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Abstract

We compared the ability of several classification and
regression algorithms to predict forest stand structure metrics
and standard surface fuel models. Our study area spans a
dense, topographically complex Sierra Nevada mixed-conifer
forest. We used clustering, regression trees, and support
vector machine algorithms to analyze high density (average

9 pulses/m?), discrete return, small-footprint lidar data, along
with multispectral imagery. Stand structure metric predictions
generally decreased with increased canopy penetration. For
example, from the top of canopy, we predicted canopy height
(r = 0.87), canopy cover (I = 0.83), basal area (r* = 0.82),
shrub cover (r* = 0.62), shrub height (I’ = 0.59), combined
fuel loads (I* = 0.48), and fuel bed depth (r* = 0.35). While
the general fuel types were predicted accurately, specific
surface fuel model predictions were poor (76 percent and
<50 percent correct classification, respectively) using all
algorithms. These fuel components are critical inputs for
wildfire behavior modeling, which ultimately support forest
management decisions. This comprehensive examination of
the relative utility of lidar and optical imagery will be useful
for forest science and management.

Introduction

Background

Fire is an important component of forest ecosystems in the
Sierra Nevada, and was prevalent before widespread settle-
ment in California (Skinner and Chang, 1996; Stephens and
Collins, 2004; Sugihara et al., 2006; Stephens et al., 2007;
Collins et al., 2008). Many common Sierran plants exhibit
fire-adapted traits such as thick bark and fire-stimulated
flowering, sprouting, seed release, and germination (Sugihara
et al., 2006). In the last century, however, fuel loads in
many Sierra Nevada forests have increased, likely as a result
of fire suppression policies, warmer and moister climatic
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conditions, and the effects of past harvesting (Stephens and
Ruth, 2005; Collins et al., 2011a), putting the forests at risk
of catastrophic fire (van Wagtendonk et al., 1998; Miller

et al., 2009). In response to this risk, the US Forest Service
is employing an approach that involves placing discrete fuel
reduction treatments strategically across landscapes such
that fire intensity is reduced not only within treated areas,
but throughout the entire landscape (Finney, 2001;
Moghaddas et al., 2010).

In the US, modeling wildfire behavior and associated
planning of fuel reduction treatments across landscapes are
typically performed using FARSITE (Finney, 1998) and
FlamMap (Finney, 2006). Both models rely heavily on
Rothermel’s fire spread model developed at the US Forest
Service Fire Sciences Laboratory in Missoula, Montana
(Rothermel, 1972). FARSITE and FlamMap require a standard
suite of spatial data layers in order to run. These data layers
include topography (elevation, slope, and aspect), forest
structure (canopy cover, canopy height, crown base height,
and crown bulk density), and surface fuel characterizations
(referred to as “fuel models”). These data layers, co-registered
and resolved at the same spatial resolution, are a fundamental
input of most fire behavior models.

While all of these inputs influence the fire behavior
models, surface fuel models are particularly important in
determining fire behavior, as the Rothermel fire spread
model predicts behavior of surface fire only. These fuel
models (FM) consist of a set of surface fuel characteristics
that describe stands based on dominant fire carrying fuel
types (grass, shrub, tree litter, etc.) that include: fuel loads
by fuel particle size class, fuel bed depth, surface-area-to-
volume ratios for fuel particles, heat content, and dead fuel
extinction moisture. This work proceeds under the assump-
tion that surface fuel loads are related to forest composition
and structure. Although this relationship has not been
comprehensively studied, recent work in the Sierra Nevada
has demonstrated robust relationships between fuel deposi-
tion rates and forest type/structure (van Wagtendonk and
Moore, 2010). Surface FMs are divided into broad fuel types
(e.g., shrub (sH), timber-understory (TU), and timber-litter
(L)), and then further into specific F™s: (e.g., “low load
compact conifer litter” (Tu1 181)). Thirteen models were first
described by Anderson (1982) in a technical report, and
more recently this list was expanded to 40 models (Scott
and Burgan, 2005). In this paper, the updated 40-model set
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was utilized since these models best describe the landscape
in the study area.

In practice, a forest stand is assigned to one of these
discrete surface FMs through a combination of field data,
expert knowledge, and some type of either imagery interpre-
tation or more automated remote sensing analysis (Collins
et al., 2010). The field data includes plot-based descriptions
of vegetation (height, diameter at breast height (DBH), species,
density of trees and shrubs, and percent canopy cover), fuel
load (the amount of litter, fuel bed depth, and fuel load
noted as 1-, 10-, and 100-hour fuels), photographs, and a
general description of the area (Keane et al., 1998; Bertolette
and Spotskey, 1999). Expert knowledge typically involves
iteratively selecting FMs such that predicted fire behavior is
consistent with first-hand experience of fire behavior in
actual fires (Collins et al., 2011b). Imagery is generally used
to aid in FM selection across larger planning areas. While
there is guidance aiding users in FM selection (Anderson
1982, Scott and Burgan 2005), the process of assigning F™ms
can be fairly subjective due to the common practice of
incorporating expert opinion based on observed fire behav-
ior. As a result, assignment errors can be introduced when
FM descriptions are adjusted in order to produce fire behav-
ior predictions more consistent with observed fire behavior
(Varner and Keyes, 2009). This subjectivity can create
inconsistency in FM assignments between users, resulting in
substantial differences in predicted fire behavior (Varner and
Keyes, 2009; Cruz and Alexander, 2010).

Wildfire Behavior Models and Remote Sensing

In typical circumstances where forest managers are faced
with assessing fire behavior on a large scale, the cost, time,
and technical challenges required to collect field data and to
assign FMs make complete coverage of a forest is prohibitive.
This is particularly true in areas with steep topography or in
areas with limited access. In part to address these chal-
lenges, some recent efforts have experimented with more
automated approaches using multispectral imagery (Riafio

et al., 2002; van Wagtendonk and Root, 2003), hyperspectral
imagery (Jia et al., 2006), or a combination of remotely
sensed imagery and topography, climate, and disturbance
data (Moghaddas et al., 2010). Yet, when FMs are estimated
using remote sensing imagery, accuracy can be limited by
the inability of sensors to capture the three-dimensional
structure of the forest, especially when the tree density or
stand height is high. Although hyperspectral image analysis
offers more potential for species differentiation than multi-
spectral data (Jia et al., 2006), neither of these passive
remote sensing methods can accurately map 3D forest
structure. Lidar presents advantages in this context as it is
capable of describing the vertical structure of a forest stand
and has successfully been used to map detailed forest
parameters.

