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ABSTRACT 

Scattering effects from rough surfaces are non-paraxial diffraction phenomena 

resulting from random phase variations in the reflected wavefront.  The ability to predict 

these effects is important in a variety of applications including x-ray and EUV imaging, 

the design of stray light rejection systems, and reflection modeling for rendering realistic 

scenes and animations of physical objects in computer graphics. 

Rayleigh-Rice (small perturbation method) and Beckmann-Kirchoff (Kirchhoff 

approximation) theories are commonly used to predict surface scatter effects.  In addition, 

Harvey and Shack developed a linear systems formulation of surface scatter phenomena 

in which the scattering behavior is characterized by a surface transfer function. This 

treatment provided insight and understanding not readily gleaned from the two previous 

theories, and has been incorporated into a variety of computer software packages (ASAP, 

Zemax, Tracepro).  However, smooth surface and paraxial approximations have severely 

limited the range of applicability of each of the above theoretical treatments.   

In this dissertation, a linear systems formulation of non-paraxial scalar diffraction 

theory is first developed and then applied to sinusoidal phase gratings, resulting in 

diffraction efficiency predictions far more accurate than those provided by classical 

scalar theories.  The application of the theory to these gratings was motivated by the fact 

that rough surfaces are frequently modeled as a superposition of sinusoidal surfaces of 

different amplitudes, periods, and orientations. 

The application of the non-paraxial scalar diffraction theory to surface scatter 

phenomena resulted first in a modified Beckmann-Kirchhoff surface scattering model, 
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then a generalized Harvey-Shack theory, both of which produce accurate results for 

rougher surfaces than the Rayleigh-Rice theory and for larger incident and scattering 

angles than the classical Beckmann-Kirchhoff theory.  These new developments enable 

the analysis and simplify the understanding of wide-angle scattering behavior from rough 

surfaces illuminated at large incident angles.  In addition, they provide an improved 

BRDF (Bidirectional Reflectance Distribution Function) model, particularly for the 

smooth surface inverse scattering problem of determining surface power spectral density 

(PSD) curves from BRDF measurements. 
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CHAPTER 1: 

INTRODUCTION 

Scattering from rough surfaces has been an area of intense study over the last 

century, and is an important issue in a large number of scientific areas including optics, 

geophysics, acoustics, oceanography, communications, and remote sensing.  It is also of 

great importance in the area of computer graphics, where efficient scattering models are 

needed to create photorealistic images of synthetic scenes and environments. 

1.1 Surface Scatter Phenomena 

Surface scatter effects can be considered to be merely diffraction phenomena 

resulting from random phase variations induced upon a reflected wavefront by 

microtopographic surface features.  Most natural surfaces have an inherent roughness that 

results in scattered light.  Machined and otherwise processed surfaces also exhibit 

characteristic surface features or roughness.  Even the smoothest optically polished 

surfaces have a small residual roughness due to the imperfect optical fabrication process. 

When light is reflected from an imperfect optical surface, the reflected radiation 

consists of a specularly reflected component and a diffusely reflected component as 

illustrated in Figure 1-1.  The light scattered from optical surface irregularities degrades 

optical performance in several different ways: (i) it reduces optical throughput since some 

of the scattered radiation will not even reach the focal plane, (ii) the wide-angle scatter 

will produce a veiling glare which reduces image contrast or the signal-to-noise ratio, and 

(iii) the small-angle scatter will decrease resolution by producing an image blur. 
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Figure 1-1: Light incident on an imperfect optical surface  

The behavior of light scattered from randomly rough surfaces is dictated by the 

statistical surface characteristics.  Consider the surface profile illustrated in Figure 1-2.  

The surface has a zero mean with the surface height, h, illustrated as a function of 

position along a one-dimensional trace of finite length.  The two relevant statistical 

surface characteristics are the surface height distribution function and the surface 

autocovariance (ACV) function.  Fortunately, for many cases of interest, the surface 

heights are normally distributed (i.e., the surface height distribution is Gaussian).  The 

root-mean-square (RMS) surface roughness, σs, is the standard deviation of that normal 

distribution.  The autocovariance length, l, is defined as the half-width of the 

autocovariance function at the 1/e height.  It would be convenient, at least 

mathematically, if the surface autocovariance function were also Gaussian, however that 

is not usually the case.  Instead, the autocovariance function is material and process 

dependent. 
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Figure 1-2: Schematic diagram of a surface profile and its relevant statistical parameters 

The surface power spectral density (PSD) function and the surface ACV function 

form a Fourier transform pair, and therefore Figure 1-3 further illustrates the surface 

characteristics relevant to scattered light behavior. 
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Figure 1-3: Illustration of the relationship between relevant surface parameters 
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Note that the value of the surface autocovariance function at the origin is equal to 

the surface variance σs
2.  From the central ordinate theorem of Fourier transform theory 

[1], we therefore know that the volume under the two-dimensional surface PSD is also 

equal to the surface variance.  The surface PSD can be thought of as a plot of surface 

variance as a function of the spatial frequency of the surface irregularities. 

There is clearly a relationship between the surface roughness and the amount of 

light scattered out of the specular beam upon reflection from a surface.  In fact, scattered 

light measurements are an excellent way to infer surface characteristics.  The total 

integrated scatter (TIS) is defined as that fraction of the total reflected radiant power that 

is scattered out of the specular beam.  In 1954, Davies reported the following relationship 

for total integrated scatter from smooth, clean, conductive surfaces [2] 

 
2

4 coss s s i

i o s

P P
TIS

RP P P

πσ θ
λ

⎛ ⎞= = ≈ ⎜ ⎟+ ⎝ ⎠
. (1.1) 

In the above equation, Pi is the incident power, R is the (power) reflectance of the 

surface, Ps is the scattered power, Po is the power remaining in the specularly reflected 

beam, σs is the rms surface roughness, θi is the incident angle, and λ is the wavelength of 

the incident radiation.  In addition to the smooth surface requirement (σs/λ << 1), Davies 

also assumed that the surface height distribution was Gaussian and that most of the 

scattered light was restricted to angles close to the specular beam (θs ≈ θo). 

The conditions of Davies’ derivation resulting in equation 1.1 were somewhat 

more restrictive than necessary.  A more general expression for the TIS is given by [3] 
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 ( )2
1 exp 4 cos  /i sTIS π θ σ λ⎡ ⎤= − −⎣ ⎦ . (1.2) 

Equation 1.2 is valid for moderately rough surfaces and does not require that the surface 

have a Gaussian surface height distribution function.  In addition, for the special case of 

smooth surfaces, retaining only the first term of a binomial expansion of the exponential 

causes equation 1.2 to reduce to the more restrictive equation 1.1. 

1.2 Motivation And Goals For This Research 

In many optics applications, it is not only the amount of scattered light, but also 

the direction of the scattered radiation that plays a crucial role in the performance of an 

optical system.  This is particularly true for three distinct types of applications: (i) the 

design and analysis of stray light rejection systems required by optical systems used to 

view a relatively faint target in the vicinity of a much brighter object, (ii) the fabrication 

of “super-smooth” surfaces for high resolution X-ray and extreme ultraviolet (EUV) 

imaging systems, and (iii) remote sensing applications where scattered light signatures 

are used to remotely infer target characteristics.  For these applications, as well as many 

others, the ability to predict scattered light distributions from surface topography (or vice 

versa) is extremely important. 

The two oldest approaches to the problem of surface scattering are also the most 

widely used.  The Rayleigh-Rice vector perturbation theory agrees well with 

experimental wide-angle scatter measurements from “smooth” (σs/λ << 1) surfaces for 

arbitrary incident and scattering angles.  However, not all applications of interest satisfy 
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the smooth surface approximation.  The Beckmann-Kirchhoff scattering theory is valid 

for rougher surfaces, but contains a paraxial (small-angle) assumption that limits its 

ability to accurately handle wide-angle scattering and large angles of incidence.  The 

linear systems approach to scattering developed by Harvey and Shack in the 1970s, while 

intuitive, also contains a small-angle assumption that limits its usefulness. 

There have been a number of alternative approaches to solving the problem of 

scattering from rough surfaces.  In 2004, Elfouhaily and Guerín published a critical 

survey of approximate theories of scattering from random rough surfaces [4].  They 

attempted to classify and characterize over thirty different approximate methods.  They 

were all variants of the small perturbation method (Rayleigh-Rice), the Kirchhoff 

approach, or the so-called unified methods which attempt to bridge the gap between the 

two classical theories.  The authors concluded that “there does not seem to be universal 

method that is to be preferred systematically.  All methods represent a compromise 

between versatility, simplicity, numerical efficiency, accuracy, and robustness”.  Their 

final statement was “There is still room for improvement in the development of 

approximate scattering methods”. 

The goal of the research leading to this dissertation was the development of a 

surface scatter model that combined the advantages of the Rayleigh-Rice and 

Beckmann-Kirchhoff theories (without their disadvantages in terms of roughness and 

angular coverage), while retaining the intuitive nature of the Harvey-Shack linear systems 

treatment. 
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1.3 Organization Of This Dissertation 

This dissertation consists of six chapters, including the present one.  The 

remainder of the dissertation is organized in the following manner: 

Chapter two gives a historical background of both scalar diffraction theory, and 

surface scatter theory.  Particular emphasis is placed on the theories and models which 

will be built upon in this dissertation. 

In chapter three a linear-systems approach to non-paraxial scalar diffraction 

theory is developed.  By incorporating proper radiometric terminology and choosing an 

appropriate parameter space, it is shown that diffracted radiance is shift-invariant in 

direction cosine space, and therefore the fundamental quantity predicted by scalar 

diffraction theory.  In addition, it is shown that the proper application of Parseval’s 

theorem allows the theory to model the redistribution of energy from evanescent waves to 

propagating waves, ensuring conservation of energy.  Finally, this non-paraxial scalar 

diffraction theory is applied to sinusoidal phase gratings, and is shown to be more 

accurate at predicting diffraction efficiencies than classical scalar theory. 

In chapter four, the insight and understanding of non-paraxial scalar diffraction 

obtained in the previous chapter is utilized to make an empirical modification to the 

classical Beckmann-Kirchhoff scattering theory.  This modified Beckmann-Kirchhoff 

model agrees with the Rayleigh-Rice theory for smooth surfaces with large incident and 

scattering angles, while at the same time agreeing with experimental rough surface 

measurements at large incident and scattering angles. 
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In chapter five, the Harvey-Shack surface scatter theory is generalized to account 

for large incident and scattering angles.  This leads to a new two-parameter family of 

surface transfer functions, which allows numerical calculation of surface scatter behavior 

that agrees well with the Rayleigh-Rice theory for smooth surfaces with large incident 

and scattering angles.  In addition, this linear systems formulation of surface scatter 

theory agrees well with experimental data from rough surfaces at large incident and 

scattering angles.  A smooth-surface approximation to the generalized Harvey-Shack 

scattering theory is also shown to provide an improved BRDF model for solving the 

inverse scattering problem to obtain surface characteristics from measured BRDF data.  

Finally, it is shown that the modified Beckmann-Kirchhoff model and generalized 

Harvey-Shack theories are in fact identical 

Chapter six consists of a summary of the dissertation and identifies areas for 

future work. 
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CHAPTER 2: 

HISTORICAL BACKGROUND 

2.1 Scalar Diffraction Theory 

The discovery of diffraction phenomena is usually credited to Francesco 

Grimaldi, a professor at the Jesuit college in Bologna, Italy, and in fact it was Grimaldi 

who invented the term “diffraction” [5].  He was among the first to observe and study the 

gradual transition from light to dark in the shadow region behind an aperture.  A detailed 

study of his work, including a description of bands of light (fringes) within the shadow of 

a rod illuminated with a small source was given in his book, De Lumine, published in 

1665. 

Robert Hooke, curator of experiments for the Royal Society in London also 

observed the effects of diffraction.  His study of the colored interference patterns 

generated by thin films was detailed in his book Micrographia, published in 1665.  In it, 

he correctly concluded that the patterns were due to an interaction between the light 

reflected from the front and back surfaces [6]. 

James Gregory, best known for the telescope design that bears his name, 

effectively discovered the diffraction grating during his tenure at the University of St. 

Andrews in Scotland (1668-1674) [7].  By illuminating a bird feather with sunlight 

passing through a small hole, he was able to observe a central white spot surrounded by 

diffracted orders made up of a spectrum of colors [8]. 

In 1678, the Dutch physicist Christian Huygens wrote a treatise on the wave 

theory of light called Traite de la Lumiere (published in 1690), in which he expressed the 
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idea that every point on a wavefront serves as the source of spherical secondary wavelets 

such that the primary wavefront at some later time is the envelope of these wavelets [9].  

This principle is a precise description of the convolution of a spherical wavelet with the 

complex amplitude distribution representing the primary wavefront.  Using this principle, 

Huygens was able to derive the laws of reflection and refraction. 

In 1704, Isaac Newton published Opticks, in which he strongly advocated for the 

corpuscular theory of light over the wave theory [10].  Because of Newton’s prestige, 

most scientific opinion at the time sided with him.  As a result, not much was done to 

advance the wave theory of light during the 18th century. 

In 1802, Thomas Young provided indisputable evidence that light exhibits a 

wave-like nature when he presented the results of his now-famous experiments on the 

interference of light that he had carried out in Cambridge between 1797 and 1799.  On 

July 1, 1802 and again on November 24, 1803 he presented papers before the Royal 

Society advocating the wave theory of light, and introducing the fundamental concept of 

interference [11].  With the wave theory, Young was able to explain the colored fringes 

of thin films, and determined the wavelengths of various colors using Newton’s own 

data.  Other scientists found Young’s results to be counter-intuitive, however, and it did 

not gain widespread acceptance at the time. 

In 1818 Augustin Fresnel submitted a paper to a competition sponsored by the 

French Academy of Sciences for the best work on diffraction.  In it, he outlined a wave 

theory of light and showed that it was able to account for a number of phenomena 

including reflection, refraction, diffraction, and interference.  Fresnel’s work was 

essentially an extension of Huygens’ work.  He postulated that the Huygens’ secondary 
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wavelets mutually interfere, and by making some arbitrary assumptions about their 

amplitudes and phases, he was able to accurately predict diffraction patterns.  Most of the 

members of the judging committee, including Jean Biot, Siméon Poisson, and Pierre 

Laplace, were proponents of the corpuscular theory of light.  Poisson used Fresnel’s 

theory to show the seemingly absurd result that if light were incident on a circular 

obscuration, a bright spot would occur at the center of the shadow region behind the 

obscuration.  The committee chairman, Dominique Arago, quickly set up an experiment 

and showed that Poisson’s prediction was correct, and Fresnel won the competition. 

The Huygens-Fresnel principle, as it has come to be known, is given by a 

superposition of spherical wavelets emanating from each point within a diffracting 

aperture, where each spherical wave exhibits a π/2 phase delay, a cosine obliquity factor, 

and an amplitude that is inversely proportional to the wavelength of the radiation [12].  

This is expressed mathematically by 

 ( ) ( ) ( ) ( )1 1 11

exp1
, , cos ,   o

ikr
U x y U x y n r dx dy

i rλ
∑

= ∫∫ , (2.1) 

where the integral is over the two-dimensional diffraction aperture, Uo(x1,y1) is the optical 

disturbance emerging from the aperture, and since exp(iπ/2) = i, the i in the denominator 

represents a π/2 phase delay. 

