14884-900, SP, Brazil
* Correspondence: romario.porto@unesp.br

Abstract: Multispectral sensors onboard unmanned aerial vehicles (UAV) have proven accurate
and fast to predict sugarcane yield. However, challenges to a reliable approach still exist. In this
study, we propose to predict sugarcane biometric parameters by using machine learning (ML)
algorithms and multitemporal data through the analysis of multispectral images from UAV onboard
sensors. The research was conducted on five varieties of sugarcane, as a way to make a robust
approach. Multispectral images were collected every 40 days and the evaluated biometric parameters
were: number of tillers (NT), plant height (PH), and stalk diameter (SD). Two ML models were
used: multiple linear regression (MLR) and random forest (RF). The results showed that models
for predicting sugarcane NT, PH, and SD using time series and ML algorithms had accurate and
precise predictions. Blue, Green, and NIR spectral bands provided the best performance in predicting
sugarcane biometric attributes. These findings expand the possibilities for using multispectral UAV
imagery in predicting sugarcane yield, particularly by including biophysical parameters.

Keywords: digital agriculture; number of tillers; plant height; stalk diameter; spectral bands

1. Introduction

Sugarcane is a semi-perennial grass grown globally, mainly in tropical and subtropical
countries, represented as a product of great importance for international agricultural trade
and relevant raw material for agroindustry [1]. It can massively produce sugar, biofuel, and
biopower [2]. Hence, timely and accurate sugarcane yield prediction is valuable for national
food security and sustainable agriculture development [3]. Predicting sugarcane yield is not
an easy task and, although previous studies have found solutions to this puzzle, challenges
still need to be addressed. Thereby, the development of an alternative is necessary.

Reviewing in-depth the academic literature on sugarcane yield prediction, we can find
several studies on remote sensing solutions. For instance, a satellite approach by Abebe,
Tadesse, and Gessesse [4], combined Landsat 8 and Sentinel 2A imagery for improved
sugarcane yield estimation. The approach applied the most popular vegetation indices (VIs)
for the second and third ratoon sugarcane crop and used support vector regression (SVR) as
a statistical method. Their results were useful for sugarcane yield estimation. Nevertheless,
crop yield depends on soil type, weather conditions, plant genotype, and management
practices. Hence, the use of a single type of observation is not reliable to provide the true
state of the agroecological system, causing misinformation about crop yield estimation [5].
Another contribution by Yu et al. [6], highlights the simulations by integrating multi-source
observations in sugarcane fields. Stronger points in this study included PH, leaf area index,
and soil moisture variables to improve reliable sugarcane yield estimation. Collaboration is
timely and provides an improvement in academic progress. However, uncertainties and
limitations have been noted, mainly in the statistical model to characterize the potential
growth of PH, which constrains further applications. By further analyzing the bibliographic
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collection, we can examine another important collaboration by Tanut, Waranusast, and
Riyamongkol [7]. They used a new generation of remote sensing platforms, the UAV. Here,
the authors [7], proposed high accuracy by using data mining and reverse design methods.
Data of various variables were used, such as sugarcane variety, plant distance, ratoon cut
count, yield level, and soil group. The results for sugarcane yield prediction were reached
with an accuracy of 98.69% but are still limited since they only used RGB images.

The canopy density of the sugarcane plantation is challenging to map, resulting in
increased difficulties in yield estimation. These issues often result in less accurate and
unreliable yield estimations. NT, PH, and SD have a large influence on the final sugarcane
yield, as they are agronomic traits which are widely used to estimate yield [8–12]. Sugarcane
yield is characterized by approximately 70% contribution by the NT, 27% by PH, and 3%
by SD [13]. However, mainly NT and SD are still quantified by counting in the field,
a laborious and time-consuming task. Therefore, a new further approach is necessary,
and UAVs prove to be useful for it. On the other hand, traditional statistic methods
assume linear correlations between observed and predict yields, which could not accurately
reflect non-linear relationships. Thus, ML algorithms can be adopted to overcome these
challenges [14]. Random forest is a decision tree ML algorithm with great potential in
agronomic predictions, such as yield prediction [15], and biomass estimation [16]. Another
widely applied algorithm is the MLR. It is a low-complexity regression model and has
found reliable prediction results in previous studies [4,17–19].