Previous Research

Lidar data is increasingly used to characterize forests across
scales with direct measurements such as tree height, and
derived measures such as biomass or leaf area index (LAI)
(Wulder et al., 2008). At the stand scale, lidar has been used
for canopy structure information (Lim et al., 2003). For
example, Hollaus et al. (2006) correlated mean tree stand
height, Hyypp4 et al. (2001) extracted stem volume, Hudak
et al. (2008) concentrated on the basal area and tree density,
while Naesset and Gobakken (2008) and Popescu et al.
(2003) extracted biomass. At finer scales, a number of
studies have focused on extracting forest parameters from
lidar at the individual tree level. For example, Lin et al.
(2011) delineated individual trees in a mountainous forest
from small-footprint lidar. Chen et al. (2006) and Koch et al.
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(2006) tested a variety of watershed segmentation
approaches to detect individual trees, while Persson et al.
(2002) and Popescu et al. (2004) detected individual trees
and correlated their measured height and/or crown diameter,
respectively. Kaartinen et al. (2012) provide a good review
of tree detection methods. Individual tree detection
algorithms have typically been able to capture between 70
and 80 percent of individual trees (e.g., Persson et al., 2002;
Kaartinen et al., 2012).

More recent lidar studies (often combined with optical
imagery) focus on extracting fuel metrics across forest
landscapes. Here, we refer to fuel metrics as continuous
variables that contribute to the amount of overall fuel present
at a site (both canopy and surface fuels): canopy height,
canopy cover, crown base height (CBH), crown bulk density
(cBD), total basal area (BA), shrub height, shrub cover, fuel
bed depth, and fuel loads that compose of litter, 1-, 10-, and
100-hour fuel loads. The vast majority of this work focuses
on extracting metrics that can be used in the previously
mentioned fire behavior models, FARSITE and FlamMap. One
of the first examples of a complete protocol for using lidar
data in a fire modeling context is provided by Riafio et al.
(2003). Andersen et al. (2005) used lidar to predict crown
fuel weight, CBD, CBH, and canopy height of a western
hemlock forest in Washington State at or above r* = 0.77.
More recently, Erdody and Moskal (2010) used combination
of lidar and color infrared (CIR) imagery to predict estimates
of canopy fuel metrics in a mixed-conifer forest in Washing-
ton State. This study correlated height (r* = 0.94), CBH
(r? = 0.78), CBD (r* = 0.83), and available canopy fuel
(r* = 0.89) using lidar data alone. Although they did not test
for statistical significance, all correlation coefficients were
higher when imagery was added to the analyses. Similarly,
Peterson (2005) and Peterson et al. (2005) analyzed lidar
data from Sierra Nevada forests to extract CBH (r? = 0.59)
and cBD (r* = 0.71). Skowronski et al. (2007) computed
metrics in the Pinelands of New Jersey using lidar data
alone and reported much higher variability in biomass
estimation than the previously mentioned studies. The
prediction accuracies depended on the forest types; specifi-
cally, the accuracies in the lowlands (pine and hardwoods)
ranged from r* = 0.59 to 0.74, while in the highlands
(conifer and deciduous mix) they ranged from r* = 0.11 to
0.33. Mitchell et al. (2011) and Gatziolis (2011) detected
shrub height (1 = 0.86) and forest cover type (75.6 percent
accuracy) using lidar in a shrub and forest environments,
respectively.

Despite this progress, there are few examples demonstrat-
ing the efficacy of using lidar to derive surface FMs. One
recent case is provided by Mutlu et al. (2008), who predicted
seven of the original Anderson (1982) FMs using a Gaussian
Maximum Likelihood classifier based on fusion of discrete-
return lidar (2.6 points/m?) and QuickBird imagery. The study
reported very high accuracy levels: 90 percent with fusion of
lidar and imagery, and 70 percent with imagery alone.
However, the tested environment (small study area on mostly
flat ground at an average elevation of less than 200 meters
above sea level) is not typical of the mountainous forests in
the western US. The latter forests are characterized by dense
mixed-conifer vegetation at high elevations across large,
topographically-complex areas. Since these more complex
forests face increasing fire risk, evaluating the potential role
lidar can play in mapping fuel models is valuable.

This research evaluates the use of small footprint,
discrete return lidar data (alone and fused with optical
remotely sensed imagery) to extract canopy fuel information
from dense mixed-conifer forests across complex topographi-
cal terrain. The objectives are to determine: (a) whether
relationship exists between surface FMs derived from
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measured field data and remotely sensed lidar, optical
imagery, or combinations thereof, and (b) whether fuel
metrics (both those that are directly used in the assignment
of FMs, and those that directly feed fire behavior models)
can be predicted reliably from lidar, optical imagery, or
combinations of these data. The study domain in this
research is larger than the previous studies of the same
focus (e.g., Mutlu et al., 2008; Erdody and Moskal, 2010)
and uses higher density lidar pulse posting, resulting in a
more complete representation of the forest. It is also part of
a larger study, Sierra Nevada Adaptive Management Project
(SNAMP), a multi-discipline collaborative effort among land
managers, researchers, and interested stakeholders, designed
to explore the effects of coordinated landscape fuel treat-
ments (Collins et al., 2011b).

Methods

We analyzed relationships among lidar, imagery, surface fuel
models, and forest structural metrics in a classification and
regression contexts. We used a range of classification

methods to evaluate the relationship as well as the methods’
relative performance. To predict FMs we used simple
k-means classifier, two regression trees (random forest and
classification and regression trees), and support vector
machine (SvM) algorithms. To predict fuel metrics we used
linear and additive regression models, and regression-based
SVM. Based on preliminary results, we used all lidar returns
in the analyses described below. The workflow is shown in
Figure 1.