In 1882, Gustov Kirchhoff added some mathematical rigor to the ideas of 

Huygens and Fresnel by showing that the amplitudes and phases ascribed to the 

secondary wavelets were logical consequences of the wave nature of light.  He did this by 

choosing an appropriate Green’s function that satisfied the differential wave equation.  
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Figure 2-1, borrowed from Goodman [13], illustrates the geometry of the Kirchhoff 

formulation of diffraction by a plane screen.  Monochromatic radiation is assumed to be 

incident from the left on an aperture ∑ in an infinite opaque screen.   
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Figure 2-1: Geometry of the Kirchhoff formulation of diffraction by a plane screen 

The diffracted wave field at the point Po is calculated by applying the integral 

theorem of Helmholtz and Kirchhoff [14], and the result is given by [13]  

 ( ) ( ) ( ) ( )21 01 01 21

21 01

exp cos , cos ,

 2
o

ik r r n r n rA
U P ds

i r rλ Σ

+⎡ ⎤ −⎡ ⎤⎣ ⎦= ⎢ ⎥
⎣ ⎦

∫∫ . (2.2) 
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The Kirchhoff formulation, however, was based upon the following inconsistent 

boundary conditions: 

 

(i) The field distribution U and its derivative ∂U/∂n are the same across the 

aperture as they would be in the absence of the screen. 

(ii) The field distribution U and its derivative ∂U/∂n are identically zero over 

the portion of S1 that lies in the geometrical shadow of the screen. 

 

It can be shown that if the field and its normal derivative vanish together on any finite 

surface element, then the field must vanish everywhere.  Therefore, the two Kirchhoff 

boundary conditions together require the field to be zero everywhere behind the aperture. 

In 1896 [15], Sommerfeld eliminated the need for imposing boundary conditions 

upon both the field and its normal derivative simultaneously, thereby removing the 

inconsistencies in the Fresnel-Kirchhoff formulation.  The resulting Rayleigh-

Sommerfeld diffraction theory is a rigorous treatment limited only in that it is a scalar 

theory that neglects the fact that the various components of the electric and magnetic 

fields are coupled through Maxwell’s equations.  The general form of the Rayleigh-

Sommerfeld diffraction formula is valid throughout the entire observation space, right 

down to the aperture, and is given by [16] 

 ( ) ( ) ( ) ( )2 2 2 1 1 1 1 1

exp1
, , cos ,   

ikA
U x y U x y i n dx dy

kλ

∞ ∞

−∞ −∞

⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ ∫ . (2.3) 

The more common form of the Rayleigh-Sommerfeld diffraction formula is an 
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approximation valid for z >> λ, and is given by 

 ( ) ( ) ( ) ( )2 2 2 1 1 1 1 1

exp
, , cos ,   

ikA
U x y U x y n dx dy

iλ

∞ ∞

−∞ −∞

= ∫ ∫ . (2.4) 

The quantity U1(x1,y1) is the complex amplitude distribution emerging from the 

diffracting aperture ∑, and 

 2 2 2

2 1 2 1
( ) ( )z x x y y= + − + −  (2.5) 

is the distance from an arbitrary point in the diffracting aperture to an arbitrary point in 

the observation plane as shown in Figure 2-2. 
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Figure 2-2: Geometry of the Rayleigh-Sommerfeld diffraction integral 



 

 
 

15

2.1.1 Fresnel And Fraunhofer Diffraction 

The Rayleigh-Sommerfeld diffraction integral is rather difficult to solve in closed 

form for most problems of practical interest.  Certain approximations can be made, 

however, that will allow relatively simple calculation of diffraction patterns. 

For applications where only paraxial diffraction angles are involved, the l in the 

denominator of the integrand in equation 2.4 can be approximated by the quantity z, and 

the cosine obliquity factor is approximately unity.  However, the l in the exponent is 

multiplied by a very large number, k = 2π/λ, and even small changes in phase can change 

the value of the exponential significantly. 

2.1.1.1 The Fresnel Approximation 

The Fresnel approximation is obtained by making a binomial expansion of the 

quantity l in the Rayleigh-Sommerfeld integral of equation 2.4, and retaining only the 

first two terms of the expansion in the exponent, while at the same time replacing the l in 

the denominator with z.  The resulting expression for the complex amplitude distribution 

in the observation plane is given by [13] 

      ( ) ( ) ( ) ( ) ( )2 2 2 1 1 1 2 1 2 1 1 1

2 2exp
, , exp   

2

ikz ik
U x y U x y x x y y dx dy

i z zλ

∞ ∞

+

−∞ −∞

⎧ ⎫⎡ ⎤= − −⎨ ⎬⎣ ⎦⎩ ⎭∫ ∫ . (2.6) 

The approximation leading to equation 2.6 will be valid provided the following Fresnel 

criterion is met: 
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 ( ) ( )  2 1 2 1

2 23
max

2

4
z x x y y

λ
π

+⎡ ⎤>> − −
⎣ ⎦

. (2.7) 

The Fresnel diffraction integral in equation 2.6 is readily seen to be a convolution integral 

that can be expressed in the form 

 ( ) ( ) ( )2 2 2 1 1 1 2 1 2 1 1 1, ,  ,   U x y U x y h x - x y - y dx dy
∞ ∞

−∞ −∞

= ∫ ∫ , (2.8) 

where the convolution kernel (impulse response of the Fresnel diffraction process) is 

merely a parabolic approximation to a spherical Huygens’ wavelet given by 

 ( ) ( ) ( )1 1 1 1
2 2exp

, exp
2

ikz ik
h x y x y

i z zλ
⎡ ⎤= +⎢ ⎥⎣ ⎦

. (2.9) 

Equation 2.6 can also be written as a Fourier transform integral given by 

   

( ) ( ) ( )

( )

2 2 2 2 2

1 1 1 1 1 2 1 2 1 1 1

2 2

2 2

exp
, exp

2

2
( , ) exp ( ) exp   

2
.

           

        

ikz ik
U x y x y

i z z

ik i
U x y x y x x y y dx dy

z z

λ

π
λ

∞ ∞

+

−∞ −∞

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤ ⎡ ⎤× + −⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭∫ ∫

 (2.10) 

2.1.1.2 The Fraunhofer Approximation 

The Fraunhofer approximation is obtained from the Fresnel approximation by 

additionally imposing the stricter Fraunhofer criterion 

 
( )1 1

2 2

max

2

k x y
z

+
>> . (2.11) 
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When this inequality is true, the quadratic phase factor in the integrand of the 

Fresnel diffraction formula of equation 2.10 is approximately equal to unity over the 

entire aperture. The resulting expression for the complex amplitude distribution in the 

observation plane is given (with the exception of a multiplicative phase factor) directly 

by the Fourier transform of complex amplitude emerging from the aperture, evaluated at 

spatial frequencies 2 /x zξ λ=  and 2 /y zη λ= [13]: 

 

( ) ( ) ( )

( ) ( )

2 2 2 2 2

1 1 1 2 1 2 1 1 1

2 2exp
, exp

2

2
,  exp                   .

ikz ik
U x y x y

i z z

i
U x y x x y y dx dy

z

λ

π
λ

∞ ∞

+

−∞ −∞

⎡ ⎤= +⎢ ⎥⎣ ⎦

⎡ ⎤−⎢ ⎥⎣ ⎦
× ∫ ∫

 (2.12) 

When the Fraunhofer criterion is satisfied, the irradiance distribution in the observation 

plane is given by the following well-known expression: 

 ( ) ( ) ( ){ }2 2 2 2 2 2 1 1 12 2 /2
/2

2
2

1
, ,   , x z

y z
E x y U x y U x y

z
ξ λ
η λλ

=
=

= = F , (2.13) 

where F  represents the Fourier transform operation. 

Figure 2-3 illustrates the axial regions of space in which the Fraunhofer, Fresnel, 

and Rayleigh-Sommerfeld diffraction formulas are valid.  Note that the Fraunhofer region 

is contained in the Fresnel region, and both the Fraunhofer and Fresnel regions are 

contained in the Rayleigh-Sommerfeld region.  The far field is widely understood to be 

synonymous with the Fraunhofer region; however there is less agreement in the literature 

upon the definition of the near field.  We define the near field to be that region of space 
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that does not satisfy even the Fresnel criterion.  The near field and the far field are 

therefore mutually exclusive, but not all inclusive. 
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Figure 2-3: Regions of validity of the Fraunhofer, Fresnel, and Rayleigh-Sommerfeld 
diffraction integrals. 

2.1.2 Fourier Treatment Of Non-Paraxial Scalar Diffraction Theory 

It is also possible to formulate scalar diffraction theory using an approach based 

on the concepts of linear systems theory.  This method, known as the angular spectrum 

approach, was first proposed by Booker and Clemmow in 1950 [17], and later treated in 

detail by others [13,18,19] 

Harvey generalized the Fourier treatment of scalar diffraction to include new 

insight into the phenomenon of diffraction throughout the whole space in which it occurs 
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[20].  Since we will expand upon Harvey’s treatment in this dissertation, we will present 

it now in some detail.  The discussion that follows comes directly from [20,21]. 

2.1.2.1 The Angular Spectrum Of Plane Waves 

The diffraction problem can be considered to consist of two parts: (i) determining 

the effect on the wave field that comes from introducing a diffracting screen or aperture 

and (ii) determining how it affects the field at some point beyond the aperture due to 

propagation.  We will consider the propagation problem first. 

The geometry for the problem is shown in Figure 2-4.  Let the complex amplitude 

distribution in plane Po be given by the scalar function ( )ˆ ˆ, ;0oU x y , which will be 

assumed to be the only radiation contributing to the complex amplitude distribution 

( )ˆ ˆ ˆ, ;U x y z  in plane P.  Note that a scaled coordinate system is used in which 

,/ˆ λxx =  ,/ˆ λyy = and ˆ /z z λ= . 
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Figure 2-4: Geometry of propagation from plane Po to plane P 
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It will be assumed that the complex amplitude of any monochromatic optical 

disturbance propagating through free space must obey the time-independent (Helmoltz) 

wave equation, and that Fourier transforms of both ( )ˆ ˆ, ;0oU x y  and ( )ˆ ˆ, ;U x y z  exist. 

In plane Po, the relationship between the complex amplitude Uo and its Fourier 

transform, which we will call Ao, is given by 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ, ;0 , ;0 exp 2    o oA U x y i x y dx dyα β π α β
∞ ∞

−∞ −∞

⎡ ⎤= − +⎣ ⎦∫ ∫  (2.14) 

and ( ) ( ) ( )ˆ ˆ ˆ ˆ, ;0 , ;0 exp 2   o oU x y A i x y d dα β π α β α β
∞ ∞

−∞ −∞

⎡ ⎤= +⎣ ⎦∫ ∫ . (2.15) 

Similarly, in the plane P, the complex amplitude U, and its Fourier transform, A, are 

related by 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, ; , ; exp 2    A z U x y z i x y dx dyα β π α β
∞ ∞

−∞ −∞

⎡ ⎤= − +⎣ ⎦∫ ∫  (2.16) 

and ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ, ; , ; exp 2   U x y z A z i x y d dα β π α β α β
∞ ∞

−∞ −∞

⎡ ⎤= +⎣ ⎦∫ ∫ . (2.17) 

Equations 2.14 and 2.16 indicate that the complex amplitude distribution in planes Po and 

P can be decomposed into a set of plane-wave components whose amplitudes are 

functions of the direction cosines of the propagation vector.  ( ), ;0oA α β  and ( ), ;A zα β  

are referred to as the angular spectrum of ( )ˆ ˆ, ;0oU x y  and ( )ˆ ˆ, ;U x y z  respectively. 
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In the scaled coordinate system, the Helmholtz wave equation can be written as 

 ( )2 2ˆ ˆ ˆ ˆ(2 ) , ; 0U x y zπ⎡ ⎤∇ + =⎣ ⎦ . (2.18) 

By applying 2.18 to 2.17, the angular spectrum in plane Po can be shown to be related to 

the angular spectrum in plane P by 

 ( ) ( ) ( )  ˆ ˆ, ; , ;  0 exp 2oA z A i zα β α β π γ= , (2.19) 

where  2 21 ( )γ α β= − + . (2.20) 

The transfer function of a linear system relates the spectrum of the input to the 

spectrum of the output, and if we consider ( )ˆ ˆ, ;0oU x y  to be our system input and 

( )ˆ ˆ, ;U x y z  to be the output, equation 2.19 can be rewritten in terms of a transfer function 

relationship as 

 ( ) ( )
( ) ( )  

ˆ, ;
ˆ ˆ, ; exp 2

ˆ, ;o

A z
H z i z

A z

α β
α β π γ

α β
= = , (2.21) 

where ( )ˆ, ;H zα β  is the transfer function for free space propagation. 

No restrictions have been applied on γ, but it is obvious from equation 2.20 that γ 

can be either real (when α2 + β 2 ≤ 1) or imaginary (when α2 + β 2  > 1).  Figure 2-5 shows 

a unit circle in the α-β plane in direction cosine space.  Inside the circle, γ is real and the 

corresponding part of the optical disturbance will propagate and contribute to the wave 

field in plane P.  However, those components of the spectrum which lie outside of the 
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unit circle have imaginary values of γ and are rapidly attenuated by the propagation 

phenomena.  These components are known as evanescent waves and do not contribute to 

the wave field in plane P. 
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Figure 2-5: Unit circle in direction cosine space 

The entire process can be summarized as follows.  The known complex amplitude 

distribution Uo in a plane Po is Fourier transformed to obtain its angular spectrum.  The 

angular spectrum is then multiplied by the transfer function of free space to account for 

propagation along the z axis from Po to P.  Finally, the inverse Fourier transform (of the 

angular spectrum-transfer function product) is performed to yield the complex amplitude 

distribution in the second plane.  The process can be expressed as 

 ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ, ; , ;0 exp 2 exp 2   oU x y z A i z i x y d dα β πγ π α β α β
∞ ∞

−∞ −∞

= +⎡ ⎤⎣ ⎦∫ ∫ . (2.22) 
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2.1.2.2 The Diffracted Wave Field As A Superposition Of Spherical Waves 

If we take the inverse Fourier transform of the angular spectrum given by 

equation 2.19 we obtain 

 ( ){ } ( ) ( ){ }  

1 1ˆ ˆ, ; , ;0 exp 2oA z A i zα β α β π γ− −=F F . (2.23) 

Using the convolution theorem of Fourier transform theory [1], as well as the Fourier 

transform relationships given by equations 2.15 and 2.17, equation 2.23 can be rewritten 

as 

 ( ) ( ) ( ){ }  

1ˆ ˆ ˆ ˆˆ ˆ, ; , ;0    exp 2oU x y z U x y i zπ γ−= ∗∗ F , (2.24) 

where ∗∗ represents the two-dimensional convolution operation. 

The complex amplitude distribution in the observation plane can therefore be 

expressed as a convolution of the original disturbance with the impulse response of the 

diffraction (or propagation) process.  The impulse response is obtained by taking the 

inverse Fourier transform of the transfer function of free space (equation 2.21), and is 

given by [20]: 

 ( ) ( ){ } ( ) 

  
-1

ˆexp 2ˆ1
ˆ ˆ ˆˆ xp 2 z     

ˆ ˆ ˆ2

i rz
h x, y; z e i i

r r r

π
π γ

π
⎛ ⎞= = −⎜ ⎟
⎝ ⎠

F . (2.25) 

Using the impulse response in equation 2.25, we can rewrite the convolution operation of 

equation 2.24 in integral form as 
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 ( ) ( )
( )  

  

ˆexp i2ˆ1
ˆ ˆ ˆ ˆ ˆ ˆˆ, ;  , ;0      

ˆ ˆ ˆ2
o

z
U x y z U x y i dx dy

π

π

∞ ∞

−∞ −∞

⎛ ⎞′ ′ ′ ′= −⎜ ⎟
⎝ ⎠∫ ∫ , (2.26) 

where ( ) ( )2 22 2ˆ ˆ ˆ ˆ ˆ ˆx x y y z′ ′= − + − + . (2.27) 

Note that ˆ ˆ and yx′ ′ are dummy variables of integration in the original plane (z = 0).  