In this work, we propose to expand the possibilities of sugarcane yield prediction,
mainly by including data from biophysical parameters obtained by remote sensing. There-
fore, we analyzed how RF and MLR models can address the puzzle of predicting NT, PH,
and SD using UAV multispectral images in search for timely results in remote sugarcane
yield prediction, thus being able to improve sugarcane yield prediction.

2. Material and Methods
2.1. Site of Study and Biometric Data

The study was conducted in an experimental field located at the São Paulo State
University, Jaboticabal, São Paulo, Brazil (21◦14′57′ ′ S, 48◦16′55′ ′ W, and altitude of ~570 m).
The local climate is Cwa, a humid subtropical climate with a dry winter season and an
average annual temperature of 22 ◦C [20]. The rainy season is concentrated between
November and March, with an annual average of 1428 mm. The soil type is Oxisol [21].

Five sugarcane cultivars were planted in the experimental area, namely CTC4, CTC9001,
IACSP95-5094, RB867515, and RB966928. All cultivars formed a single plant group to in-
crease the robustness of this approach. We collected data from 240 plant rows (48 plant
rows per cultivar). The plant rows corresponded to 10 m in length. We counted the NT of
all plants in the row and then converted it to NT m−1. We used the average value of ten
plants measured in the row for SD and PH. NT and PH were measured at 130 days after
planting (DAP), a period near the end of tillering [22,23], and SD was measured at 220 DAP
(Figure 1). Growing degree days (GDD) corresponding to the data collection period were
determined to establish relationships between canopy spectral changes and production
components (Figure 1).

2.2. UAV-Based Data Collection

We carried out three flights at 80, 120, and 160 DAP (Figure 1). We used a multispectral
camera (MicaSense RedEdge-M, MicaSense Inc., Seattle, WA, USA) onboard a multirotor
UAV for flight. The sensor captures five spectral bands: Blue, Green, Red, RedEdge, and
NIR (Table 1). The flights were performed at a 30 m altitude, thus ensuring a ground sample
distance (GSD) of 2.8 cm. We adopted an overlap of 75% front and 70% side. Images were
stitched using SfM software (Agisoft Metashape Professional 1.5.5, Agisoft, St. Petersburg,
Russia). We segmented the orthomosaics before applying the proposed approach to remove
the interference from the soil background. Finally, spectral band information and VIs
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(Table 2) were obtained by using the Mask and Zonal Statistical tools from QGIS 3.10.9
software (Free software Inc., Boston, MA, USA).
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Figure 1. Illustrative example for data collection (flights, growing degree days, and biometric data)
throughout the days after planting.

Table 1. Wavelength to bands present in MicaSense RedEdge-M.

Band Name Center Wavelength (nm) Bandwidth FWHM (nm)

Blue 475 20
Green 560 20
Red 668 10

RedEdge 717 10
NIR 840 40

Table 2. VIs used in stepwise variable selection model. These VIs are useful to analyze biophysica features.

Vegetation Index Equation Reference

Normalized Difference Vegetation
Index

NIR−R
NIR+R [24]

Normalized Difference Red Edge
Index

NIR−RedEdge
NIR+RedEdge

[25]

Soil-Adjusted Vegetation Index
(

NIR−R
NIR+R+0.5

)
(1 + 0.5) [26]

2.3. Predict on ML
2.3.1. Data Curation

A functional dataset was generated to group the data (Figure 2). The spectral data
corresponding to each image collection date were evaluated separately and together to de-
termine which one performs best in predicting the parameters. The independent variables
used in the models were spectral bands (Table 1) and three VIs (Table 2). The biometric
parameters of sugarcane measured in the field consisted of dependent variables. We used
the Z-score method to detect and remove outliers from the dataset [27]. The stepwise
analysis was performed using the RF algorithm to select the best independent variables
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to be used in the prediction models. This method determines the variables that have the
greatest influence on the result set. Thus, we used only those that provide the greatest
efficiency in the model. The root mean square error (RMSE) was the metric used to select
the best performing predictor variables by stepwise.
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Figure 2. Workflow of the data acquisition, image processing, and modeling process.