Study Area

Our study area is located in the northern part of the Sierra
Nevada of California (centered at 39° 07’ N, 120° 36’ W) in
Tahoe National Forest, about 35 km west of Lake Tahoe. It
encompasses 99.5 km? of topographically complex and steep
terrain with elevations ranging from 600 m to 2,186 m above
sea level (Figure 2). The average precipitation since the
record began in 1990 is 1,182 mm/year in this Mediterranean
climate. Almost the entire study area is forested: only

7 percent of the area is non-conifer forest according to the
Tahoe National Forest criteria (<10 percent of coniferous tree
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Figure 1. The data sources and analysis framework. The analysis included
vector-, raster-, and plot-based analysis, as indicated by the background shade.
All final analysis was conducted on a plot-scale level.
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crown area). Fire scars recorded in tree rings from adjacent
areas indicate low-severity fires with high-frequency
occurrence from 5 to 15 year intervals (Stephens and
Collins, 2004).

The dominant vegetation is dense mixed-conifer forest
where dominate tree species include sugar pine (Pinus
lambertiana), ponderosa pine (P. ponderosa), incense-cedar
(Calocedrus decurrens), red and white firs (Abies magnifica
and A. concolor), as well as California black oak (Quercus
kelloggii). The study area is under management of the US
Forest Service, with a few private in-holdings scattered
throughout.

Data

Field Data

Field data characterizing a range of forest parameters was
collected at 248 circular plots covering the study area. The
plot centers were distributed across UTM grid with 500 m
spacing at even coordinate junctions. The plot centers were
offset by 25 m in random direction when the desired
coordinates fell on road surfaces, landings, rivers, or
otherwise physically inaccessible locations. The field data
was collected over the course of two summer field seasons
in 2008 and 2009; in total, 2,340 trees were measured. The
plots were extensively mapped for validation of lidar data.
Each plot covers a 500 m? area with a 12.62 m radius. All
trees above 19.4 cm DBH were tagged with a unique
numerical ID. Tree height, DBH, height to live crown base
(HTLCB), species, and crown class were recorded along with
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the unique ID. HTLCB is defined in this study as the lowest
extent of vertically continuous live crown on an individual
tree. In instances where the crowns of smaller trees are
touching the crowns of larger trees the HTLCB measurement
includes the smaller tree. Trees with DBH between 5 and
19.5 cm were also measured using the above protocol, but
no numerical IDs were assigned. We also sampled shrub
cover and surface/ground fuels using three randomly chosen
transects on each plot. The shrub information includes
height, percent cover, and species. The fuel information
includes tallies of fuel intersections with each transect by
fuel particle size class (1-, 10-, 100-, and 1,000-hour time
lag), as well as, litter, duff, and total fuel heights. For more
information regarding fuel inventory methodologies see
Brown and Roussopoulos (1974) and Collins et al. (2011b).
Five digital photographs were also taken at each plot in four
directions and towards the sky.

In addition to the measurements described above, we
generated shapefiles with precise locations and Ds for all
tagged trees. We used a combination of Trimble’s GeoXH
global positioning system (GPS) with an Impulse Laser
Rangefinder and an Impulse Electronic Compass to create
the stem map shapefiles. At first, two approximately
perpendicular angles were used to obtain positions of all
trees; however, our analysis throughout the field season
indicated that two angles did not sufficiently improve the
positional accuracy of the trees to justify their collection at
each plot. The position of the trees were measured and
recorded using a laser range-finder and electronic compass
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combination, and georeferenced to a differential Gps
position. The locations of large marker trees were recorded
outside of the plot boundary to improve the positional
accuracy with respect to lidar data. The individual trees
were marked with steel markers, whereas the plot centers
were established by rebar hammered into the ground
(Figure 3). Each plot shapefile includes positions of all
tagged trees and their ID, position of the GpPs antenna, and
the plot center. The tree positions were later adjusted to
true tree centers based on the measured DBH (Figure 3).
The tree structure data described above (height, species,
etc.) were merged to each tree location based on the
assigned ID number.

To georeference the stem map shapefiles, we positioned
the GPS at most 30 m away from the plot center (typically
within the plot or at the plot center) where there was
relatively little canopy above to obtain a small positional
dilution of precision (PDOP); we filtered the obtained GPS
data to a maximum PDOP value of 5. For each GPS position,
we collected at least 300 measurements, although the
majority of positions included about 1,000 and up to 7,700
measurements recorded at a 1 second interval. We used a
Trimble GeoXH differential GpS with Trimble Zephyr
Antenna on top of a 3 m GPS antenna pole to minimize
multipath problems. Continuously Operating Reference
Stations (CORS) and University NAVSTAR Consortium
(uNAvCO) stations less than 20 km away from all field
measurements were used for differential GPS post-processing.
Finally, large, easily identifiable “marker” trees up to 50 m
from the plot center were measured and spatially located to
increase the accuracy and matching between lidar and
ground reference data.

Fuel Metrics
In this work, “fuel metrics” comprise the following continu-
ous metrics: canopy height (maximum and mean), canopy

cover, BA, CBH, CBD, shrub height, shrub cover, combined
fuel load, 1,000-hour fuel load, and fuel bed depth. Using
the information collected from fuel transects we calculated
surface fuel loads for each plot. These calculations were
based on the species-specific coefficients reported in
Wagtendonk et al. (1996 and 1998), weighted by the propor-
tion of BA of each species (Stephens, 2001). We summarized
these fuel loads into three pools: (a) combined fuel load
composed of litter and smaller woody fuels (1- to 100-hour
fuel loads), (b) coarse woody fuels (1,000-hour), and (c) total
fuel. In addition to surface fuel loads, we calculated two
canopy fuel metrics at the stand scale: CBH and CBD. CBH is
defined as the mean lowest height above the ground at
which there is sufficient available canopy fuel to propagate
fire vertically through the canopy (Scott and Reinhardt,
2001). CBD is the oven-dry mass of available canopy fuel per
unit volume (Scott and Reinhardt, 2001). We calculated
these using established allometric equations (Reinhardt

et al., 2006a; Reinhardt et al., 2006b) using Fuels Manage-
ment Analyst (Carlton, 2005) and the collected plot tree
measurements.