Equation 2.26 expresses the complex amplitude in the observation plane as a 

superposition of spherical waves.  Comparing equation 2.26 to equation 2.3, we can see 

that equation 2.26 is the general Rayleigh-Sommerfeld diffraction integral.  This result 

has been obtained purely from a linear systems Fourier treatment, with no knowledge of 

the Huygens-Fresnel principle necessary.   

No approximations have been made in obtaining 2.26, and therefore it is valid 

throughout the entire space in which the diffraction occurs.  If we require that ˆ 1z >> , and 

use the algebraic substitutions ˆ ˆ ˆ ˆˆ(1 ),  ( -z)/zz δ δ= + = , equation 2.26 can be written as 

 ( ) ( ) ( )
( )

( )  

 2

ˆexp i2 1 ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ, ; , ;0 exp i2   
ˆ 1

o

z
U x y z U x y z dx dy

iz δ

π
π

∞ ∞

−∞ −∞

⎡ ⎤′ ′ ′ ′= −⎣ ⎦+
∫ ∫ . (2.28) 

No restrictions have been placed on the size of the aperture or the size of the observation 

space in equation 2.28.  The only requirement is that the observation plane must be many 

wavelengths from the aperture. 

The Rayleigh-Sommerfeld diffraction integrals above are given in terms of an 

observation plane, however the observation space is not limited to this geometry.  We can 

use an observation hemisphere centered on the diffracting aperture as our observation 

space, as well.  This is illustrated in Figure 2-6. 
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( )ˆ, ;U rα β

r̂

1

ˆ

ẑ
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Figure 2-6: Diffraction geometry when observation space is a hemisphere centered on the 
diffracting aperture 

The position of an arbitrary observation point on a hemisphere of radius r̂  will be 

specified by the direction cosines α and β of its position vector, given by 

 ˆˆ ˆ ˆ ˆ ˆ/ ,   / ,   z/rx r y rα β γ= = = , (2.29) 

where 2 2 2 2ˆ ˆ ˆˆ x y zr = + + . (2.30) 

Using the above equations and the algebraic substitution 



 

 
 

26

 
ˆ (1 )

ˆ( ) /

ˆ

ˆ ˆ

r

r r

ε
ε

= +

= −
 (2.31) 

allows the Rayleigh-Sommerfeld integral of equation 2.26 to be written as 

 

( ) ( ) ( ) ( )

( )
( )

  

  

 

2

exp i2 1
ˆ ˆ ˆ, ;  , ;0           

ˆ ˆ2 1

1 ˆ ˆ ˆ ˆ                                                       exp 2     .
1

ˆ

  
oU r U x y i

r π r

i r dx dy

r
α β γ

π

π

ε

ε

∞ ∞

−∞ −∞

⎛ ⎞
′ ′= −⎜ ⎟⎜ ⎟+⎝ ⎠

⎡ ⎤ ′ ′× −⎣ ⎦+

∫ ∫
 (2.32) 

When ˆ 1r >> , equation 2.32 reduces to 

     ( ) ( ) ( )
( )

( )  

  

 
2

exp i2 1 ˆˆ ˆ ˆ ˆ ˆ ˆ, ; , ;0 exp 2    .  
ˆ 1

ˆ
oU r U x y i r dx dy

r

r
α β γ

π
π

ε

∞ ∞

−∞ −∞

⎡ ⎤′ ′ ′ ′= −⎣ ⎦+
∫ ∫  (2.33) 

2.1.2.3 Aberrations Of Diffracted Wave Fields 

The Rayleigh-Sommerfeld diffraction integrals are generally difficult to solve for 

most practical cases of interest.  It is for this reason that the Fresnel and Fraunhofer 

approximations are usually applied.  The Fresnel diffraction formula can be obtained by 

replacing the quantity ˆ  with the quantity ẑ  (or r̂ )  in the denominator of the Rayleigh-

Sommerfeld integral, and retaining only the first two terms of the binomial expansion for 

the quantity ˆ  in the exponent.  The Fraunhofer diffraction formula is similarly obtained 

by making the same Fresnel approximations, but additionally requiring the Fraunhofer 

criterion of equation 2.11 to be met. 

Making the above approximations puts severe restrictions on both the size of the 

aperture and the region over which the calculations are valid in the observation plane.  



 

 
 

27

The region of space usually referred to as the near field is excluded from consideration, 

and a paraxial limitation is imposed.  In order to avoid these restrictions, all of the terms 

of the binomial expansion of ˆ  need to be retained.   

Harvey showed [20,22] that this could be accomplished by rewriting the 

Rayleigh-Sommerfeld diffraction integral given in equation 2.33 as a Fourier transform 

integral given by 

      ( ) ( ) ( ) ( )
  

   

 

exp i2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ; , ; , exp - 2   

ˆ

ˆ oU r x y i x y dx dy
i

r

r
α β γ α β α β

π
π

∞ ∞

−∞ −∞

′ ′ ′ ′ ′ ′⎡ ⎤= +⎣ ⎦∫ ∫ U , (2.34) 

where the complex quantity 

 ( ) ( )
( )

( )  2

1 ˆˆ ˆ ˆ ˆ, ; ,  , ;0   exp 2
1

o ox y T x y i Wα β π
ε

′ ′ ′ ′=
+

U  (2.35) 

can be regarded as a generalized pupil function.  ( )ˆ ˆ, ;0oT x y  is the complex amplitude 

transmittance of the aperture (or aperture function), and all of the terms from the 

binomial expansion for the quantity ˆ , except for the term which was extracted for use as 

the Fourier kernel, are contained in the quantity Ŵ . 

The quantity Ŵ  represents phase variations in the diffracted wavefront emerging 

from the aperture.  Any departures of the actual diffracted wave from that predicted by 

the Fourier transform of the aperture function are shown to have the same functional form 

as the conventional wavefront aberrations of imaging systems.  These aberrations, which 

are inherent to the diffraction process, are precisely the effects ignored when making the 
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usual Fresnel and Fraunhofer approximations.  Near-field diffraction patterns are 

therefore aberrated Fraunhofer diffraction patterns. 

When a spherical wave is incident upon a diffracting aperture and the observation 

space is a hemisphere, the phase variations mentioned above are frequently negligible.  

When that is the case, equation 2.34 can be written as [20] 

 ( ) ( )
( ) ( ){ }ˆexp 2

ˆ ˆ ˆ , ;0
ˆ o

i r
U r U x y

ir
α β γ

⎡ ⎤π
, ; = ⎢ ⎥

⎣ ⎦
F , (2.36) 

where ( )ˆ ˆ, ;0oU x y  is the complex amplitude distribution function emanating from the 

aperture. 

Equation 2.36 will be the starting point for our further development of non-

paraxial scalar diffraction theory in chapter three. 

2.2 Surface Scatter Theory 

The first investigations into scattering from a rough surface were probably those 

of Lord Rayleigh.  In 1896 he published a book on the theory of sound, in which he 

investigated the reflection of acoustic waves [23].  He later noted the effects of poorly 

polished surfaces on optical performance and examined the effects of surface roughness 

and angle of incidence on reflected light [24].  In 1907, Lord Rayleigh published an 

extensive vector perturbation theory of scattering from periodically corrugated reflection 

gratings [25] which was an extension of his previous work on the theory of sound. 
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In 1919, Chenmoganadam [26] derived a theory of scattered light based on the 

phase shift of a reflected beam due to a rough surface.  Fano [27] expanded the Rayleigh 

approach to explain anomalous diffraction gratings and quasi-stationary waves on 

metallic surfaces.  However it was the problem of radar scatter from the sea associated 

with the detection of naval targets that motivated Rice (1951) [28,29] and others [30-36] 

to attempt to solve the scattering problem for random rough surfaces.  Considerable work 

was also done during the 1960s in attempting to explain radar reflection from the moon 

[37-39].  Church introduced the vector perturbation theory to the optics literature [40,41] 

and published a myriad of papers throughout his career on the application of the theory to 

the specific problem of light scattering from optical surfaces [42-46]. 

Surface scatter effects can also be described as merely diffraction phenomena 

resulting from random phase variations induced upon the reflected wavefront by 

microtopographic surface features.  The Kirchhoff (or tangent plane) approximation was 

first introduced in the context of scattering in 1952 by Brekhovskikh [47,48], and applied 

by Isakovich (1952) [49] to statistically rough surfaces.  It was later treated in English by 

Eckart (1953) [50] and Davies (1954) [2]; however it is the monograph by Beckmann and 

Spizzichino (1963) [51] that is the most common reference in the western world. 

In 1970, Nicodemus [52] introduced the four-dimensional bi-directional 

reflectance distribution function (BRDF), defined as reflected radiance divided by 

incident irradiance in an attempt to (geometrically) characterize the scattering properties 

of a surface. 

In the late 1970s, Harvey and Shack [21,53] developed a linear systems 

formulation of surface scatter phenomena in which the scattering behavior is 
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characterized by a surface transfer function.  The Fourier transform of this surface 

transfer function yielded a scattered radiance distribution function closely related to the 

BRDF.  The transfer function characterization of scattering surfaces was modified in the 

1980s to account for grazing incidence effects in X-ray telescopes and “mid” spatial 

frequency errors that span the gap between “figure” and “finish” errors [54].  This 

allowed accurate predictions of image degradation due to scattering effects from residual 

optical fabrication errors on NASA’s Chandra Observatory and NOAA’s Solar X-Ray 

Imager (SXI) [55,56]. 

The two classical approaches, the Rayleigh-Rice (small perturbation method) and 

Beckmann-Kirchhoff (Kirchhoff approximation) have regions of validity that do not 

greatly overlap.  The Rayleigh-Rice theory agrees well with experimental wide-angle 

scatter measurements from “smooth” (σs/λ << 1) surfaces for arbitrary incident and 

scattering angles.  The Beckmann-Kirchhoff scattering theory is valid for rougher 

surfaces; but contains a paraxial (small-angle) assumption that limits its ability to 

accurately handle wide-angle scattering and large angles of incidence.  Neither theory is 

able to handle cases involving rougher surfaces with large incident and scattering angles.  

For this reason, much of the more recent work in the theoretical scattering community 

has focused on “unifying” methods that attempt to bridge the gap between the two 

classical approaches. 

Some of these unifying approaches are the phase perturbation method [57-59], the 

small slope approximation method [60,61],  the operator expansion method [62-67], and 

the integral equation method [68-71].  This list of methods and references is by no means 
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complete.  The recent survey of approximate scattering theories by Elfouhaily and Guérin 

[4] is an excellent overview of the more recent approaches. 

We will now take a more detailed look at some of the items from the preceding 

discussion, as they will either be used or modified in this dissertation.  In particular, we 

will look at the concept of the BRDF, the classical Rayleigh-Rice and Beckmann-

Kirchhoff theories, and the Harvey-Shack theory. 

2.2.1 The Bidirectional Reflectance Distribution Function (BRDF) 

One special quantity that has been used to quantify scattering measurements is the 

bi-directional reflectance distribution function (BRDF).  The BRDF was defined and 

described by Nicodemus [52] who put a lot of effort into examining the problem of 

defining and measuring the reflectance of optical surfaces that are neither completely 

specular nor completely diffuse (i.e., all real optics).  The resulting BRDF is a 

fundamental quantity that completely describes (geometrically) the scattering properties 

of a differential surface element.  It is defined in radiometric terms as the reflected 

(scattered) radiance divided by the incident irradiance, given by 

 ( ) ( )
( )
, , ,

, , ,
,

s s i i
s s i i

i i

dL
BRDF f

dE

θ φ θ φ
θ φ θ φ

θ φ
= = , (2.37) 

where (θi, φi) and (θs, φs) are the incident angle and scattered angle in conventional 

spherical coordinates as shown in Figure 2-7.  The units of the BRDF are 1/sr. 
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Figure 2-7: Illustration of the geometry used in defining the BRDF 

We can envision illuminating a small differential area element of a reflecting 

surface, dA, with a narrow beam of light at a fixed angle of incidence and measuring the 

radiant power by scanning a small collecting aperture over a hemisphere centered upon 

the normal to the surface element.  Under these conditions, we can approximate the 

BRDF by dropping the differentials in equation 2.37, leading to 

 
( )

( )
( )

,

, ; , , /   cos /

, / cos
r s s i i s s s s s

i i i i i s
i i

L dP d dA P
BRDF

E P dA Pθ φ
θ φ θ φ θ φ θ

θ φ θ
Ω Ω

= = ≈ , (2.38) 

where dPs is the radiant power scattered into the solid angle dΩs subtended by the 

collecting aperture, and Pi is the incident radiant power falling on the area element dA. 
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The total BRDF would consist of an infinite family of these two-dimensional 

scattered light distribution functions; one for every possible incident angle.  The BRDF is 

also a function of the wavelength and the state of polarization of both the incident and 

scattered radiation. 

The BRDF definition and nomenclature has been extended to describe diffuse 

scattering from transmissive optical elements, in which case it is called the bi-directional 

transmittance distribution function (BTDF) [72].  Both the BRDF and the BTDF have 

been included in the more general bi-directional scatter distribution function (BSDF) 

[73]. 

Unfortunately, there has been a lack of standardization in the definitions of 

radiometric quantities and in scatter measurement instrumentation and procedures, and it 

has been difficult to directly compare scattering results from different laboratories and 

facilities.  The U.S. Air Force at Rome Air Development Center therefore sponsored a 

BRDF round robin measurement program whereby several specific scattering surfaces 

were measured at several government, industrial, and university laboratories [74].  In 

addition, an ASTM standard (E1392-90) was eventually produced to govern BRDF 

measurement practices [75]. 

Since the BRDF is for the most part a quantity used for representing scattering 

measurements, it is not generally referred to in the theoretical literature.  It is used 

extensively, however, by optical engineers when attempting to determine the effect of 

scattering on image quality.  It is also used extensively by the computer graphics 

community in rendering photo-realistic images. 
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2.2.2 Rayleigh-Rice (Small Perturbation) Surface Scatter Theory 

The Rayleigh-Rice theory, also known as the small perturbation method (SPM) is 

the oldest theory dealing with scattering from rough surfaces, and is probably the most 

widely used.  In this approach, the surface roughness is considered to be a small 

perturbation to the case of a perfectly smooth surface, which requires that the roughness 

is small compared to the wavelength of the incident radiation.  There are a number of 

different methods that have been used to derive the scattered fields using this approach 

[28,34,76-86], all yielding identical results, at least up to the fifth order of the 

perturbation expansion [87].  Due to the mathematical complexity involved for higher 

order terms, only the first order term of the expansion is usually used for two-

dimensional rough surfaces. 

A derivation of the Rayleigh-Rice theory is beyond the scope of this historical 

background, however detailed derivations are available in, for instance, [30,88,89].  In 

the following discussion, we will only present the result of the theory for first order as 

applied to two-dimensional rough surfaces. 

Using Stover’s notation for the Rayleigh-Rice theory [3], the scattered intensity 

normalized by the incident radiant power is given by 

 
( ) ( )

2
2

4

/ 16
cos cos    ,s

i s x y

i i

dP dI
Q PSD f f

P P

π θ θ
λ

Ω ⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
. (2.39) 

The dimensionless quantity Q is the polarization dependent reflectance of the surface.  