2.3.2. Data Analysis

In this paper, we used two ML prediction models, namely MLR and RF. The models
were processed using the open-source ML library ‘scikit-learn’ in Python programming
language v3.8.10 in the Jupyter Notebook environment. We selected the best combination
of the number of trees (n_estimators) and maximum tree depth (max_depth) for RF. The
validation method “K-fold cross-validation” was used. This validation method was applied
with K = 5. The dataset was divided into five subsets (fold), in which 80% of the data was
used for training and 20% for validation. We repeated the process 5 times, and the model
was trained and validated on different datasets in each repetition. The performance of
the MLR and RF models was evaluated by considering the coefficient of determination
(R2), mean absolute error (MAE), and root mean square error (RMSE). Figure 2 shows an
overview of the methodology.

3. Results
3.1. Selection of Predictor Variables

We obtained two predictor combinations with good performance composed of two and
three variables. The first selected combination composed of two variables was represented
by the Blue and Green spectral bands, while the second combination corresponded to the
Blue, Green, and NIR bands. The combination of two and three variables was similar for
NT, with RMSE = 3.9 and 3.6, respectively. We noted that performance was stable using
two to six variables (Figure 3a). The same was observed for SD (Figure 3c). Thus, using
one variable or more than six increases the error. The predictor variables for SD showed
RMSE = 2.54 mm and 2.52 mm for two and three variables, respectively. Different results
were found for PH. The numbers of variables showed similar results, with quickly better
results for two (RMSE = 20.4 cm) and three variables (RMSE = 20.2 cm). Thus, models were
tested using the two selected combinations of variables, with two and three variables, as all
bands in the first combination (two variables) are in the visible spectral region.
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3.2. Predictions of Biometric Parameters
3.2.1. Predicting the Number of Tillers

The best prediction models for NT were reached using the RF algorithm with three
variables (Table 3). The fusion of image time series data (GDD = 349 + 397) provided better
precision and accuracy using three variables, with R2 = 0.91, MAE = 1.04, and RMSE = 1.40.
In contrast, for independent predictions, the images collected at 349 GDD showed better
precision and accuracy (higher R2 and lower MAE and RMSE) compared to 397 GDD. We
clearly observed that model accuracy or precision decreased for predictions using two
variables. The results were also similar to those found for models with three variables, in
which the combination of GDDs ensured better performance than independent prediction
(R2 = 0.88, MAE = 1.29, and RMSE = 1.67). Moreover, the images collected at a GDD of 349
also showed better performance for independent prediction (R2 = 0.85, MAE = 1.42, and
RMSE = 1.83).

Predictions of NT using the MLR algorithm presented similar results to RF, but with
lower precision and accuracy values (Table 3). Model precision and accuracy using three
variables outperformed models with two variables. The combination of GDD = 349 and 397
showed a slightly higher precision and accuracy with three variables than the independent
prediction of 349 GDD (R2 = 0.67 to 0.65, MAE = 2.11 to 2.16, and RMSE = 2.73 to 2.78,
respectively). This pattern of better models was sustained when we used two variables,
and again the combination of GDDs provided better results. The best correlations between
observed and predicted NT are shown in Figure 4.
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Table 3. Results of RF and MLR algorithms to predict the NT.

Algorithms Metrics Variables
Growing Degree Days

349 397 349 + 397

RF

R2 Two best 0.85 0.82 0.88
Three best 0.90 0.84 0.91

MAE
Two best 1.42 1.59 1.29
Three best 1.13 1.41 1.04

RMSE
Two best 1.83 2.08 1.67
Three best 1.50 1.87 1.40

MLR

R2 Two best 0.56 0.48 0.57
Three best 0.65 0.52 0.67

MAE
Two best 2.50 2.73 2.47
Three best 2.16 2.61 2.11

RMSE
Two best 3.15 3.50 3.11
Three best 2.78 3.34 2.73
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3.2.2. Predicting Plant Height

The RF algorithm outperformed the MLR regarding the result of PH prediction
(Table 4). In addition, models using three variables performed better than those with
two variables. Images corresponding to GDD = 349 and 397 revealed more precise and
accurate results. The images collected at 349 GDD showed more precise and accurate
results when considering only independent predictors. In contrast, the combination of
GDD = 349 and 397 showed better performance for two variables than individual GDD
values. However, we can reach reliable results if we still choose to use only the data at
349 GDD, for example (R2 = 0.81, MAE = 8.60 cm, and RMSE = 11.16 cm).