Fuel Models

The field data described above were used to assign FMs.
The FMs were assigned using a decision tree protocol
adapted for our study area from Scott and Burgan (2005).
The basic summary of the protocol is illustrated in
Figure 4. In particular, fuel load, fuel depth, shrub cover-
age and height, tree composition, and general forest stand
structural information were used to establish repeatable
criteria for these metrics. The criteria were then used to
systematically assign one of the 40 FMs to each plot. Two
classes, “low load dry climate timber-grass-shrub (model
TU1)” and “very high load, dry climate timber-shrub
(model TU5),” had many more samples (n = 77 and

n = 33, respectively), than the rest of the FM classes.

S M

used to mark plot centers.

TR
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( /s 54 L o
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Figure 3. Conceptual diagram of field method: (a) example plot showing trees
and lidar ground-reference methodology; (b) equipment used to collected
positions of trees (c) example of individual tree markers; (d) example of rebar

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

January 2013 4l



Shrub Cover

<40% 1

l >40%

D Total Fuel Load l:] Fine Fuel Load - Coarse Fuel Load

Coarse Fuel Load Basal Area
N 1 1
<2,5Mg/hl l >2.5Mg/h p-3 IOm-"l l <10m?
TL, TL SH TU
Fuel Load Fuel Load Fuel Load Fuel Load
0 5 10 15 20Mg/hectare 5 10 15  20Mg/hectare 0 5 10 15Mg/hectare 0 5 10  15Mg/hectare
20
TL1 Fu TL4 20
I T 40 Shrub 40 Shrub
TE3) Fu i SH1 «—SH5 & Cover 0 Cover
% Tut
SH2 -~ 80 TU4 80
Fuel model assignment ranges 100% TUS 100%

Figure 4. Surface fuel model assignment protocol for the study area, adapted from Scott and
Burgan (2005). The most critical variables and their criteria are illustrated above. All plots are
divided into fuel types (7L, SH, TU) based on shrub cover and then basal area, as illustrated by the
decision tree. The TL models are further divided based on coarse fuel loads. The final assignment
of plots into specific surface fuel models is based on metrics calculated from ground reference
data, including fine fuel loads, fuel bed depth, shrub cover, and total fuel loads.

We randomly removed samples from these two FMs to
equalize their selection probabilities with respect to the
other classes and remove selection bias. In the end we
used 12 FMs with N = 107 (Figure 5). Sample photographs
taken at the time of ground reference data collection
(Figure 6) depict a few FMs within the study area.

Lidar Data

Lidar data was collected by National Center for Airborne
Laser Mapping (NCALM) using the Optech GEMINI Airborne
Laser Terrain Mapper (ALTM) sensor at an altitude of
approximately 1,000 m above ground level (AGL). The data
was collected in five survey flights from 18 September to

21 September 2008 in leaf-on conditions. The relative
horizontal and vertical accuracy were reported and had been
independently confirmed to be approximately 5.5 to 10 cm
and an average of 7.5 cm, respectively. Up to four returns

per each laser pulse were recorded along with 12-bit
dynamic range intensity. Due to steep topography, the pulse
rate frequency (PRF) was limited to 70 KHZ and the scan
angle to = 20 degrees. To increase point density, the aircraft
flew twice over the area with a large overlap, such that
every ground point was acquired from at least three (and
mostly four) angles to yield an average of nine and mini-
mum of six pulses/m?. Since the lidar system records up to
four returns per pulse, the total return density in heavy
canopy was often greater than 20 points/m? We applied

a buffer around the study area to ensure all parts were
surveyed and consequently surveyed total area of 107 km?.
The data was delivered in Universal Transverse Mercator
(UT™M) coordinate system with respect to 1983 North Ameri-
can Datum (NAD83); orthometric heights were computed
using NGS GEOID03 model in North American Vertical Datum
of 1988.

Low load dry climate shrub

Moderate load dry climate shrub

High load, dry climate shrub

Very high load, dry climate shrub

Low load dry climate timber-grass-shrub
Dwarf conifer with understory

Very high load, dry climate timber-shrub
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SH2
SH5
SH7
TU1
TU4
TUS

W Samples used
[[] Samples randomly removed

Low load compact conifer litter
Moderate load conifer litter
Small downed logs

High load conifer litter

Large downed logs

TL1
TL3
TL4
TL5
TL7

0 10 20 30 40 50 60 70 80

Figure 5. List of the standard fuel models within the study area. Seventy of the plots were
randomly removed from the analysis to equalize the models’ selection probabilities.
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large downed logs very high load, dry climate timber-s|

Figure 6. Examples of specific fuel models within the study area: (a) SH1 — low load, dry climate shrub,
(b) TL3 — moderate load, conifer litter, (c) TU1 — low load, dry climate timber-grass-schrub, (d) SH5 —
moderate load, humid climate shrub, (e) TL7 — large downed logs, and (f) TUS — very high load, dry climate
timber-shrub. The photographs were taken at the time of ground reference data collection.