For an s-polarized (TE) source, and measurements made in the plane of incidence, Q is 

given exactly (at least for the first order perturbation expansion) by the geometric mean 



 

 
 

35

of the sample specular reflectances at θi and θs [3]: 

 ( ) ( ) s i s sQ R Rθ θ= . (2.40) 

For highly reflective surfaces, this means that Q is very nearly equal to a constant for all 

scatter angles.  ( ),x yPSD f f  is the two-sided, two-dimensional surface power spectral 

density function expressed in terms of the sample spatial frequencies given by [3] 

 
sin cos sin sin sin

  and  s s i s s
x yf f

θ φ θ θ φ
λ λ

−
= = , (2.41) 

which are obtained from the conical diffraction grating equations. 

From the definition of the BRDF given in equation 2.38, the Rayleigh-Rice result 

can be written as 

 ( )
2

4
s

/ 16
cos cos   PSD ,  

 cos
s

i s x y

i

dP d
BRDF Q f f

P

π θ θ
θ λ

⎛ ⎞Ω
= = ⎜ ⎟

⎝ ⎠
. (2.42) 

In addition, the Rayleigh-Rice theory can also be used to solve the inverse 

scattering problem for smooth surfaces by inverting equation 2.42 and solving for the 

surface PSD function: 

 ( )
8 4

2

10  
,  

16 cos  cos  x y

i s

BRDF
PSD f f

Q

λ
π θ θ

= . (2.43) 

The factor of 108 in equation 2.43 has been added to give the surface PSD units of Å2μm2 

when the wavelength is expressed in micrometers. 
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Recall that the quantity Q was referred to as the polarization dependent 

reflectance of the surface.  It is a dimensionless real number that relates the effect of the 

surface material properties (as opposed to the surface shape) on the BRDF [3].  Its value 

depends on the sample dielectric constant, ε, as well the incident and scattering angles.  It 

also depends on the polarization of the incident beam, as well as the state of polarization 

allowed to reach the detector. 

For the special case of an s-polarized source and a sensor that only receives 

s-polarized light, Q is given by [3,42] 

 
( )

( ) ( )2 2
s

2

1  cos

cos sin  cos sin  

s
ss

i i s

Q
ε φ

θ ε θ θ ε θ

−
=

+ − + −
. (2.44) 

For an s-polarized source and a sensor that only receives p-polarized light, Q is given by 

 
( )

( ) ( )
2

2 2
s

2

1  sin sin

cos sin   cos sin  

s s
sp

i i s

Q
ε ε θ φ

θ ε θ ε θ ε θ

− −
=

+ − + −
. (2.45) 

For a p-polarized source and a sensor that only receives s-polarized light, Q is given by 

 
( )

( ) ( )
2

2 2
s

2

1  sin sin

 cos sin  cos sin  

i s
ps

i i s

Q
ε ε θ φ

ε θ ε θ θ ε θ

− −
=

+ − + −
. (2.46) 

And finally, for a p-polarized source and a sensor that only receives p-polarized light, Q 

is given by 
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( )( )

( ) ( )
2 2

2 2
s

2
1 sin sin cos  sin  sin

 cos sin   cos sin  

s i s i s

pp

i i s

θ
Q

ε ε θ ε θ φ ε θ

ε θ ε θ ε θ ε θ

− − − −
=

+ − + −
. (2.47) 

In the above equations, ε  = ε 2/ε 1 is the relative permittivity (or dielectric 

constant) of the interface where the subscripts 1 and 2 denote the incident and refracting 

side, respectively.  If one considers reflective scattering at an air-material interface and 

takes ε  = 1 for air, then ε  = ε 2 for scattering of the air side, and ε  = 1/ε 1 for scattering 

on the material side.  In general ε is complex and equals the square of the complex index 

of refraction. 

It follows that for s-polarized light incident upon the scattering surface and no 

polarization discrimination from the sensor, Q is given by 

 ss spQ Q Q= + , (2.48) 

And for p-polarized incident light with no polarization discrimination for the sensor, Q is 

given by 

 ps ppQ Q Q= + . (2.49) 

Likewise, for unpolarized light incident upon the scattering surface and a sensor that only 

receives s-polarized light, Q is given by 

 ss psQ Q Q= + , (2.50) 

and for unpolarized incident light and a sensor that only receives p-polarized light, Q is 

given by 
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 sp ppQ Q Q= + . (2.51) 

Finally, for unpolarized incident light, and no polarization discrimination of the sensor, Q 

is given by  

 ss sp ps ppQ Q Q Q Q= + + + . (2.52) 

Note that for scattering measurements made in the plane of incidence (φs = 0), the 

cross-polarization terms (Qsp and Qps) are equal to zero.  And in the specular direction 

(θs = θo), equations 2.44 and 2.47 reduce to the well-known Fresnel reflection 

coefficients for radiant power [3]. 

It is important to remember that the Rayleigh-Rice theory is only applicable to 

“smooth” surfaces for which the RMS roughness is much smaller than the wavelength of 

the incident light, as this was the condition under which it was derived. It is also only 

applicable to clean, front surface reflecting surfaces as it does not take into account 

particulate scattering or bulk (subsurface) scattering.  In addition, the first order solution 

does not account for multiple scattering. 

2.2.3 Beckmann-Kirchhoff Surface Scatter Theory 

While the Rayleigh-Rice approach works well for smooth surfaces, it is not 

readily applicable to rough surfaces, as explained in the previous section.  For this reason, 

Beckmann (as well as others) used the Kirchhoff method to approach the scattering 

problem [90].  Instead of satisfying the exact boundary conditions, as is done in the 

Rayleigh-Rice theory, the field and its normal derivative are approximated on the 
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scattering surface. This approximation, while causing the loss of some generality, allows 

one to calculate scattering for surfaces much rougher than the Rayleigh-Rice theory 

allows.  Since we will be discussing a modification to the Beckmann-Kirchhoff theory in 

chapter four, we will examine the theory here in some detail.  The following discussion 

comes directly from [90], albeit with less detail. 

Figure 2-8 illustrates the scattering geometry and coordinate system of the 

Beckmann-Kirchhoff approach.   
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Figure 2-8: Scattering geometry and coordinate system for the Beckmann-Kirchhoff 
theory 
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The surface S is described by the function h(x,y), where h is the height deviation 

from the mean xy plane.  The surface height irregularities, h(x,y), may be an arbitrary 

deterministic function, a periodic function, as in the case of a diffraction grating, or it 

may be a random process, as in the case of a statistically rough surface.  The quantity 1k  

is the propagation vector of a plane electromagnetic wave incident on the surface S.  The 

xz plane is assumed to be the plane of incidence, and iθ  is the angle of incidence.  

Finally, 2k  is the propagation vector of radiation scattered into the direction given by the 

conventional spherical coordinates sθ  and sφ .  

At an observation point P, the scattered field E2 is given by the Helmholtz integral 

(Appendix A in [90]) 

 ( )2

1

4 S

E
E P E dS

n n

ψ ψ
π

∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠∫∫ , (2.53) 

where 2 2

2

exp( )ik R

R
ψ = . (2.54) 

Here R2 is the distance from a point on the surface to the observation point P, E is the 

field on the surface, and ∂/∂n indicates the derivative along the surface normal. 

It is at this point that Beckmann makes use of the Kirchhoff (or tangent plane) 

approximation. He assumes that the radii of curvature of the surface are much larger than 

the wavelength λ, and approximates the field and its normal derivative at any point on a 

surface by the field and its derivative that would be present on the tangent plane at that 
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point (pg. 20 of [90]).  With this assumption, the field and its normal derivative on the 

surface are given by the boundary conditions 

 ( ) ( ) 11
S

E R E= +  (2.55) 

and  ( ) ( )1 11
S

E
R E k n

n

∂⎛ ⎞ = − ⋅⎜ ⎟∂⎝ ⎠
, (2.56) 

where n  is the surface normal, R is the local reflection coefficient, and E1 is the incident 

filed given by 

 1 1exp[ ( )]oE E i k r tω= ⋅ − , (2.57) 

where  r xx yy zz= + +  (2.58) 

is a position vector in terms of the unit vectors ( z, y, x ) of the coordinate system. 

Beckmann then defines a dimensionless quantity which he calls the scattering 

coefficient, given by 

 2

20

E

E
ρ = , (2.59) 

where E2 is the scattered field and E20 is the field that would be reflected in the specular 

direction by a perfectly reflecting smooth planar surface given the same incident angle 

and the same distance.  Given the geometry shown in Figure 2-8, and using equations 

2.53-2.58, it can be shown (chapter three in [90]) that for a perfectly reflecting surface 

with the observation point P in the Fraunhofer zone, the scattering coefficient is given by 
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( ) ( ), ,

  exp   i s

A

F
iv r dx dy

A

θ θ φ
ρ = ⋅∫∫ , (2.60) 

where ( ) ( )
1 cos cos sin sin cos

, ,
cos cos cos

i s i s s
i s

i i s

F
θ θ θ θ φθ θ φ

θ θ θ
+ −

=
+

 (2.61) 

is called the geometrical factor (or obliquity factor), A is the area of surface S in the xy 

plane, v  is given by 

 ( ) ( )1 2 sin sin cos -sin sin - cos cosi s s i sv k k k x y zθ θ φ θ φ θ θ= − = − +⎡ ⎤⎣ ⎦ , (2.62) 

and ( )r xx yy h x, y z= + +  (2.63) 

is the position vector describing the rough surface.  Equation 2.60 is the general 

Kirchhoff solution to the scattering problem. 

For a randomly rough surface, the surface height h(x,y) is not a known function, 

but is a random function of position on the surface S; i.e., h is a random variable that 

assumes heights z  with a probability density )(zp .  The joint probability density is 

2 1 2( , )p z z  where 1z and 2z  are the surface heights assumed by h at the points 1 1( , )x y  and 

2 2( , )x y .  It will be assumed that that h(x,y) is stationary, so that its two-dimensional 

probability density does not depend on the points 1 1( , )x y  and 2 2( , )x y , but only on the 

distance between them, given by 

 ( )2 1 2 1

2 2( )x x y yτ = − + − . (2.64) 
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The one dimensional characteristic function associated with the distribution )(zp  

is given by 

 ( ) ( ) ( ) ( )exp  expt itz p z itz dzχ
∞

−∞
= = ∫ , (2.65) 

and the two-dimensional characteristic function associated with p2(z1,z2) is given by 

 ( ) ( ) ( ) ( )1 1 2 22 1 2 2 1 2 1 1 2 2 1 2exp, ,  exp   t t it z it z p z z it z it z dz dzχ
∞ ∞

−∞ −∞
= + = +∫ ∫ , (2.66) 

where 〈 〉 denotes the ensemble mean. 

Combining equations 2.60 and 2.66, the mean scattered field in any direction is 

given by 

 

( )   

exp( ) exp( )  

      exp( )

X Y

X Y

X Y

z
X Y

x y z

x y

F
iv x iv y iv z dx dy

A

F
v iv x iv y dx dy

A

ρ

χ

− −

− −

= +

= +

∫ ∫

∫ ∫
 (2.67) 

for a surface stretching from –X to X in the x-direction and from –Y to Y in the 

y-direction.  Integrating 2.67 yields 

 ( ) oz

F
v

A
ρ χ ρ= , (2.68) 

where 
sin( )sin( ) yx

o

x y

v Yv X

v X v Y
ρ =  (2.69) 

is the scattering coefficient of a plane surface of area A = XY. 
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It can be seen from equation 2.69, that as long as X >> λ, Y >> λ, oρ  will equal 

unity in the specular direction where vx = vy = 0, but will rapidly tend to zero elsewhere.  

Therefore, the mean scattering coefficient ρ  will equal zero everywhere except in the 

neighborhood of the specular direction. 

The mean square of equation 2.60 is given by 

 
2 2

20

2

*
E

E
ρ ρρ= = , (2.70) 

which according to Beckmann is proportional to the mean scattered power (or mean 

optical intensity). 

Using equations 2.60 and 2.66, transforming to polar coordinates, and assuming X 

and Y to be much greater than the correlation distance of the surface height variation 

h(x,y), it can be shown (pg. 78 of [90]) that 

 ( )
0

2

2

;  
2

J ( ) ,  o xy z z

F
v v v d

A
τ

πρρ τ χ τ τ
∞

∗ = −∫ , (2.71) 

where 2 2
xy x yv v v= + , (2.72) 

and xv  and yv  are the x and y components of v  in equation 2.62. 

The quantity 〈ρρ∗〉 can also be expressed in terms of 〈ρ〉 and the variance of ρ 

(denoted by D{ρ}) by (Appendix C in [90]) 

 { }* *Dρρ ρ ρ ρ= + . (2.73) 
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The first term on the right side of equation 2.73 represents the diffusely scattered 

radiation, while the second term represents the specular beam.  Using equations 2.68, 

2.71, and 2.73, we can write the diffuse scattered portion of equation 2.73 as 

 { } ( ) ( ) ( )
2

0

2 ;  
2

J ( ) , *  o xy z z z z

F
D v v v v v d

A

πρ τ χ τ χ χ τ τ
∞

= − −⎡ ⎤⎣ ⎦∫ . (2.74) 

Equation 2.74 is used to calculate the scattering from random rough surfaces, but 

in order to do so a specific type of distribution for h(x,y) must be assumed, as this 

determines the characteristic functions χ and χ2.  This distribution alone is not enough to 

uniquely describe the surface, as it gives no information about the density of the surface 

irregularities (separation between the peaks and valleys on the surface).  This information 

is given by the autocorrelation function of the surface, and therefore a specific 

autocorrelation function must also be assumed. 

Beckmann chose the normal (Gaussian) distribution, describing it as “the most 

important and typical of a rough surface” (pg. 80 of [90]), and a Gaussian autocorrelation 

function which he calls “sufficiently general” (pg. 81 of [90]) in order to arrive at a 

closed form solution. 

If h(x,y) is a normal process with a zero mean and a standard deviation of σs, the 

normal distribution (probability density) is given by 

 ( )
2

2

1
exp

22

z
p z

σσ π
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (2.75) 

The standard deviation describes the roughness of the surface, and because h has a zero 
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mean, the standard deviation is also the RMS value of h. 

The one-dimensional characteristic function associated with the normal 

distribution is given, from equation 2.65, by 

 ( ) 2 21
exp

2 zv vχ σ⎛ ⎞= −⎜ ⎟
⎝ ⎠

. (2.76) 

The Gaussian autocorrelation function is given by 

 ( )
2

2
exp

c

C τ
τ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

, (2.77) 

where lc is the correlation distance, at which C(τ) falls to the value 1/e. 