Table 4. Results of RF and MLR algorithms to predict the PH.

Algorithms Metrics Variables
Growing Degree Days

349 397 349 + 397

RF

R2 Two best 0.81 0.72 0.86
Three best 0.84 0.83 0.88

MAE (cm) Two best 8.60 10.24 7.54
Three best 7.77 8.08 6.97

RMSE (cm) Two best 11.16 13.50 9.71
Three best 10.18 10.44 8.90

MLR

R2 Two best 0.46 0.32 0.60
Three best 0.49 0.53 0.65

MAE (cm) Two best 14.60 16.42 12.89
Three best 14.45 14.09 11.98

RMSE (cm) Two best 18.81 21.02 16.32
Three best 18.34 17.49 15.17
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MLR-based models were not as efficient as RF. However, an accuracy >0.60 could
be obtained when we used two and three variables (Table 4). Once again, models with
three variables were more accurate and precise. Our results showed better fit for fusions
of GDD = 349 and 397 (R2 = 0.60, MAE = 12.89 cm, and RMSE = 16.32 cm). Nevertheless,
we can still achieve potential results for independent predictors, especially at 397 GDD
(R2 = 0.53, MAE = 14.09 cm, and RMSE = 17.49 cm). The fit of the observed and predicted
PH is shown in Figure 5.
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3.2.3. Predicting Stalk Diameter

Clearly, we can see that using three variables gave us better results, either for RF or
MLR. But, in short, the prediction results for SD showed more accurate and precise models
using the RF algorithm (Table 5). A particularity in the SD prediction was relative to the
image collection periods. The fusion of data collected at 349 and 397 GDD allowed better
results, similarly when we added the data from 410 GDD. Otherwise, if capturing images
on a single date is the only option, we obtain better precision and accuracy at 349 GDD
either for two or three variables (R2 = 0.49 to 0.51, MAE = 1.54 to 1.53 mm, and RMSE = 1.97
to 1.95 mm, respectively).

Table 5. Results of RF and MLR algorithms to predict the SD.

Algorithms Metrics Variables
Growing Degree Days

349 397 349 + 397 349 + 397 + 410

RF

R2 Two best 0.49 0.32 0.50 0.50
Three best 0.51 0.39 0.52 0.52

MAE (mm) Two best 1.54 1.78 1.53 1.52
Three best 1.53 1.69 1.51 1.50

RMSE (mm) Two best 1.97 2.27 1.95 1.93
Three best 1.95 2.16 1.91 1.88

MLR

R
Two best 0.35 0.15 0.36 0.36
Three best 0.38 0.34 0.40 0.43

MAE (mm) Two best 1.72 2.00 1.70 1.68
Three best 1.64 1.75 1.64 1.55

RMSE (mm) Two best 2.22 2.55 2.21 2.19
Three best 2.17 2.25 2.14 2.07

The application of the MLR algorithm to predict SD produced better results in the
combination of images collected at 349, 397, and 410 GDD (R2 = 0.43, MAE = 1.55 mm, and
RMSE = 2.07 mm). However, we had closely similar results when combining only data at
349 and 397 GDD (R2 = 0.40, MAE = 1.64 mm, and RMSE = 2.14 mm) (Table 5). Moreover,
if we decide to use only one collection date, we can collect the data at 349 GDD and still
have similar results (R2 = 0.38, MAE = 1.64 mm, and RMSE = 2.17 mm). In this prediction,
lower precision and accuracy were reached at 397 GDD (R2 = 0.15, MAE = 1.75, and
RMSE = 2.25 mm). Although using two variables is not the best option, considerable values
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can be achieved by fusing data from 349, 397, and 410 GDD (R2 = 0.36, MAE = 1.68 mm,
and RMSE = 2.19 mm). Better metrics for independent prediction of SD were found at
349 GDD (R2 = 0.35, MAE = 1.72 mm, and RMSE = 2.22 mm). In summary, RF and MLR
models can predict SD with high accuracy, but with low precision (Figure 6).