Lidar Preprocessing
The raw lidar data was processed by NCALM using Terra-
Solid’s TerraScan software (Soininen, 2012) to remove

TABLE 1. VARIABLES THAT CONTRIBUTED TO ANALYSES; THE METRICS THAT
DIRECTLY SUMMARIZE LIDAR WERE DERIVED FROM PULSE RETURNS WITHIN
THE FIELD PLOT FOOTPRINTS; ALL IMAGERY METRICS WERE CALCULATED ON A

obvious outlier points, including isolated point removal 20 METER SIZE GRID; THE LIDAR HEIGHTS ARE CALCULATED RELATIVE TO
(points with no neighbors within five meters) and “air THE GROUND LEVEL, AS INDICATED BY THE LIDAR-DERIVED DEM.
point” removal, where points clearly above the canopy are
compared to their neighbors. The point cloud was then Lidar Data Cube (LDC)
classified to ground, above-ground, and outlier points using
an iterative triangulated surface model. Our preliminary Elevation Point density 0 to .5 m
analyses indicated that the combination of ground and Slope Point density .5 to 1 m
above-ground points leads to best results thus we used both ﬁspe}ft. - Point density 1 to 1.5 m
. .. . eight: minimum Point density 1.5 to 2 m
classes in the analyses. A dlgltal e}evatlon mod(.el (DEM) was Height: mean Point density 2 to 3 m
processed at 1 meter resolution using Inverse Distance Height: maximum Point density 3 to 4 m
Weighted (IDW) interpolation based on suggestions from past Height: standard dev. Point density 4 to 5 m
research (Guo et al., 2010). Percentile 0.01 Point density 5 to 10 m
To ensure maximum accuracy, we extracted and only Percentile 0.05 Point density 10 to 15 m
used lidar points within circular area above each plot Percentile 0.10 Point density 15 to 20 m
(12.6 m radius). We developed a set of MATLAB functions to Percentile 0.25 Point density 20 to 25 m
extract lidar metrics in a raster format at a user-defined, Pement}ie 0.50 Point density 25 to 30 m
horizontal spatial resolution. The lidar metrics (Table 1) gement} €0.75 Point dens%ty 30 to 35 m
. L. . . , ercentile 0.90 Point density 35 to 40 m
include descrl'ptlve metrics (e.g., maximum h_e1ght, or Percentile 0.95 Point density 40 to 45 m
number of points from 0.5 to 1 m) and statistically-based Percentile 0.99 Point density 45 to 50 m
metrics (e.g., 0.05 percentile and standard deviation). The Total number of returns Point density 50 to 55 m
metrics were calculated with respect to ground level. For Point density 55 to 60 m
example, maximum height describes the distance between
the highest recorded lidar point within a moving window Imagery Variables
cell and the ground elevation as defined by the DEM. NAIP: blue band MNE o
. : ; : : : blue ban componen
Similarly, point density 0.5 to 1 m is the number of lidar NATP: green band MNF comgonent )

Iﬁtuints 1recordsd b?twizen 0.5 ItIL .and 1.0tm nolll‘mﬁhzech?y NAIP: red band MNF component 3
e total number of returns within a raster cell above the NAIP: NIR band MNF component 4
DEM elevation. The plot rasters include a set of bands, each
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band describing a different lidar data metric. In practice, the
user may choose any pixel size to generate a wall-to-wall
map, although in this case the pixel size was irrelevant
since all lidar data above each plot were summarized into a
single point. While there may be a slight difference between
results based on a circular footprint and a square pixel, we
believe that it would be insignificant.

We then extracted topographical information based on
DEM derived from lidar data classified as ground points. All
topographical measures (Table 1) were derived from the
DEM using ITT’s ENVI 4.7 Topographical Modeling feature
(ITT Visual Information Solutions, 2009). This step was
processed at 20 m resolution to be consistent with the
remaining spatial and ground reference data. The plot
raster data described above were combined with the
topographical information into a raster dataset (lidar data
cube, or the LDC) with a set of bands similar to a hyper-
spectral image cube, where each band describes a different
lidar or topography metric. The LDC was saved into a
32-bit, floating-point Tagged Image File Format (TIFF) raster
format to increase compatibility with external analysis
software. A TIFF Worldfile and an ENVI header file were
generated to preserve metadata and description of each
metric. The band data for all plots were then extracted to a
table for analysis within data mining software, as described
in the Analysis section.

Imagery

We augmented the LDC by adding four-band visible near-
infrared (VNIR) multispectral imagery from the National
Agricultural Imagery Program (NAIP). The 1 m ground
sample distance (GSD) imagery was collected and orthorecti-
fied in 2009. In preliminary analysis we simply added the
multispectral values or their Principal Component Analysis
(pcA) and/or Minimum Noise Fraction (MNF) transforms at
the pixel level; however, this did not affect the prediction
rates of the dependent variables. As a result, we resampled
the imagery to 20 m using simple averaging to keep all data
resolutions consistent. Analysis of the eigenvalues indicated
that using four MNF bands was appropriate.

Analysis

Input Data for All Analysis

We conducted all analyses using four combinations of the
LDC, raw multispectral imagery, and MNF of the imagery
(MNF;) (Figure 1). Specifically, we used the following four
combinations of the input data: (a) LDC, (b) LDC + multispec-
tral imagery, (c) LDC + MNF;, and (d) PCA of the combination
of LDC and multispectral imagery. All further analyses were
performed in Waikato Environment for Knowledge Analysis
(WEKA), a set of data mining algorithms compiled into a
software package at the University of Waikato, New Zealand
(Frank et al., 2010).

Feature Optimization

Preliminary analysis using the complete dataset yielded low
prediction rates due to overfitting. Thus, we optimized each
of the four data combinations by using the optimization
routine suggested by WEKA and designed for the subsequent
analysis. For example, for data input to random forest we
optimized input data with filtered subset evaluator using
greedy stepwise search method. In each of these processes,
the overall dataset was narrowed to include the most
influential input variables in the subsequent analysis. In
addition, we ran a PCA on the LDC and imagery dataset and
analyzed the six principal components based on the
eigenvalues which explained 98.04 percent of the dataset
variability.
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Fuel Model Analysis

We used a number of classification algorithms to evaluate the
performance of simple and complex models (e.g., clustering
and svM algorithms, respectively) in predicting FMs using the
four combinations of input data. The training data was
randomly selected from the input data using a ten-fold
validation method. We used all the methods described below
to classify specific surface FMs as described in Figure 5

(e.g., TU1, TU4, TUS5, SH1, etc.), as well as generalized
surface fuel model types (SH, TU, and TL).