The two-dimensional normal distribution (joint probability density) of two 

random variables h1 and h2, with zero means, variances of σ2, and correlated by a 

correlation function C, is given by 

 ( ) ( )
2 2

1 2 2
2 1 2 2 22 2

1 21
, exp

2 12 1

z Cz z z
p z z

CC σπσ

⎛ ⎞− +
⎜ ⎟= −
⎜ ⎟−− ⎝ ⎠

 , (2.78) 

and the two-dimensional characteristic function associated with the normal distribution in 

equation 2.78 is given, from equation 2.66, by 

 ( ) ( )2 2
2 , ; exp 1z z zv v v Cχ τ σ⎡ ⎤− = − −⎣ ⎦ . (2.79) 

Substituting the autocorrelation function of equation 2.77 into equation 2.79 and 

expanding the result in a MacLaurin series yields 
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 ( ) ( )
22 2

2 2

2
  0

2 , ; exp exp -
!

m m

z
m c

z
z z

mv
v v v

m

τσχ τ σ
∞

=

⎛ ⎞
− = − ⎜ ⎟

⎝ ⎠
∑ . (2.80) 

Substituting equations 2.76 and 2.79 into equation 2.74 yields 

 { } ( ) ( )  

22

o 2
  1 0

-2 exp
J  exp -

!

m

xy
m c

g mF g
D v d

A m

τπρ τ τ τ
∞∞

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ ∫ , (2.81) 

where ( )  

2
22 2 2

cos cosi szg v
π σσ θ θ
λ

⎛ ⎞= = +⎜ ⎟
⎝ ⎠

, (2.82) 

and, as stated previously 

 2 2 2 22
sin 2sin sin cos sinxy x y i i s s sv v v

π θ θ θ φ θ
λ

⎛ ⎞= + = − +⎜ ⎟
⎝ ⎠

. (2.83) 

Since (Appendix C of [90]) 

 ( ) ( ) 

2

o

0

2 1
J exp exp -

42
vv m d
mm

τ τ τ τ
∞

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
=∫ , (2.84) 

equation 2.81 finally yields Beckmann’s general expression for the diffusely scattered 

portion of the scattered light distribution: 

 { }   
2 2 2 2

  1

exp(- )
 exp -

4!

m
xy cc

m

F g g v
D

mA m m

πρ
∞

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

= ∑ . (2.85) 

The quantity g in equation 2.85 is the local phase variation (relative to a perfectly 

plane surface) of the radiation scattered in to a given angle θs.  This quantity is primarily 

driven by the surface roughness, σ/λ, but is also affected by both the incident and 
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scattering angles.  We will now look at three special cases: (i) g << 1 (scattering from 

slightly rough surfaces), (ii) g ≈ 1 (scattering from moderately rough surfaces), and 

(iii) g >>1 (scattering from very rough surfaces). 

(i) Slightly rough surfaces (g << 1):  When g is much less than unity, the series in 

equation 2.85 will converge very rapidly.  We can therefore discard all but the first term 

in the series.  In this case, equation 2.85 reduces to 

 { } ( )  

2 22 2

exp  ,       g 1
4

xy cc
vg F

D g
A

πρ
⎡ ⎤⎛ ⎞

= − +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

. (2.86) 

(ii) Moderately rough surfaces (g ≈ 1): Equation 2.85 can be used in this regime 

as long as enough terms are used to guarantee convergence of the series.  As g increases, 

the number of terms necessary to include in the calculation also increases. 

(iii) Very rough surfaces (g >> 1): When g is much larger than unity, the series in 

equation 2.85 will converge very slowly and will not be of much use.  In this case, we 

need to go back to the integral in equation 2.74.  From equations 2.68, 2.76, and 2.82, we 

can see that when g >> 1, the intensity of the specular beam becomes vanishingly small, 

i.e., 〈ρ〉 〈ρ∗〉 → 0, so that 

 { }   * *  *D ρ ρρ ρ ρ ρρ= − ≈ . (2.87) 

Therefore, substituting equations 2.77, 2.79, and 2.82 into equation 2.74 yields 

 { } ( )
2 2

2
0

2
* J exp 1 expo xy

c

F
D v g d

A

π τρ ρρ τ τ τ
∞ ⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠

⎧ ⎫⎡ ⎤≈ = − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭∫ . (2.88) 
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It can be shown (pg. 87 of [90]) that for g>>1, the integral in equation 2.88 only receives 

significant contributions in the neighborhood of τ = 0.  Therefore, we can keep only the 

first two terms of the expansion of ( )2 2 2 2
/ /exp   1c cτ τ≈ −  and write equation 2.88 as 

 { } ( )
2 2

2

0

2
* J expo xy

c

F g
D v d

A

π τρ ρρ τ τ τ
∞ ⎛ ⎞

≈ = −⎜ ⎟
⎝ ⎠

∫ . (2.89) 

From equation 2.84, this reduces to 

 { }  

22 2

* exp
4
xy cvF T

D
Ag g

πρ ρρ
⎛ ⎞

≈ = −⎜ ⎟
⎝ ⎠

. (2.90) 

This is consistent with a geometrical optics approach in which the scattered light 

distribution is proportional to the slope distribution of the surface. 

2.2.4 Harvey-Shack Surface Scatter Theory 

As part of his dissertation research, Harvey measured scattering from various 

reflecting surfaces [21].  When the scattered intensity was plotted versus scattering angle, 

the curves were extremely asymmetrical.  However, when the intensity was divided by 

the scattering angle (to convert to radiance) and plotted versus β−βο (sine of the 

scattering angle minus the sine of the angle of specular reflection), the curves coincided 

almost perfectly.  An example of this is shown in Figure 2-9 for a polished and 

aluminized fused quartz sample for incident angles ranging from zero to 60 degrees. 
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Figure 2-9: Polished and aluminized fused quartz sample: a) Scattered intensity as a 
function of scattering angle, b) Scattered radiance as a function of β−βο 

Based upon the above empirical experimental observation that scattered radiance 

is shift-invariant in direction cosine space, Harvey and Shack developed a linear systems 

formulation of surface scatter phenomena in which the scattering behavior is 

characterized by a surface transfer function [21,53].  Since we will be building upon this 

linear systems formulation later in this dissertation, we will now provide a detailed 

review.  The discussion that follows come directly from [21]. 

Using equation 2.36 and Rayleigh’s theory from Fourier transform theory[1], the 

total radiant power reflected from a scattering surface can be written as  

 ( ) ( ) 

2

2

2 2ˆ
ˆ ˆ ˆ ˆ ˆ, ; , ;0  o

r
P U r d d U x y dx dyα β α β

γ

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞
= =∫ ∫ ∫ ∫ . (2.91) 

Noting that γβαω / ddd = , the radiant intensity can be written as 
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 ( ) ( ) ( ){ }
2 22ˆ

ˆ ˆ ˆ, , ; , ;0o

dP r
I U r U x y

d
α β α β γ

ω γ
= = = F  . (2.92) 

Utilizing the autocorrelation theorem of Fourier transform theory, this is equivalent to 

 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( , ;0) ( , ;0) o oI U x y U x - x y y dx dyα β γ ∗
∞ ∞

−∞ −∞

⎧ ⎫
′ ′ ′ ′ ′ ′= −⎨ ⎬

⎩ ⎭
∫ ∫F . (2.93) 

Harvey then derived an analytical expression for the surface transfer function by 

following the same procedure used in image formation.  The effective transfer function of 

the scattering system is defined as the normalized autocorrelation of the pupil function  

 ( )
( ) ( )

( ) 2

*ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ;0  , ;0   

ˆ ˆ, ;0

ˆ ˆ ˆ ˆ,
eff

o o

o

U x y U x x y y dx dy

H x y

U x y dxdy

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

′ ′ ′ ′− −
=

′ ′

∫ ∫

∫ ∫
. (2.94) 

The effective (angle) spread function of the scattering system is then defined in the usual 

way as the Fourier transform of this effective transfer function 

 ( ) ( ){ }
( ) ( )

( ) 2

*ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ;0  , ;0   

ˆ ˆ, , ;0

ˆ ˆ ˆ ˆ,
eff

o o

o

U x y U x x y y dx dy

ASF H x y

U x y dxdy

α β

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

⎧ ⎫
′ ′ ′ ′− −⎨ ⎬

⎩ ⎭= =
′ ′

∫ ∫

∫ ∫

F

F .(2.95) 

Direct substitution from equations 2.91 and 2.92 results in the following expression for 

the angle spread function in terms of the radiant intensity of the scattered light 

 ( ) ( ) 2 2 ,      
1

, , = 1
 

ASF  I
P

α β α β γ α β
γ

= − − . (2.96) 
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The pupil function of the beam emerging from the scattering surface, )0;ˆ,ˆ( yxUo , 

referred to in equation 2.94 is given by 

     ( ) ( ) ( ){ } ( ) ( ){ } 
ˆˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ;0 , ;0 exp 2 , ;0  , ;0 exp 2 , ;0o sU x y a x y i W x y a x y i h x yπ π⎡ ⎤⎡ ⎤= ⎣ ⎦ ⎣ ⎦ . (2.97) 

The first term in the above equation is the deterministic part of the pupil function where 

0ˆ ˆ( , ; )a x y  represents the amplitude variations and ˆ ˆ ˆ( , ;0)W x y  represents the aberrations in 

the exit pupil of the optical system producing the incident beam.  The second term is the 

random component of the pupil function caused by reflection from the residual surface 

roughness. For most mirror surfaces Ryxsa =)0 ;ˆ,ˆ(  is the (constant) Fresnel reflection 

coefficient of the scattering surface and  

 ( ) ( ) ( )  
ˆˆ ˆ ˆ ˆ, ;0 2 / 4 , ;0x y OPD h x yφ π λ π= =  (2.98) 

is the random phase variation introduced by reflection from the scattering surface.  Note 

that this expression is restricted to normal incidence where the height variations on the 

reflected wavefront are twice as large as the actual variations on the reflecting surface. 

Harvey made the following assumptions about the scattering surface and the 

surface height distribution ĥ : i) The power reflectance, R, is constant over the entire 

surface, ii) The surface height distribution, ( )ˆ ˆ ˆ, ;0h x y , is Gaussian , iii) ( )ˆ ˆ ˆ, ;0h x y  is 

locally stationary in the statistical sense, iv) The random variables ( )1 1
ˆ ˆ ˆ, ;0h x y  and 

( )2 2
ˆ ˆ ˆ, ;0h x y , produced by any two fixed pairs of spatial coordinates, are jointly normal, 

and v) ( )ˆ ˆ ˆ, ;0h x y  is weakly ergodic. 
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Substituting equation 2.97 into 2.94, we obtain 

 ( )
( ) ( )

 

1 2 1 2 1 2

2
1

0

ˆ ˆˆ ˆ ˆ ˆexp 2 exp i4  

ˆ ˆ

ˆ ˆ  
eff

a a i W W h h dx' dy'

H x y

a dx' dy'

π π
∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

⎡ ⎤⎡ ⎤− −⎣ ⎦ ⎣ ⎦
, ; =

∫ ∫

∫ ∫
, (2.99) 

where 

( ) ( )
( ) ( )

( ) ( )

1 2

1 2

1 2

0 0

0 0

0 0

ˆ ˆ ˆ ˆ ˆ ˆ, ;            , ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ;          , ;

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ;             , ;  .

' ' ' '

' ' ' '

' ' ' '

a a x y a a x x y y

W W x y W W x x y y

h h x y h h x x y y

= = − −

= = − −

= = − −

 (2.100) 

The above expression for the transfer function contains the random variables  1ĥ  

and 2ĥ .  If we take the expected value we obtain 

  ( ){ }
( ) ( )

 

1 2 1 2 1 2

2
1

- -

ˆ ˆˆ ˆ ˆ ˆexp 2  exp 4   

ˆ ˆ, ;0

ˆ ˆ  
eff

a a i W W i h h dx dy

H x y

a dx' dy'

' 'π π
∞ ∞

∞ ∞
∞ ∞

−∞ −∞

⎡ ⎤⎡ ⎤⎡ ⎤− −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
=

∫ ∫

∫ ∫

E

E . (2.101) 

If we assume the random variables to be stationary, the expected value under the 

integral is independent of 'x̂  and 'ŷ  and can be taken outside the integral yielding 

    { } { }
 

1 2 1 2

1 2
2

1

- -0

ˆ ˆ ˆ ˆ exp[ 2 ( )]  
ˆ ˆˆ ˆ(  ) exp[ 4  ( )]  .

ˆ ˆ  
eff

a a i W W dx dy

H x y i h h

a dx' dy'

' 'π
π

∞ ∞

∞ ∞
∞ ∞

−∞ −∞

−
, ; = −

∫ ∫

∫ ∫
E E  (2.102) 
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We now see that the effective transfer function is just the product of the transfer 

function of the scattering surface with the transfer function of the optical system 

producing the incident beam: 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ, ;0 , ;0  , ;0eff SH x y H x y H x y= . (2.103) 

The surface transfer function is merely the joint characteristic function of the two random 

variables 1ĥ  and 2ĥ , given by 

 ( ) ( ){ }1 2
ˆ ˆˆ ˆ, ;0 exp 4SH x y i h hπ⎡ ⎤−⎣ ⎦E= . (2.104) 

Since 1ĥ  and 2ĥ  are jointly normal random variables, it can be shown that [91] 

 ( ){ } ( ) ( )2 2 2
1 2 1 2 1 12 2
ˆ ˆ ˆˆ ˆexp 4 exp 4 exp 8 2i h h i Cπ π η η π σ σ⎡ ⎤ ⎡ ⎤− = − − − +⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦E , (2.105) 

where ( )( ){ }12 1 1 2 2
ˆ ˆC h hη η= − −E  (2.106) 

is the covariance function of the random variables 1ĥ  and 2ĥ   But 1ĥ  and 2ĥ  are identical 

functions merely displaced from each other, and therefore 

 
S1 2 1 2 ,  and σ σ σ η η= = = . (2.107) 

The surface transfer function can therefore be written as  

 ( ) ( ) ( )
 

2

2

ˆ ˆ,
ˆ ˆ ˆ, exp 4 1 s

S s

s

C x y
H x y π σ

σ
⎧ ⎫⎡ ⎤⎪ ⎪= − −⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

, (2.108) 
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where 12)ˆ,ˆ( CyxCs ≡  is the two-dimensional autocovariance function of the surface and 

2
sσ  is the variance of the surface height distribution function.  The scattered light 

distribution, in the form of the angle spread function is given by the Fourier transform of 

equation 2.108. 

The transfer function in equation 2.108 can also  be rewritten in the form of 

 ( ) ( )ˆ ˆ ˆ ˆ,  ,H x y A B G x y= + , (2.109) 

where ( )2
ˆexp 4 sA πσ⎡ ⎤= −⎣ ⎦ , (2.110) 

 ( )2
ˆ1 exp 4 sB πσ⎡ ⎤= − −⎣ ⎦ , (2.111) 

and ( )
( ) ( )

( )
 

2

2

ˆ ˆ ˆexp 4 , 1
ˆ ˆ,

ˆexp 4 1s

C x y
G x y

π

πσ

⎡ ⎤ −⎣ ⎦=
−

. (2.112) 

From equation 2.109, we see that the surface transfer function can be written as the sum 

of two separate components.  The angle spread function can therefore be written as the 

sum of the Fourier transforms of the two components making up the transfer function: 

 ( ) ( ){ } ( ) ( )ˆ ˆ, , , ,H x y A SASF α β δ α β α β= = +F , (2.113) 

where ( ) ( ){ }ˆ ˆ,  ,S B G x yα β = F . (2.114) 

Therefore the scattering surface reflects an incident beam of light as a specularly 

reflected beam of diminished intensity surrounded by a halo of scattered light.  
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Note that the value of the surface transfer function is unity at the origin since 

A + B = 1.  The central ordinate theorem of Fourier transform theory [1] therefore 

requires that the angle spread function have unit volume.  Furthermore, A and B 

correspond to the fraction of the total reflected radiant power contained in the specular 

and the scattered components of the angle spread function, respectively (i.e., B is 

identical to the total integrated scatter, )TISB ≡ . 

 From equation 2.96 and Lambert’s Cosine Law, it is clear that the angle spread 

function is a scattered radiance function ( sθγ cos= ), albeit a normalized one.  The ASF 

is related to classical radiance, L, by 

 sL A
ASF

P
= , (2.115) 

where As is the illuminated area of the scattering surface, and P is the total scattered 

power. 