Agronomy 2022, 12, x FOR PEER REVIEW 8 of 12 
 

 

(R2 = 0.35, MAE = 1.72 mm, and RMSE = 2.22 mm). In summary, RF and MLR models can 
predict SD with high accuracy, but with low precision (Figure 6). 

Table 5. Results of RF and MLR algorithms to predict the SD. 

Algorithms Metrics Variables 
Growing Degree Days 

349 397 349 + 397 
349 + 397 + 

410 

RF 

R2 
Two best 0.49 0.32 0.50 0.50 
Three best 0.51 0.39 0.52 0.52 

MAE (mm) 
Two best 1.54 1.78 1.53 1.52 
Three best 1.53 1.69 1.51 1.50 

RMSE (mm) 
Two best 1.97 2.27 1.95 1.93 
Three best 1.95 2.16 1.91 1.88 

MLR 

R 
Two best 0.35 0.15 0.36 0.36 
Three best 0.38 0.34 0.40 0.43 

MAE (mm) 
Two best 1.72 2.00 1.70 1.68 
Three best 1.64 1.75 1.64 1.55 

RMSE (mm) 
Two best 2.22 2.55 2.21 2.19 
Three best 2.17 2.25 2.14 2.07 

 
Figure 6. Scatter plots of observed and predicted SD values for RF and MLR. The plots are based on 
the selection of three variables and the combination of images collected at 349, 397, and 410 GDD. 

4. Discussion 
In this study, we analyzed whether multispectral UAV images can predict the bio-

physical parameters of sugarcane, mainly the NT, PH, and SD. If confirmed, it could serve 
as a timely basis for accurately predicting sugarcane yield. We can find several studies 
that investigated improvements in sugarcane yield prediction [4,6,7], but to the best of our 
knowledge, this is the first approach that has used multispectral UAV images combining 
ML algorithms to predict the NT, PH, and SD, three essential parameters for predicting 
sugarcane yield [10–12]. 

The stepwise method applied in our approach presented the Blue, Green, and NIR 
bands as the best input predictors for predicting NT, PH, and SD of sugarcane. The step-
wise selection of variables showed stability in the model accuracy. Thus, models com-
posed with more than three variables showed no significant influence on model precision 
and accuracy, allowing simplification by reducing the input variables. The use of com-
bined image data (time series) and uncombined image data (independent prediction—
only data from one image) allowed us to obtain precise and accurate results to predict 
sugarcane biometric parameters. This information should be used for a better understand-
ing of the variability in the field and, therefore, the decision making by producers. 

Figure 6. Scatter plots of observed and predicted SD values for RF and MLR. The plots are based on
the selection of three variables and the combination of images collected at 349, 397, and 410 GDD.

4. Discussion

In this study, we analyzed whether multispectral UAV images can predict the bio-
physical parameters of sugarcane, mainly the NT, PH, and SD. If confirmed, it could serve
as a timely basis for accurately predicting sugarcane yield. We can find several studies
that investigated improvements in sugarcane yield prediction [4,6,7], but to the best of our
knowledge, this is the first approach that has used multispectral UAV images combining
ML algorithms to predict the NT, PH, and SD, three essential parameters for predicting
sugarcane yield [10–12].

The stepwise method applied in our approach presented the Blue, Green, and NIR
bands as the best input predictors for predicting NT, PH, and SD of sugarcane. The stepwise
selection of variables showed stability in the model accuracy. Thus, models composed with
more than three variables showed no significant influence on model precision and accuracy,
allowing simplification by reducing the input variables. The use of combined image data
(time series) and uncombined image data (independent prediction—only data from one
image) allowed us to obtain precise and accurate results to predict sugarcane biometric
parameters. This information should be used for a better understanding of the variability
in the field and, therefore, the decision making by producers.