First, we used a simple k-means classifier to cluster
the input spatial data into FMs. The k-means algorithm
distributes data into k classes by calculating the Euclidean
distance between each data point and an estimated class
mean in feature space. The means are then reassigned
iteratively to minimize the distances among data points
and the class means (Duda et al., 2001). Next, we used
two regression tree algorithms: random forest (RF) and
SimpleCART. The RF algorithm uses an ensemble classifier
(multiple models) to obtain better predictive performance.
The classifier generates a large number of decision trees
at random, a subset of which is chosen to construct the
final model (Breiman, 2001). SimpleCART is WEKA’s
implementation of a classification and regression tree
(cART) algorithm (Feldesman, 2002). CART is a nonparamet-
ric algorithm that divides a large number of input vari-
ables and their interactions based on goodness of split
criteria. The process generates a large number of splitting
decisions and then applies a set of rules to reduce them
(i.e., to prune the tree). CART makes no assumptions about
the statistical distribution of its independent or dependent
variables, which also means that it cannot generate a
probability level or confidence interval (Feldesman, 2002).
One of the differences between CART and RF is that RF
bootstraps the data to provide a more honest and conserva-
tive assessment.

Finally, we used the sequential minimal optimization
(SMO) learning algorithm, a type of svM. In general, SvMm
algorithms are based on statistical learning theory; they
classify datasets by fitting a hyperplane in the feature space
to only the data points closest to the class boundaries. These
data points are the support vectors. SVM uses structural risk
minimization, which minimizes the probability of misclassi-
fication based on probability distributions. By utilizing only
the points closest to the boundary hyperplane, the SVvMs are
well suited for classification problems of high-dimensional
datasets with a small training sample size (Hsu et al., 2003).
Most specifically, the sMO algorithm globally replaces all
missing values and transforms categorical attributes into
binary classes (Keerthi et al., 2001).

Fuel Metric Analysis

We used simple multiple linear regression, additive regres-
sion, and SvM models to predict the fuel metrics. The
additive regression model is an iterative process in which
the residuals of a multiple linear regression model are used
to construct a new model. All iteration predictions are
added to calculate the final prediction model. We reduced
the learning rate parameter to prevent overfitting the data
(Friedman, 2002; Frank et al., 2010). In this instance, we
used WEKA’s regression implementation of the SMO in
combination with the parameter learning algorithm,
RegSMOImproved (Keerthi et al., 2001). We used ten-fold
cross-validation as suggested by previous research (Kohavi,
1995) and the corrected paired t-test with two-tailed 0.05
confidence-level to verify all the results.
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Results

Fuel Model Results

We analyzed lidar metrics and CIR imagery to predict the
assigned surface FMs using four different classification
algorithms. We report the results as the percentage of
correctly predicted models based on a comparison to the
field data because the dependent variable is categorical
(Table 2). The best classification was obtained using a
combination of lidar and MNF transform of the imagery with
the CART algorithm; however, all specific surface FM results
were poor (below 50 percent). The simple k-means classifier
correctly predicted 24 percent of the FMs, based on the lidar
data alone. The regression tree classifications algorithms, RF
and SimpleCART, predicted between 31 percent and

45 percent of the FMs correctly, depending on the data input
and the classifier. The CART algorithm most consistently
outperformed the RF. The machine learning algorithm, smo,
correctly predicted between 21 percent and 38 percent,
depending on the data input and the classifier. We used
various data input combinations, including the LDC, imagery,
combination of LDC and imagery, and their transforms; we
found that with most methods, either lidar data alone or
lidar data with MNF of the imagery performed best. The pca
of the entire dataset (LDC + imagery) performed poorly in
nearly all cases.

We also classified the broader fuel types: sH, TU, and TL.
These results (Table 2) improved, suggesting that while lidar
may not be able to accurately predict specific surface FMs, it
is capable of assessing fuel types. The best overall predictor
was the SMO machine learning algorithm (76 percent cor-
rectly classified). The difference among various data inputs
was small, ranging from 73 percent to 76 percent, and the
simplest data input (lidar data alone) attributed to 75
percent correct classification. Although the regression trees
predicted these classes relatively well (RF’s best at 75
percent and CART’s best at 72 percent correctly classified) no
algorithm has predicted the fuel types as consistently and
accurately as the SMO. We found that the results were not
improved after feature optimization of the input data.
Consequently, all input variables (within the LDC and
derived from the imagery) were used.

Fuel Metric Results
We analyzed the same set of input data to predict 12 fuel
metrics using linear- and additive-regression models, and

TABLE 2. PERCENT CORRECTLY CLASSIFIED STANDARD FUEL MODELS AND
GENERALIZED FUEL TYPES, GIVEN VARIOUS DATA INPUTS AND CLASSIFICATION
METHODS; THE BEST FIT FOR A GIVEN DATA INPUT IS IN BOLD

Specific standard fuel models

Clustering Regression Tree Machine Learning

Data input k-means RF  CART SMO
Lidar alone 24 35 35 37
Lidar + imagery 23 35 40 37
Lidar + MNF; 23 42 45 38
PCA (lidar + imagery) 15 31 44 21

Generalized fuels types (SH, TU, and TL classes)

Lidar alone 46 65 70 75
Lidar + imagery 49 69 72 73
Lidar + MNF; 46 73 69 76
PCA (lidar + imagery) 50 64 66 75
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the sMO algorithm (Table 3). We split the metrics into two
categories: those that are used to assign FMs (BA, shrub
height, shrub cover, combination of 1-, 10-, and 100-hour
fuel loads, and fuel bed depth) and those that directly feed
fire behavior models such as FARSITE (canopy height, canopy
cover, CBH, and CBD). The range in prediction rates is large
across models and data inputs but there are trends (Table 4).
The best prediction rates were associated with maximum
canopy height (r*: 0.69 to 0.87), BA (r* 0.67 to 0.82), and
canopy cover (r*: 0.62 to 0.83), followed by shrub cover

(r*: 0.40 to 0.62) and shrub height (r*: 0.40 to 0.59). All other
prediction rates (and all directly related to measures of fuel),
were below r? = 0.5 (combined fuel loads, cBH, fuel bed
depth, 1,000-hour fuel loads, and CBD, in decreasing order of
prediction rates). All other individual fuel load categories
(e.g., litter, 1-, 10-, 100-hour loads) yielded very poor
correlation coefficients and are not reported here.