The four-dimensional BRDF is made up of a superposition of these 

two-dimensional angle spread functions, one for every possible angle of incidence: 

 ( )
 

,
i i

BRDF R ASF
θ φ

α β= ⋅∑ . (2.116) 

Alternatively, for a given angle of incidence, the BRDF is related to the ASF by 

 
,

 
i i

BRDF R ASF
θ φ

α β= ⋅ ( , ), (2.117) 

where R is the reflectance of the scattering surface. 
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CHAPTER 3: 

A LINEAR SYSTEMS FORMULATION OF 

 NON-PARAXIAL SCALAR DIFFRACTION THEORY 

Most textbook treatments of diffraction include a paraxial (small-angle) 

limitation.  For instance, it is well known that the irradiance distribution in the far field 

(Fraunhofer region) of a diffracting aperture is given by the squared modulus of the 

Fourier transform of the complex amplitude distribution emerging from the diffracting 

aperture [1,13]: 

 ( ) ( ){ }
2

2 2 1 12 2 2 2,

1
, ,o x y

z z

E x y U x y
z ξ η

λ λλ
+

= =
= F , (3.1) 

where ( ) ( ) ( )1 1 1 1 1 1 1, , ,o oU x y U x y t x y+ −=  (3.2) 

is the complex amplitude distribution emerging from a diffracting aperture with a 

complex amplitude transmittance given by t1(x1,y1).  F{…} denotes the Fourier transform 

operation given by 

 ( ){ } ( ) ( )1 1 1 1 1 1 1 1, ,  exp -i2o oU x y U x y x y  dx  dyπ ξ η
∞ ∞

+ +

−∞ −∞

= +⎡ ⎤⎣ ⎦∫ ∫F , (3.3) 

where the reciprocal Fourier transform variables are the spatial frequencies ξ and η. 

The Fresnel diffraction integral can be written as the Fourier transform of the 

product of the aperture function with a quadratic phase factor [1,13]: 
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 ( ) ( ) ( )
2

2 2
2 2 1 1 1 12 2

2 2,

1
, , expo

x y

z z

i
E x y U x y x y

z z ξ η
λ λ

π
λ λ

+

= =

⎧ ⎫⎡ ⎤= +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
F . (3.4) 

The Fraunhofer and Fresnel approximations expressed in equations 3.1 and 3.4 , 

however, contain an implicit paraxial limitation that severely restricts the conditions 

under which diffraction phenomena are adequately described [13].  Diffraction gratings, 

for instance, are inherently wide-angle devices and their behavior cannot be accurately 

modeled using paraxial diffraction theory.  Scattering from surface roughness is also not 

limited to the paraxial region, and since predicting it is the goal of this dissertation, we 

will need a model of diffraction theory that is not limited by a paraxial approximation. 

As discussed in section 2.1.2 of chapter 2, Harvey generalized the angular 

spectrum approach to scalar diffraction theory to include new insight into the 

phenomenon of diffraction throughout the whole space in which it occurs.  The 

Rayleigh-Sommerfeld diffraction integral was rewritten as a Fourier transform integral of 

a generalized pupil function that includes phase variations resembling conventional 

wavefront aberrations of imaging systems.  These aberrations, which are inherent to the 

diffraction process, are precisely the effects that are ignored when making the usual 

Fresnel and Fraunhofer approximations. 

When a spherical wave is incident upon a diffracting aperture and the observation 

space is a hemisphere centered on the aperture, the phase variations mentioned above are 

frequently negligible [20].  The diffracted wave field on the hemisphere is then given by 

the Fourier transform of the aperture function: 
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 ( ) ( )
( ) ( ){ }ˆexp 2

ˆ ˆ ˆ , ;0
ˆ o

i r
U r U x y

ir
α β γ

⎡ ⎤π
, ; = ⎢ ⎥

⎣ ⎦
F . (3.5) 

Recall that a scaled coordinate system is used in which the spatial variables are 

normalized by the wavelength of light, e.g., ˆ /x x λ= , and the reciprocal Fourier 

transform variables are the direction cosines of the propagation vectors.  This Fourier 

transform relation is valid not only over a small region about the optical axis, as it is in 

the case of the Fraunhofer or Fresnel approximations, but over the entire observation 

hemisphere (with certain restrictions, depending on the residual phase variations [22]).   

When radiation is incident upon the diffracting aperture at an angle θi,, as shown 

in Figure 3-1, it is equivalent to introducing a linear phase variation across the aperture 

and attenuating the irradiance in the plane of the aperture by a factor of γi = cosθi.  The 

shift theorem of Fourier transform theory [1] can be applied to equation 3.5 yielding 

 ( ) ( )
( ) ( ) ( ){ }ˆexp 2

ˆ ˆ ˆ ˆ;   , ;0 exp 2
ˆo o o

i r
U r U x y i y

ir
α β β γ β

⎡ ⎤π
′, − = π⎢ ⎥

⎣ ⎦
F , (3.6) 

where  ( ) ( )ˆ ˆ ˆ ˆ, ;0  , ;0o i oU x y U x yγ′ = , (3.7) 

β is the direction cosine of the position vector of the observation point, and βo is the 

direction cosine of the undiffracted beam.  The direction cosines can be obtained by 

simply projecting the respective points on the hemisphere into the plane of the aperture 

and normalizing to a unit radius.  From equation 3.6, we can see that the complex 

amplitude distribution at an arbitrary point on the hemisphere can be expressed as a 

function of the distance of the observation point from the undiffracted beam in direction 
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cosine space.  The quantity γ = cosθ in equations 3.5 and 3.6 is a cosine obliquity factor.  

Equations 3.5 and 3.6 will be used as the starting point for our further development of a 

non-paraxial model of scalar diffraction theory. 
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Figure 3-1: Converging incident beam striking a diffracting aperture at an arbitrary angle 
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3.1 Radiometric Terminology 

Before proceeding in the development of our non-paraxial formulation of scalar 

diffraction, we will briefly review the definitions of a few radiometric quantities. 

In the past, scientists have generally used the word intensity to mean the flow of 

energy per unit area per unit time.  However, by international, if not universal, 

agreement, that term is being replaced by the term irradiance [92]: 

 
power

      
areac

P
Irradiance E

A

∂ ⎛ ⎞≡ = ⎜ ⎟∂ ⎝ ⎠
. (3.8) 

Irradiance is defined as the radiant power density incident upon a collecting surface, 

noted by the subscript c on the differential area element in equation 3.8.  Radiant 

intensity, on the other hand, is defined as the power per unit solid angle radiated from a 

source (particularly a point source or a source that has negligible area compared with the 

square of the viewing distance) [93,94]: 

 
power

       
solid anglec

P
Radiant Intensity I ω

⎛ ⎞∂
≡ = ⎜ ⎟∂ ⎝ ⎠

. (3.9) 

And radiance, the radiometric analog to the more familiar photometric term brightness, is 

defined as radiant power per unit solid angle per unit projected source area.  Radiance is 

used to characterize an extended source (one that has an appreciable area compared with 

the square of the viewing distance) [93,94].  In differential form, radiance is given by 

 
2 power

      
 cos solid angle - projected areac s s

P
Radiance L

A θω
⎛ ⎞∂

≡ = ⎜ ⎟∂ ∂ ⎝ ⎠
. (3.10) 
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The radiance of a source is, in general, a function of position on the source and a function 

of the two angular variables θ and φ in conventional spherical coordinates. 

Noting that 2cos /c c cA rω θ∂ = ∂  and 2cos /s s sA rω θ∂ = ∂ , we can rearrange 

equation 3.10 to obtain the double differential 

 

( )2

2

cos

cos
( , , , )  cos  

( , , , )   cos   ,

, , ,    

      

      

s s s s c

c c
s s s s

s s s c c

P L x y A

A
L x y A

r

L x y A

θ φ θ ω

θθ φ θ

θ φ ω θ

∂ ∂ ∂

∂
∂

∂ ∂

=

=

=

 (3.11) 

where r is the distance between the source and the collector as shown in Figure 3-2.  

Equation 3.11 can be considered to be the fundamental theorem of radiometry as it 

describes the radiant power transfer between an elemental source and an elemental 

collector. 
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Figure 3-2: Geometrical configuration used to demonstrate the fundamental theorem of 
radiometry, from which the quantity radiance is obtained 
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3.2 Diffracted Radiance – A Fundamental Quantity 

If we consider the diffracting aperture of Figure 3-1 to be the source, and the 

observation hemisphere to be the collector, we can integrate equation 3.11 once with 

respect to the projected source area to obtain the diffracted intensity: 

 ( ), ( , , , ) cos  s s
c As

P
I L x y Aθ φ θ φ θω

∂
= = ∂

∂ ∫ . (3.12) 

We can also integrate equation 3.11 once with respect to the source solid angle to 

obtain the irradiance 

 ( ), , ,  cos  
s

c s
c

P
E L x y

A ω

θ φ θ ω∂
= = ∂

∂ ∫ . (3.13) 

Since 2cos /s s sA rω θ∂ = ∂ , and θc = 0 on the observation hemisphere, equation 3.13 can 

be written as 

 ( ) ( )2

cos
, , , ,  

s

s
s

A

E L x y A
r

θθ φ θ φ= ∂∫ . (3.14) 

The direction cosines α, β, and γ are related to the angular variables θ and φ in 

conventional spherical coordinates by 

 

2 2 2

sin    cos  

sin   sin 

cos  

1 .

α θ φ

β θ φ

γ θ

α β γ

=

=

=

+ + =

 (3.15) 
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Since the integral in equation 3.14 is over the differential source area and is not affected 

by the θ,φ dependence, equations 3.15 can be used to rewrite equation 3.14 in terms of 

direction cosines as 

 ( ) ( )2
, , , ,  

s

s

A

E L x y A
r

γα β α β= ∂∫ , (3.16) 

and after rearranging, we obtain 

 
( )2 ,

( , , , )  c
s

As

E
L x y dA r

α β
α β

γ
=∫ . (3.17) 

The irradiance on an observation plane parallel to the plane of the aperture is given by 

( ) 2
ˆ, ;U rα β , however the irradiance on the hemisphere is given by ( ) 2

ˆ, ; /U rα β γ  and 

equation 3.17 can therefore be rewritten as 

 
( ) 2

2
2

ˆ, ;
( , , , )  s

As

U r
L x y dA r

α β
α β

γ
=∫ . (3.18) 

Substituting equation 3.5 into equation 3.18 yields 

 ( ){ } 22 ˆ ˆ( , , , )  , ;0os
As

L x y dA U x yα β λ=∫ F . (3.19) 

If the source is a uniformly illuminated diffracting aperture, the radiance does not 

depend upon the position in the aperture and the left hand side of equation 3.19 is given 

by 
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 ( ) ( ) ( ), , ,  ,  ,  s s s

A As s

L x y A L A L Aα β α β α β∂ = ∂ ≈∫ ∫ . (3.20) 

Substituting equation 3.20 into 3.19 and dividing by the area of the diffracting aperture 

gives the following expression for diffracted radiance: 

 ( ) ( ){ } 22
ˆ ˆ, 0  

s

L U x y
oA

λα β = , ;F . (3.21) 

We have therefore shown that the squared modulus of the Fourier transform of the 

complex amplitude distribution emerging from a diffracting aperture yields the diffracted 

radiance and not the irradiance or the intensity.  In addition, equation 3.21, unlike the 

more familiar expression of equation 3.1, is not restricted to small diffraction angles. 

For radiation incident upon the diffracting aperture at an angle, equation 3.6 can 

be substituted into 3.18, and if the aperture is uniformly illuminated we obtain 

 ( ) ( ) ( ){ }
2 2

ˆ ˆ ˆ, 0  exp 2o o o
s

L U x y i y
oA

λα β β γ πβ− = , ;F . (3.22) 

From equation 3.22, we can see that changes in the angle of incidence of the radiation 

illuminating the diffracting aperture will merely result in a shift of the radiance function 

in direction cosine space and an attenuation by the factor γo = cosθo.  However, because 

the functional form does not change, the diffracted radiance can be considered to be shift 

invariant in direction cosine space (with respect to incident angle), and the simple Fourier 

techniques that have previously been used in paraxial applications can be used for 

non-paraxial applications as well. 
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3.3 Renormalization Conserves Energy In The Presence Of Evanescent Waves 

Rayleigh’s (Parseval’s) theorem from Fourier transform theory states that the 

integral over all space of the squared modulus of any function is equal to the integral over 

all space of the squared modulus of its Fourier transform [13].  We can therefore write 

  ( ) ( ) ( ) ( ){ } 22
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ0 exp 2  0 exp 2  o o o oU x y i y dx dy U x y i y d dπβ πβ α β

∞ ∞ ∞ ∞

−∞ −∞ −∞ −∞

′ ′, ; = , ;∫ ∫ ∫ ∫ F . (3.23) 

Substituting equation 3.22 into equation 3.23 gives 

 ( ) ( )2

2
ˆ ˆ ˆ ˆ ˆ0  exp( 2 )  ,   s

o o o
A

U x y i y dx dy L d dπβ α β β α β
λ

∞ ∞ ∞ ∞

−∞ −∞ =∞ =∞

′ , ; = −∫ ∫ ∫ ∫ . (3.24) 

Recall that only those plane wave components that lie inside the unit circle in direction 

cosine space ( 2 2   1α β+ ≤ ) are real and propagate.  Those that lie outside of the unit 

circle are imaginary and are referred to as evanescent waves (and thus do not propagate) 

[13,20].  All (real) space is therefore represented by the unit circle in the two-dimensional 

direction cosine space.  All of the radiant power emanating from the diffracting aperture 

is contained in that portion of the diffracted radiance distribution function lying inside the 

unit circle in direction cosine space (the direction cosines of a vector must satisfy the 

equation 1222 =++ γβα ).    Therefore equation 3.24 can also be written as  

 ( ) ( ) ( )
2

2

1 1-
2

2
-1 - 1-

ˆ ˆ ˆ ˆ ˆ0  exp 2    ,    .s
o o o

A
U x y i y dx dy L d d

α

α

πβ α β β α β
λ

∞ ∞

−∞ −∞

′ ′, ; = −∫ ∫ ∫ ∫  (3.25) 

where we have used ( ), oL α β β′ −  to indicate the real diffracted radiance distribution 
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that lies inside of the unit circle.  Note that the left side of equation 3.25 is merely the 

integral of the radiant exitance over the (scaled) aperture.  It is therefore proportional to 

the total radiant power transmitted through the diffracting aperture, which diminishes 

with the cosine of the incident angle: 

 ( ) ( ) ( )2

2 2
ˆ ˆ ˆ ˆ ˆ0 exp 2  T i o s i

o o

P E A
U x y i y dx dy

θ γπβ
λ λ

∞ ∞

−∞ −∞

′ , ; = =∫ ∫ . (3.26) 

If we substitute equation 3.26 into equations 3.24 and 3.25, it is evident that, for 

the case of a uniformly illuminated diffracting aperture, the total radiant power diffracted 

from the aperture is just the area of the aperture times the integral of the diffracted 

radiance in direction cosine space: 

 ( ) ( )
21 1-

1 21-

,   ,   T s o s oP A L d d A L d d
α

α

α β β α β α β β α β
∞ ∞

−∞ −∞ − −

′= − = −∫ ∫ ∫ ∫ , (3.27) 

where ( ), oL α β β−  is given by equation 3.22 and 

 ( ) ( ),  ,o oL K Lα β β α β β′ − = − . (3.28) 

The real radiance distribution function, ( ), oL α β β′ − , is thus merely a renormalized 

version of the original radiance distribution function, ( ), oL α β β− .  The renormalization 

constant, K, is given by the ratio of the integral of L(α, β − βο) over infinite limits to the 

integral of L(α, β − βο) over the unit circle in direction cosine space: 
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( )

( )
2

2

1 1-

1 1-

 

,    

 

,    

o

o

L d d

K

L d d
α

α

α β β α β

α β β α β

∞ ∞

−∞ −∞

− −

−
=

−

∫ ∫

∫ ∫
. (3.29) 

For those cases where the diffracted radiance distribution function, given by 

equation 3.22, extends beyond the unit circle in direction cosine space, the real 

(propagating) radiance distribution is thus given by 

 ( )
( ) ( ){ }

2 2
2 2

2 2

ˆ ˆ ˆ0  exp 2    for    1
,

 0                                                           for    1

o
so

oK U x y i y
AL

λ πβ β
α β β

β

α

α

⎧
, ; + ≤⎪′ − = ⎨

⎪ + >⎩

F '

. (3.30) 

The re-normalization constant, K, differs from unity only if the radiance 

distribution function extends beyond the unit circle in direction cosine space (i.e., only if 

evanescent waves are produced), and this renormalization process is consistent with the 

law of conservation of energy.  However, it is significant that this linear systems 

formulation of non-paraxial scalar diffraction theory has been derived by the application 

of Rayleigh’s (Parseval’s) theorem and not by merely heuristically imposing the law of 

conservation of energy.  The physics has not changed from the Rayleigh-Sommerfeld 

theory, but we have re-formulated it into a Fourier treatment which can be easily solved 

for a wide variety of non-paraxial applications. 