The RF models performed better than MLR in predicting all parameters. High R2

values were achieved for NT and PH (R2 > 0.70). Previous studies also investigated
RF and MLR algorithms to predict yield in crops such as wheat and potato [15]. The
authors observed that RF models outperformed MLR models for all evaluated crops. The
outperformance of RF is attributed to its particularity of correcting the overfitting decision
habit to the training subset [28]. On the other hand, there is still the inability of MLR to
process nonlinear relationships between dependent and independent variables [29].

Regarding the use of two or three input predictor variables, models with three variables
presented more accurate and precise results, but with values close to models with two
variables. Models with two variables used blue and green spectral bands. These bands
are in the visible spectral range, which would be an alternative for users of RGB cameras,
which typically have lower costs than multispectral cameras and require fewer calibration
procedures [30,31]. Some studies on crop yield predictions have found similar results
between vegetation indices calculated by the Blue, Green, and NIR bands [32,33]. In these
studies, RF and linear regression models presented better results using the combination of
these indices.

In our study, two (Blue and Green) and three (Blue, Green, and NIR) input variables
presented good results to predict NT and the combination of 349 and 397 GDD provided
the most accurate and precise results. These results can be related to the canopy reflectance
characteristics, as leaf area index [34], and biomass [35], increase when NT increases. This
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growth in canopy coverage causes higher absorption of visible electromagnetic radiation
due to the strong influence of leaf pigments [36,37]. In this case, the blue band is absorbed
in greater proportion in plants with higher tillering rates because chlorophyll strongly
absorbs radiation at wavelengths in the visible range [38]. The same process can be related
to the Green band. However, this band is characterized by a lower radiation absorption
compared to the Blue band, for example. On the other hand, it reflects less than the NIR
band [36,37]. Sumesh et al. [35], used IV obtained from RGB images (excess green index—
ExG) and ordinary least squares (OLS) regression to estimate sugarcane stalk density,
obtaining R2 = 0.72 and RMSE = 9.84. NIR is a spectral band that reflects higher values in
healthy plants, and the reflectance increases as the leaf area index increases. In this sense,
good results including the NIR band in NT prediction may be strongly related to the high
sensitivity of this band to variations in biomass [37,39,40]. Other studies on the estimation
of sugarcane parameters by multispectral images have obtained good results using VIs
derived from NIR and a visible spectrum band, such as NDVI [41,42].

Accurate prediction models were obtained for PH and SD. PH and SD are features that
directly correlate with biomass [43–45]. In this regard, several studies have found relation-
ships between spectral bands, VIs, and crop biophysical parameters, especially biomass,
as these parameters influence the intensity of plant reflectance [16,45,46]. Although SD
quickly showed lower precision (R2 = 0.43–0.52), we can still reliably predict sugarcane
yield since NT and PH were highly precise. Parameters with SD are less representative in
the prediction because higher biomass indices are mainly associated with NT and PH [10].
Overall, our results showed that models for predicting NT, PH, and SD of sugarcane
through time series and MLR and RF algorithms presented accurate predictions. Therefore,
the use of multispectral sensors on board UAVs can be considered a viable technique for
evaluating sugarcane crops since it presents the ability to monitor large production areas
with high spatial resolution. In further studies, we will apply this approach to different soil
types and planting seasons.

5. Conclusions

Predicting sugarcane yield is an important task for planning and managing decisions,
such as the harvesting schedule. In our approach, we used spectral bands obtained by a
multispectral sensor on board a UAV associated with ML algorithms to predict sugarcane
NT, PH, and SD. Answering our objectives, straightforward preliminary evidence exists
for the exceptional ability to predict these parameters by UAV imagery. Therefore, we
provide timely results in this study to improve sugarcane yield prediction. Models based
on RF algorithms showed higher accuracy and precision than MLR models. Blue, Green,
and NIR spectral bands provided good performance for predicting sugarcane biometric
attributes. Moreover, the combination of images collected in more than one period further
improves the model accuracy for predicting the biometric parameters. Therefore, this study
demonstrates the effectiveness of using multispectral UAV images to build a model for
estimating sugarcane yield.
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