Table 4, arranged by best Pearson’s correlation coeffi-
cient and the associated method, provides a simplified
summary of all the fuel metric results. The SMO algorithm
outperformed the other models in 5 out of the 11 cases
using the pca-transformed data. The SMO performed well
mostly with metrics that are more difficult to assess using
lidar and imagery: metrics that describe the understory and
fuel loads. Multiple linear regression model worked best
when predicting less complex metrics (canopy height and Ba),
in which case data transformations made little or no differ-
ence. The additive regression performed best only in cases
where the results were poor (1,000-hour fuel loads and CBD).
Although we performed feature optimization on all input
data, we found that the results were not improved. Conse-
quently, all input variables (within the LDC and derived from
the imagery) were used.

Discussion
Our results of forest structural metrics are good, and in
general meet or exceed those from previous studies. For
example, Lefsky et al. (1999) reported r? of 0.49 when
explaining BA with lidar data compared to our regression
model which resulted in an r? of 0.82. Lefsky et al. (2002)
analyzed waveform lidar to predict canopy cover and
reported mean r* of 0.84, 0.63, and 0.11 from boreal conifer-
ous, temperate coniferous, and temperate deciduous forests,
respectively; however, when the entire dataset was consid-
ered, their estimates decreased to r* of 0.37 (as compared to
r? = 0.83 in our work). Riafio et al. (2007) predicted shrub
height using lidar at r* = 0.48 to 0.65, which is comparable
to our work (shrub height r* = 0.59; shrub cover r* = 0.62).
In contrast, a few studies predicted cBD with higher
accuracy, including Andersen et al. (2005), Erdody and
Moskal (2010), and Saatchi et al. (2007) with r* of 0.86,
0.83, and 0.84, respectively. Similarly, Erdody and Moskal
(2010), and Andersen et al. (2005) predict CBH and In(CBH)
with r? of 0.78 and 0.77, respectively. There are a few
possible reasons for why the results in our study differ
from these two studies. First, the forest composition and
topography of our study area is more complex than the
previously mentioned projects, which could affect the
penetration of the laser. Second, the CBD metric is quite
sensitive to modeling assumptions used to derive it,
including the cBH and stand height (Andersen et al., 2005),
which may have contributed to the lower correlation
coefficients in present work. Third, the Andersen et al.
(2005) study did not measure crown base heights or tree
heights for many trees in the field, and therefore the
reported results may contain significant errors. Finally,
Saatchi et al. (2007) summarized his findings based on
a radar, not lidar, system. Thus, it would be worth
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TABLE 3. CORRELATION COEFFICIENTS OBTAINED FROM NUMEROUS ITERATIONS OF REMOTE
SENSING DATA, CLASSIFICATION ALGORITHMS, AND MEASURED OR CALCULATED FUEL METRICS;
THE BEST FIT BETWEEN MODEL AND DATA INPUT PER METRIC IS IN BOLD; THE TOP HALF OF THE

TABLE LISTS FUEL METRICS THAT ARE USED BY ANALYSTS TO ASSIGN FUEL MODELS WHILE THOSE
IN THE BoTTOM HALF OF THE TABLE ARE DIRECT INPUTS TO FIRE BEHAVIOR MODELS

s
p= g _
+ B + =%
— o O — (=)
g £ & ¥
3 SE 3 g E
1 basal Linear Reg 0.82 0.82 0.82 0.67
Total basal area 4 4itive Reg 073 072 073 071
SMO 0.81 0.80 0.79 0.81
Shrab heich Linear Reg 0.54 0.54 0.54 0.46
rub height Additive Reg 0.52 0.52 050  0.40
@ SMO 0.58 0.57 0.56 0.59
2
=
z Shrub Linear Reg 0.48 0.48 0.48 0.40
% rub cover Additive Reg 052 058 055 047
g SMO 0.59 0.62 0.60 0.57
)
= bined fuel load Linear Reg 0.39 0.39 0.39 0.37
E Combined fuel loads — 4 gitive Reg 0.26 028 033  0.36
E SMO 040 043 043 048
L fuel load Linear Reg 0.16 0.16 0.16 0.23
1000 hour fuel loads 4 4iive Reg 029 029 031  0.17
SMO 0.27 0.27 0.27 0.18
Fuel bed denth Linear Reg 0.24 0.24 0.24 0.31
uel bed dept Additive Reg 034 020 025  0.27
SMO 0.25 0.29 0.29 0.35
C heigh Linear Reg 0.87 0.87 0.87 0.69
anopy height (max)  jji4ive Reg 0.84 083 082  0.79
SMO 0.86 0.85 0.85 0.82
j22]
2 . heieh Linear Reg 060 060 060 044
= anopy height (mean) ;0 Reg 055 054 053  0.54
Q
g SMO 0.53 0.51 0.50 0.51
g
5 c Linear Reg 0.62 0.62 0.62 0.74
s anopy cover Additive Reg 072 072 073  0.76
E SMO 0.78 0.79 0.81 0.83
[-*]
& c Linear Reg 0.39 0.39 0.39 0.35
I BH Additive Reg 0.36 0.34 0.31 0.34
5 SMO 0.32 0.33 0.34 0.41
Linear Reg 0.14 0.14 0.11 0.13
CBD Additive Reg 0.20 0.18 0.25 0.19
SMO 0.11 0.12 0.15 0.13
investigating whether radar or waveform lidar systems are We should mention that in addition to the analysis and
more suitable in assessing FMs than a discrete, small- results presented here, we have also used lidar + pPcA of
footprint lidar system. Radar may be more reliable because = imagery as an input, and in the FMs analysis, we used
of its ability to penetrate and describe some depth of soil, another regression tree (C4.5 J48 classifier) and an svM
although at much coarser resolution. Waveform lidar may (LibSVM) algorithm. These results are not presented for
also be beneficial because of its ability to better describe brevity; however, in all cases, these results produced neither
the vertical structure of the forest, and in particular, of best nor worst results when predicting either the FMs or the
shrub and surface level vegetation. forest metrics.
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TABLE 4. SUMMARY OF CONTINUOUS FUEL AND CANOPY METRIC
RESULTS SORTED BY BEST OBTAINED CORRELATION COEFFICIENT;
THE COLUMNS INDICATE THE METHOD AND CONTRIBUTING DATA INPUT
USED TO OBTAIN THE MOST ACCURATE RESULT

g o
i £ +
E SR
s Z Tt 5§
A I T O |
s = 5 5 4 =&
Canopy height (max) 0.87 L Reg X X X
Canopy cover 0.83 SMO X
Total basal area 0.82 L Reg X X X
Shrub cover 0.62 SMO X
Canopy height (mean) 0.60 L Reg X X X
Shrub height 0.59 SMO X
Combined fuel loads 0.48 SMO X
CBH 0.41 SMO X
Fuel bed depth 0.35 SMO X
1,000 hour fuel loads 0.32 A Reg
CBD 0.25 A Reg X