In order to calculate radiant intensity to compare with experimental measurements 

(since radiance is not a measurable quantity), one can use equation 3.12 (i.e., multiply the 

radiance by γ = cosθ and integrate over the source area).  In terms of direction cosines 

this is given by 
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 ( ) ( ),  , , ,   
sA

I L x y dAα β γ α β= ∫ . (3.31) 

Again, if the source is a uniformly illuminated diffracting aperture, the radiance does not 

depend on the position in the source, and we obtain the diffracted intensity by 

multiplying equation 3.30 by γ AS: 

      ( ) ( ) ( ){ } 2
2 2 2

2 2

ˆ ˆ ˆ  0 exp 2  for   1
,

0                                                                 for   1

 o o o
o

K U x y i y
I

λ πβ β
α β β

β

α

α

γ γ⎧ , ; + ≤⎪− = ⎨
⎪ + >⎩

F
. (3.32) 

Although the diffracted radiance can exhibit a discontinuity at the edge of the unit 

circle (for a Lambertian emitter the radiance is constant and drops discontinuously to zero 

at the edge of the unit circle), the cosine factor (γ = cosθ) in equation 3.32 assures that the 

diffracted intensity never exhibits such discontinuities. 

The radiant power can be calculated by integrating the intensity over the solid 

angle of the collector as indicated by equation 3.9, and in spherical coordinates, the 

differential solid angle cω∂  is given by sin s s sd dθ θ φ  [94], allowing us to write 

 ( ), sin   
c

c

B

P I I d d
ω

ω θ φ θ θ φ= ∂ =∫ ∫∫ . (3.33) 

For the coordinate transformation defined by equations 3.15, the Jacobian 

determinant in the well known change of variables [95]theorem is given by 

 
( )
( )

,
sin cos

,

α β
θ θ

θ φ
∂

=
∂

, (3.34) 
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and the differential solid angle can be written as 

 sin   c

d d
d d d

α βω θ θ φ
γ

= = . (3.35) 

Using equations 3.15, 3.34, and 3.35, we can apply the change of variables theorem to 

equation 3.33 and obtain the total radiant power in the diffracted intensity distribution: 

 
( )2

2

1 1-

-1 - 1-

,
 T

I
P d d

α

α

α β
α β

γ
= ∫ ∫ . (3.36) 

To illustrate the renormalization process described above, consider the example of 

a rotationally symmetric, on-axis Gaussian radiance distribution function given by 

 ( )
2 2

2
, expL

b

α βα β
⎡ ⎤+
−⎢ ⎥

⎣ ⎦
= . (3.37) 

A profile of this radiance distribution is shown in Figure 3-3a for b = 0.2.  The diffracted 

intensity can be calculated through the use of equation 3.31 yielding 

 ( )
2 2

2
, expsI

b
A

α βα β γ ⎡ ⎤+
−⎢ ⎥

⎣ ⎦
= . (3.38) 

A profile of the diffracted intensity as a function of diffraction angle (θ = sin-1β) is shown 

in Figure 3-3b.  Both the radiance and intensity are centered on the optic axis and are 

clearly contained entirely within the unit circle. 
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Figure 3-3: (a) Profile of an on-axis Gaussian radiance distribution in direction cosine 
space.  (b) Profile of the on-axis intensity distribution corresponding to (a) as 
a function of diffraction angle.  (c) Off-axis (normalized) radiance 
distribution resulting from a 64° incident angle.  (d) The off-axis intensity 
distribution in direction cosine space corresponding to (c).  (e) Off-axis 
intensity distribution as a function of the diffraction angle. 
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If we introduce a rather large incident angle of 64 degrees (βi = 0.9), the radiance 

distribution function, L(α,β), is shifted until it is centered on β = −0.9, and attenuated by 

the constant γi = cosθi as shown in Figure 3-3c.  A significant portion of this shifted 

radiance distribution function, L(α,β−βo), extends beyond the unit circle in direction 

cosine space.  However, only that portion that lies inside the unit circle is real and 

contains radiant power or energy, and the radiance needs to be renormalized through the 

use of equations 3.28 and 3.29.  The renormalized radiance distribution function, 

L′(α,β−βo), for the current example is also shown in Figure 3-3c. 

The diffracted intensity can again be calculated using equation 3.31 and is shown 

as a function of β in Figure 3-3d, and as a function of the diffraction angle, θ, in Figure 

3-3e.  Note the asymmetry in this intensity profile that is characteristic of diffraction 

patterns at large incident angles. 

3.4 Application To Sinusoidal Phase Gratings 

Diffraction gratings are inherently wide-angle devices, and are frequently used 

with large oblique incident angles.  Paraxial diffraction theory therefore cannot 

adequately model the behavior of diffraction gratings, except in cases where the paraxial 

approximation holds.  For this reason, scalar diffraction theory is frequently considered to 

be inadequate for predicting diffraction efficiencies for grating applications when the 

ratio of the wavelength of the incident radiation to the period of the grating (λ/d) is 

greater than 0.1[96-98].  It has also been stated that scalar theory imposes energy on the 

evanescent diffracted orders [96].  These notions are driven more by the unnecessary 
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paraxial limitation in the traditional Fourier treatment of scalar diffraction theory than by 

the scalar limitation itself. 

Since the late 1960s, holographic gratings, fabricated by the exposure of 

photoresist by a stationary sinusoidal interference fringe field, have become 

commonplace.  The photoresist substrate is chemically developed after exposure to 

produce a master holographic grating with sinusoidal groove profiles.  These master 

holographic gratings are routinely coated and replicated, as are master ruled gratings. 

Prior to the widespread use of holographic gratings, the diffraction characteristics 

of sinusoidal phase gratings were of interest primarily because other groove profiles 

(lamellar and blazed gratings) can be Fourier analyzed into a superposition of sinusoidal 

profiles[99].  Likewise, arbitrary scattering surfaces are routinely modeled as a 

superposition of sinusoidal surfaces of different amplitudes, periods, and 

orientations[3,90,100].  For these reasons, the sinusoidal phase grating is a logical choice 

of an example with which to test our non-paraxial model of scalar diffraction theory. 

3.4.1 Paraxial Model Of Sinusoidal Phase Gratings 

Goodman [13] discusses sinusoidal phase gratings, and using the Fraunhofer 

approximation derives the following expression for the diffracted irradiance distribution 

in the far field when one has a square grating of width L, period d, and peak-to-peak 

phase excursion a, illuminated with the uniform irradiance Eo: 

 

22

2 2 2
m( , ) J  sinc sinc

2
x y

o

L a L m z Ly
E E x

z d zz

λ
λ λλ

∞

−∞

=
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∑ , (3.39) 
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where  ( ) ( )
( )

sin
sinc

u
u

u

π
π

= , (3.40) 

This expression results in the well-known fact that, within the paraxial 

approximation, the diffraction efficiency of the mth  diffracted order is given by Jm
2(a/2), 

where Jm is the mth  order Bessel function of the first kind. 

Following Goodman’s derivation, the expression for the diffracted irradiance 

when the aperture is illuminated by a Gaussian beam of width b (radius at which the field 

drops to e-π of its peak value) instead of a uniformly illuminated square aperture can be 

written as 

 ( )
22

2 2
m,

b
J Gaus ,

z 2
ox y

a b m z
E E x y

z d

λ
λ λ

∞

−∞

=
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∑ , (3.41) 

where ( ) ( )2 2Gaus , expu v u vπ⎡ ⎤= − +⎣ ⎦ . (3.42) 

Since equation 3.41 is specifically limited to the far field of the diffracting aperture, and 

the paraxial approximation is implicit in the far field (or Fraunhofer) approximation, we 

can write 

 ( ) ( )1 1tan / /  ,      tan / /x yx z x z x z y zθ θ− −= ≈ = ≈ , (3.43) 

and since the radiant intensity is equal to the irradiance divided by the square of the 

viewing distance [94], we can rewrite equation 3.41 in terms of the intensity as 

 ( )
22

2 2
m,

b
J Gaus ,  

2
o x y

a b m
I E

d
θ φ

λθ θ
λ λ

∞

−∞

=
⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞−⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠

∑ . (3.44) 
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The diffracted intensity profile predicted using the paraxial model of equation 

3.44 is shown in Figure 3-4 as a function of the diffraction angle, θx, and the groove 

depth, h, for a sinusoidal reflection grating with period d = 20λ operating at normal 

incidence.  For a sinusoidal reflection grating, the peak-to-peak phase excursion for 

normally incident radiation is given by a = 4πh/λ. 

 

 
 

Figure 3-4: Diffracted intensity profile as predicted by the paraxial model for a sinusoidal 
reflection grating of period d = 20λ operating at normal incidence 

Figure 3-4 represents a valid regime for the paraxial model, as almost all of the 

energy is contained within the first few orders, which are diffracted at small angles 

(<12°).  The maximum value of J1
2(a/2), which is the diffraction efficiency of the 1st 
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order, is equal to 0.3386 and occurs when a = 3.68 (h = 0.293λ).  The diffraction 

efficiencies of the first few orders for this value of a are tabulated in Table 1.  Note that 

the energy falls off rapidly, with 99.88% of the energy contained in diffracted orders 

|m|≤3. 

 

 

Table 1: Diffraction efficiencies for a coarse (paraxial regime) sinusoidal phase grating 
optimized for maximum efficiency in the ±1 diffracted orders. 

 

Diffracted Order Diffraction Efficiency 

0 1.003 × 10-1 

±1 3.386 × 10-1 

±2 9.970 × 10-2 

±3 1.093 × 10-2 

±4 6.320 × 10-4 

 

 

The paraxial model of equation 3.44 is only accurate for very coarse gratings 

(d>>λ), and only when h/λ is small enough to ensure that almost all of the energy is 

contained in orders that diffract at small angles.  In addition, the paraxial model leads to 

the common misconception that it is impossible to get more than 33.86% of the incident 

energy into the first diffracted order with a sinusoidal phase grating.   

A simple thought experiment can prove this misconception to be false.  Suppose 

that we have a grating with a period such that only three orders are propagating (-1,0,+1).  
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If we choose an angle of incidence such that the -1 order goes evanescent, there will be 

only two propagating orders (0,+1).  We can then choose a groove depth such that there is 

no energy in the 0th order (i.e. Jo(a/2) = 0).  Since there are only two propagating orders, 

and there is no energy in the 0th order, all of the energy has to be contained in the +1 

order.  The maximum diffraction efficiency of the 1st order for a sinusoidal phase grating 

is therefore equal to unity, not 0.3386 as predicted by the paraxial model. 

If we use equation 3.44 to model the behavior of fine (small spatial period) 

gratings whose diffracted orders do not fall within the paraxial region, we will obtain 

incorrect results that lead to a variety of other misconceptions.  For example, the 

diffracted intensity profile predicted using the paraxial model of equation 3.44 is shown 

in Figure 3-4 as a function of the diffraction angle, θx, and the groove depth, h, for a 

sinusoidal reflection grating with period d = 1.3λ operating at normal incidence. 

There are several features of the predicted intensity distribution in Figure 3-4 that 

are inaccurate: (i) The small angle approximation to the grating equation inherent in 

equation 3.44 leads to the erroneous prediction of equally spaced diffracted orders (in 

diffraction angle).  (ii) When a diffracted order of finite width is located near ±90 

degrees, the predicted diffracted intensity (or irradiance) exhibits a discontinuity that is 

an unacceptable non-physical phenomenon.  (iii) The predicted angular width of the 

diffracted orders does not indicate the broadening that occurs with increasing diffraction 

angle [101].  (iv) The diffraction efficiencies of the propagating orders are not adjusted to 

account for the Wood’s anomaly effect of redistributing the energy associated with 

evanescent orders among the remaining propagating orders[102]. 
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Figure 3-5: Diffracted intensity distribution profile as predicted by the paraxial model for 
a sinusoidal reflection grating of period 1.3λ (invalid operating regime) 

3.4.2 Wide-Angle Behavior Of Sinusoidal Phase Gratings 

We will now apply our non-paraxial model of scalar diffraction developed in 

sections 3.2 and 3.3 to the case of the sinusoidal phase (reflection) grating, and show that 

the inaccuracies outlined above for the paraxial model are due to the paraxial limitation, 

and not due to the scalar limitation. 

The complex amplitude transmittance of a sinusoidal phase grating can be written 

as 
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 ( ) ˆ
ˆ ˆ, exp sin 2

ˆ2

a x
t x y i

d
π⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (3.45) 

where ˆˆ ˆ ,  ,   x x/ y y/ d d/λλ λ= = =and .  The complex amplitude distribution emerging 

from the grating is given by 

 ( ) ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ, ,  ,o oU x y U x y t x y+ −= , (3.46) 

where ( )ˆ ˆ,oU x y−  is the complex amplitude distribution of the converging spherical 

wavefront incident upon the grating.  Recall again that we have scaled the spatial 

variables by the wavelength of the incident radiation so the reciprocal variables in Fourier 

transform space will be the direction cosines of the propagation vectors of the resulting 

plane wave components.  Note also that we have dropped a factor representing the 

average phase delay in passing through the grating, and that the parameter a represents 

the peak-to-peak excursion of the phase delay. 