Our fuel metric results varied in accuracy. One con-
tributing factor to the varied success rate is the relative
vertical position of the measured metric within the canopy.
The metrics near the top of the canopy (e.g. canopy height,
r?=0.87) are predicted with better accuracy than metrics
near mid-canopy (e.g., shrub height, r* = 0.59), or the still
worse, near-ground level metrics (e.g., fuel bed depth,

r* = 0.35). Weakening laser pulse strength as it penetrates
through the canopy towards the ground level and then back
up, especially in dense forests, most likely plays the key
role in this phenomenon. Further, in general, the fuel metric
results indicate that (a) the less complex metrics (e.g., tree
height) are best predicted by simple lidar data input and
multiple linear regression, while (b) the more complex
metrics (related to understory or fuel loads) are best
predicted by the SMO support vector machine learning
algorithm using PcA transform of lidar and imagery.

Our analyses of specific surface FMs, as defined by Scott
and Burgan (2005), show that these are difficult to reliably
predict from lidar and multispectral imagery. The CART
algorithm performed best, although these results were poor
and should be considered with caution. There are three
main reasons for this. The first has to do with the study
area: steep terrain in combination with dense, mixed-conifer
vegetation, especially in comparison to previous studies of
similar topics, make characterizing the forest floor problem-
atic. Previous studies have shown that steep slopes and
dense vegetation decrease the accuracy of lidar (Yu et al.,
2005; Hollaus et al., 2006; Su and Bork, 2006; Kaartinen
et al., 2012). We hypothesize that the good statistical fits
reported by Mutlu et al. (2008) between surface FMs and
lidar data were in part due to a near-sea-level, flat forest
study area consisting of tree plantations and old-growth
pine stands. Dense vegetation may influence poor detection
rates of FMs because the lidar laser pulse may not ade-
quately penetrate the canopy structure in these situations,

a critical step in accurately assessing surface fuel structure.
It may be worth investigating whether a lidar-based
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approach works for other terrains on less extreme slopes or
sparser vegetation.

The second has to do with the physics of the lidar
instrument. The FM assessment as described by Anderson
(1982) and Scott and Burgan (2005) depends largely on the
amount of dead fuel on the ground, fuel bed depth, and the
moisture of extinction of dead fuels. The detection of these
characteristics directly from airborne lidar technology is
very challenging. For the most part, these are not directly
measured but approximated by the surrounding environ-
ment, slope, aspect, and vegetation type.

Finally, FM assignment depends heavily on expert
knowledge and is often an iterative process. The expert
knowledge may include familiarity with the study area, fire
behavior and FMs in the area, and potential reassignment of
FMs based on preliminary fire behavior model outputs. As a
result, there is not always good correspondence between
FMs and the original data from which they were derived.
This is further shown by the fact that lidar can predict the
general fuel types but not the specific FMs. Predicting FMs
using lidar in a classification context may therefore not be
desirable.

We do not want to discount the potential benefits of
using lidar in FM assessment. As demonstrated in this study,
using lidar and/or imagery to detect general fuel model types
(sH, TU, and TL) works reasonably well: up to 76 percent
correct classification. The SMO algorithm consistently
performed best in predicting these fuel types in comparison
to statistical clustering or regression models. Further, lidar is
capable of mapping some canopy metrics well (canopy cover,
tree height, BA, etc), and this information, in addition to
general fuel types and field data, could be used by experts to
improve future FM assignment. While lidar data may not
provide the perfect solution in fuel mapping, it may be the
best available option and can still provide a more reliable
answer than the currently accepted and mostly unreported
methods used for fuel model assignment.

Conclusions

In this study, we used a range of algorithms and combina-
tions of discrete, small-footprint lidar and multispectral
imagery to predict standard surface fuel models, their
constituent inputs, and fuel metrics typically used in fire
behavior models such as FARSITE. We performed an exten-
sive analysis to determine what is the optimal combination
of data inputs and methods in order to predict each of the
above forest metrics and/or fuel models.

Our results indicate that the specific surface fuel models
are difficult to predict reliably using lidar and imagery data
in a dense forest within complex terrain, regardless of the
input data transformation or the methods used. However,
more general fuel types were detected at a reasonable rate of
76 percent accuracy using the SMO version of svM algorithm.
The svM predicted above 73 percent of fuel types using all
data inputs. Our analyses show that deriving canopy stand
structure or continuous fuel metrics is repeatable and
accurate. In general, we found that to derive the less
complex metrics (e.g., tree height), lidar data alone with
simple multiple linear regression works best, while for the
metrics that are more difficult to measure (e.g., fuel loads),
best results are obtained through more sophisticated analysis
with SvM using PCA transform of lidar and imagery as the
input. Further, as the lidar pulse weakens when it pene-
trates down through the canopy, so does the pulse density
and the prediction accuracy level of the associated metrics.
In particular, maximum canopy height, canopy cover, and
BA were described with up to 0.87, 0.83, and 0.82 Pearson’s
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correlation coefficient, respectively. As we move deeper into
the canopy, the ability to reliably predict fuel metrics
declines. The best shrub prediction was 0.62, while the
prediction of ground-based fuels declined below 0.50
correlation coefficient.
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