The diffraction grating analysis can be simplified by use of the following 

mathematical identity [13] 

 m

ˆ ˆ
exp sin 2 J exp 2

ˆ ˆ2 2m

a x a mx
i i

d d
π π

∞

=−∞

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ . (3.47) 

We know from equation 3.19 that the integral of the diffracted radiance over the 

diffracting aperture is proportional to the squared modulus of the Fourier transform of the 

complex amplitude distribution emerging from the aperture: 
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 ( ){ } 22 ˆ ˆ( , , , )  , ;0os
As

L x y dA U x yα β λ=∫ F . (3.48) 

Assuming that a narrow Gaussian beam of width b (radius at which the field drops to e-π 

of its peak value) is incident upon the sinusoidal phase grating at normal incidence, we 

can write the radiance as the product of two separable functions: 

 ( ) ( ) 2, , , ,  ,
x y

L x y L Gaus
b b

α β α β ⎛ ⎞= ⎜ ⎟
⎝ ⎠

, (3.49) 

where the Gaus function is again defined by equation 3.42.  L(α,β) can therefore be 

brought outside of the integral in equation 3.48, and since b is small relative to the radius 

of the observation hemisphere, cosθs can also be brought outside of the integral, yielding 

 ( ) ( ){ } 2
2 2 ˆ ˆ, cos Gaus ,    0

s

s o

A

x y
L dx dy U x y

b b
α β θ γ λ +⎛ ⎞ = , ;⎜ ⎟

⎝ ⎠∫ F . (3.50) 

The integral of the Gaus function in equation 3.50 is equal to b2/2, and since γ = cosθs, 

the diffracted radiance is given by 

 ( ) ( ){ }  
2

22
ˆ ˆ,    0

ˆ oL U x y
b

α β += , ;F . (3.51) 

( )ˆ ˆ,oU x y+  is the complex amplitude distribution emerging from the grating, given by 

  ( ) ( ) m1 1
ˆ ˆ ˆ ˆ ˆ
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⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ . (3.52) 

Applying the convolution theorem of Fourier transform theory [1] to equation 3.52, we 
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can write 

 ( ){ } ( )2
m

ˆˆ ˆˆ ˆ,   Gaus ,   J exp 2
ˆ2o o

m
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d
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∞
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∑F F , (3.53) 

where the symbol ∗∗ represents a two-dimensional convolution operation.  Performing 

the Fourier transform on the right hand side of equation 3.53 yields 

 ( ){ } ( )2
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ˆ2o o

m
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d
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∞
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∑F , (3.54) 

and since any function convolved with a delta function merely replicates that function at 

the location of the delta function, we obtain 

 ( ){ } 2
m

ˆ ˆˆ ˆ,   J Gaus b ,
ˆ2o o

m

a m
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d
α β

∞
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∑F . (3.55) 

Substituting equation 3.55 into equation 3.51, and noting that the peak irradiance in the 

incident beam is given by Eo = |Uo
-|2 yields 
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d
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∞
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∑ . (3.56) 

If we assume that b>>d, there will be negligible overlap between the various diffracted 

orders (i.e., no cross terms), and the diffracted radiance distribution is given by 

 ( ) 2 2 2
m

ˆ ˆ, 2   J Gaus b ,
ˆ2o

m

a m
L E b

d
α β α β

∞

=−∞
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∑ . (3.57) 

As explained in section 3.3, if there are any evanescent diffracted orders, the diffracted 
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radiance distribution of equation 3.57 must be renormalized using equations 3.28 and 

3.29.  Therefore, for those cases where evanescent waves exist, the diffracted radiance 

can be expressed as 

     ( )
2 2 2 2 2

m

2 2

ˆ ˆ 2   J Gaus b ,       for  1 
ˆ2,

0                                                                              for  1

o
m

a m
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⎪ + >⎩

∑
. (3.58) 

Using equation 3.58 for a sinusoidal reflection grating with a period of d = 1.95λ 

and normally incident radiation results in the predicted radiance distribution profile 

illustrated in Figure 3-6.  The radiance profile is plotted as a function of both groove 

depth and the direction cosine of the diffraction angle.  This distribution is very similar to 

the one shown in Figure 3-5, except that we are plotting the diffracted radiance in 

direction cosine space.  Note that the diffracted orders are equally spaced and have equal 

widths in direction cosine space.  This is consistent with previous work highlighting the 

advantages of describing diffraction grating behavior in direction cosine space [103].  

The distribution exhibits discontinuities at α = ±1 (θ = ±90°), however radiance is 

allowed to exhibit such discontinuities.  In addition, the diffracted radiance distribution 

has been renormalized in accordance with equations 3.28 and 3.29.  This renormalization 

ensures that all of the transmitted energy is contained in the propagating plane-wave 

components. 
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Figure 3-6: Diffracted radiance distribution profile (in direction cosine space) predicted 
by our non-paraxial model for a sinusoidal reflection grating with a period of 
d = 1.95λ 

To calculate the diffracted intensity, we merely need to apply equation 3.31 to the 

diffracted radiance distribution (i.e., we multiply the radiance by γ=cosθ and integrate 

over the source area): 
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The diffracted intensity distribution for the sinusoidal phase grating is therefore given by 

  ( )
4 2 2 2 2 2
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ˆ ˆ     J Gaus b ,     for  1 
ˆ2,

0                                                                                for  1

o
m

a m
K E b

I d
γ λ α β α β

α β

α β

∞

=−∞

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞− + ≤⎪ ⎜ ⎟ ⎜ ⎟⎢ ⎥= ⎝ ⎠ ⎝ ⎠⎣ ⎦⎨
⎪ + >⎩

∑
. (3.60) 

Figure 3-7 shows the diffracted intensity profile, predicted using equation 3.60, as 

a function of groove depth and diffraction angle for a sinusoidal reflection grating with 

period d = 1.95λ.   

 

 

 
 

Figure 3-7: Diffracted intensity distribution profile predicted by our non-paraxial model 
for a sinusoidal reflection grating with a period of d = 1.95λ 



 

 
 

85

As Figure 3-7 shows, when plotted as a function of diffraction angle, the 

diffracted orders are no longer equally spaced, and they become progressively wider with 

increasing diffraction angle.  In fact, for large diffraction angles the peak (or centroid) of 

the diffracted order is shifted from the position that is predicted by the grating equation, 

an effect that has been observed experimentally [101]. In addition, unlike the paraxial 

model, our non-paraxial model for diffracted intensity exhibits no discontinuities at ±90 

degrees.  This is due to the factor γ=cosθ in equation 3.60, which causes the intensity to 

fall gracefully to zero as the diffraction angle approaches ±90 degrees. 

The paraxial and non paraxial models are compared directly in Figure 3-8 for a 

sinusoidal reflection grating with a period of d = 1.95λ, a groove depth of h = 0.5λ, and a 

normally incident Gaussian beam of radius b = 12λ.  Note that the paraxial limitation 

inherent in equation 3.44 results in the prediction of seven propagating orders which are 

evenly spaced and of equal widths in angular space.  This behavior violates the 

well-known grating equation.  In addition, the paraxial intensity prediction exhibits a 

discontinuity at ±90 degrees, and does not account for the redistribution of energy from 

evanescent orders to propagating orders.  The non-paraxial scalar diffraction model does 

agree with the grating equation, exhibits a broadening of the high-angle diffracted orders 

(an experimentally observed reality), has a discontinuity at ±90 degrees in the diffracted 

radiance, but not in the diffracted intensity, and redistributes energy from evanescent to 

propagating orders.  Even the rather subtle shift of large-angle diffracted orders from the 

position predicted by the grating equation is readily observed. 
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Figure 3-8: Comparison of wide-angle diffraction behavior of a sinusoidal reflection 
grating with a period of d = 1.95λ, and a groove depth of h = 0.5λ as 
predicted by scalar theory with and without a paraxial approximation. 

Additional insight into the wide-angle behavior of sinusoidal phase gratings can 

be obtained by plotting the diffracted radiance profile as a function of grating period for a 

fixed groove depth.  Figure 3-9 clearly illustrates the redistribution of energy from the 

evanescent orders into the propagating orders as the grating period varies from three 

wavelengths to one wavelength for a groove depth of h = 0.25λ.  Note the modest 

increase in the zero order and the ±1 orders when the ±2 orders go evanescent.  The 

rather bizarre spike in the diffracted radiance of the ±1 orders is due to the finite width of 

the diffracted orders.  The diffracted order does not go evanescent instantaneously (due to 

its finite width), but in a piecewise manner, one plane-wave component at a time.  As 
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each plane-wave component goes evanescent, the diffracted radiance distribution 

function is re-normalized, and some of its energy gets redistributed back into the 

remaining propagating plane-wave components of that same diffracted order. 

 

 

 
 

Figure 3-9: Diffracted radiance in direction cosine space as a function of grating period 
for a sinusoidal reflection grating of groove depth h = 0.25λ as predicted by 
our non-paraxial model 

As shown in Figure 3-10, the corresponding intensity does not exhibit these 

spikes because of the effect of the factor γ=cosθ in equation 3.60, which always causes 

the intensity to fall to zero as the diffraction angle approaches ±90 degrees. 
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Figure 3-10: Diffracted intensity corresponding to the radiance distribution in Figure 3-9 

3.4.3 Prediction Of Diffraction Efficiency 

In the last section, we discussed the qualitative nature of radiance and intensity 

distributions as predicted by our non-paraxial diffraction model.  We will now use the 

non-paraxial scalar theory to make quantitative predictions of diffraction efficiency for 

perfectly conducting sinusoidal phase gratings. 

In a review article [104] on diffraction gratings, Maystre discussed a variety of 

rigorous vector theories including the Rayleigh method, the Waterman method, his own 

integral vector method, and other differential and modal methods.  He presented a 

comparison of the diffraction efficiency (for TE polarization) of the first diffracted order 

for a perfectly conducting sinusoidal grating with h/d = 0.20 in the Littrow condition 

(diffracted order propagating back along the direction of incident radiation) as calculated 
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by the classical Beckmann-Kirchhoff theory and his own rigorous integral vector theory.  

For this special case (θm = −θi in Maystre’s sign convention), the Beckmann geometric 

factor [90] reduces to  
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, (3.61) 

and the classical Beckmann-Kirchhoff theory predicts a diffraction efficiency of 
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hπ θ λ
η

θ
≈ , (3.62) 

where h is the peak-to-peak amplitude of the sinusoidal grating surface profile. 

The comparison between Maystre’s rigorous vector theory and the 

Beckmann-Kirchhoff theory has been recreated in Figure 3-11.  We have also added the 

paraxial scalar prediction of diffraction efficiency for sinusoidal phase gratings given by 

[13,105-107] 

 2 2 2 cos
J J

2
i

m m m

ha π θη
λ

⎛ ⎞⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (3.63) 

The format of Figure 3-11 is commonly used to display diffraction efficiency data 

because the Littrow condition (θm = θi in our standard sign convention) allows one to 

leave the detector and the source fixed and to merely rotate the grating between 

measurements.  Every data point in Figure 3-11 therefore requires a different incident 

angle.  An angular deviation of 2-8 degrees between the source and detector is often used 

for convenience, thus not strictly satisfying the Littrow condition [108].   
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Paraxial Regime Smooth Surface RegimeParaxial Regime Smooth Surface Regime
 

 
Figure 3-11: Diffraction grating efficiency of the first order for a sinusoidal phase grating 

(h/d = 0.2) in the Littrow condition as predicted by the Beckmann-Kirchhoff 
theory, the paraxial scalar theory, and a rigorous integral vector theory. 

For small values of λ/d in Figure 3-11, there are many diffracted orders, but those 

containing a significant amount of energy are diffracted at small angles as long as the 

groove depth is not too large.  Therefore, the left edge of the curve is the paraxial regime.  

As the grating is rotated to increase λ/d, both the angle of incidence and the diffraction 

angles increase, and the higher diffracted orders start going evanescent.  For the right 

two-thirds of the curves in Figure 3-11, there can be at most only two propagating orders, 

the zero order and the +1 order.  All other orders are evanescent. 
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Note that all three theories in Figure 3-11 agree well for λ/d<0.4, i.e. in the 

paraxial regime.  The Beckmann-Kirchhoff theory is better than the paraxial theory for 

λ/d < 0.8, but diverges for values of λ/d > 1.5.  The paraxial scalar theory agrees well not 

only in the paraxial regime, but also in the long wavelength region, i.e. the smooth 

surface regime.  Although many authors state categorically that scalar theory can only be 

applied when λ/d < 0.1, they would probably concede that in the smooth surface regime, 

the higher orders of a sinusoidal phase grating contain a negligible fraction of the energy 

and the predicted efficiency is not significantly affected when those orders go evanescent.  

It is the central region of the diffraction efficiency curve for which the traditional paraxial 

scalar diffraction theory is totally inadequate. 

To calculate diffraction efficiencies with our non-paraxial scalar theory, we can 

model either a uniformly illuminated grating of finite size, or we can model a small beam 

of some specific size and shape underfilling a large grating.  In the first case the total 

radiant power being transmitted through the aperture is reduced by cosθi,, while in the 

second case, the total transmitted radiant power remains the same, but the beam footprint 

in the plane of the grating is increased by cosθi and the radiant exitance emerging from 

the plane of the grating is reduced by cosθi. Both cases should yield the same results for 

diffraction efficiency, defined as the ratio of the radiant power in a given diffracted order 

to the radiant power in the incident beam, except for some minor discrepancies when 

diffracted orders of finite size go evanescent.  Since we have already modeled the second 

case in the previous section, we will use that result as our starting point here. 
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Recall that the diffracted intensity predicted by our non-paraxial scalar model for 

a sinusoidal phase grating illuminated by a Gaussian beam of width b, period d, and 

peak-to-peak phase excursion a operating at normal incidence is given by equation 3.60 

as 
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For an arbitrary incident angle θi, the propagating portion of the intensity distribution can 

be written as 

 ( ) 4 2 2 2
m
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ˆ2o o i
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a m
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∑ , (3.65) 

where sini iα θ= . (3.66) 

Using equation 3.36, the total power in the diffracted intensity distribution is 

given by  
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where the summation is taken only over the diffracted orders lying inside the unit circle 

in direction cosine space (i.e., the propagating diffracted orders).  The quantity in the 

integral is simply a unit volume Gaus2 function.  If ˆ 1b >> , the Gaus2 function is very 

narrow and we will assume that it lies entirely inside the unit circle, even for large 
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diffraction angles.  The integral in equation 3.67 is therefore equal to unity and the total 

diffracted power can be written as 
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2 2
m

min

 J  
2T o

m

a
P K E b

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ . (3.68) 

The radiant power in a given diffracted order is therefore given by 

 2 2
m   J

2
m o

a
P K E b

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (3.69) 

Since we are assuming a perfectly conducting grating, the total diffracted power is equal 

to the total incident power, and the diffraction efficiency of the mth diffracted order for 

our non-paraxial model is given by 
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Recall that the quantity a in 3.70 is the peak-to-peak phase variation introduced 

by the sinusoidal grating.  Figure 3-12 illustrates that a varies not only with the angle of 

incidence but with the diffraction angle as well.  It can therefore be written as 

 ( ) ( )1 2

2 2
cos cosi m

h
a h h

π π θ θ
λ λ

= + = + . (3.71) 

Equations 3.70 and 3.71 can now be used to calculate the diffraction efficiency of a 

perfectly conducting sinusoidal reflection grating. 
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Figure 3-12: Illustration of the peak-to-peak phase variation introduced into a given 
diffracted order by reflection from a sinusoidal surface 

The diffracted efficiency predicted by our non-paraxial model for a sinusoidal 

reflection grating with h/d = 0.2 used in the Littrow condition is shown in Figure 3-13, 

where it is compared to the predictions previously shown in Figure 3-11.  The 

non-paraxial scalar model provides remarkably good agreement with the rigorous vector 

theory, not merely in the paraxial regime and the smooth surface (shallow grating) 

regime, but over the entire range of λ/d. 

Similar predictions for sinusoidal reflection gratings with h/d values of 0.05, 0.15, 

and 0.30 are shown in Figures 3-14, 3-15, and 3-16 respectively.  The values for the 

rigorous vector theory in these figures were obtained from [99]. 
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Figure 3-13: Diffraction grating efficiency of the first order for a perfectly conducting 
sinusoidal phase grating with h/d = 0.2 used in the Littrow condition as 
predicted by the Beckmann-Kirchhoff theory, the paraxial scalar theory, our 
non-paraxial scalar theory, and a rigorous integral vector theory 
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As one would expect, Figure 3-14 shows that all of the theories agree quite well 

with the rigorous vector predictions for small values of h/d.  The lone exception is the 

Beckmann-Kirchhoff theory which begins to depart from the other theories at around 

λ/d = 0.4, and exhibits rather bizarre behavior as λ/d approaches 2 due to the factor of 

cos4θm in equation 3.62. 

 

 

 
 

Figure 3-14: Diffraction grating efficiency of the first order for a perfectly conducting 
sinusoidal phase grating with h/d = 0.05 used in the Littrow condition as 
predicted by the Beckmann-Kirchhoff theory, the paraxial scalar theory, our 
non-paraxial scalar theory, and a rigorous integral vector theory 
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Figure 3-15 continues to show good agreement between our non-paraxial scalar 

theory and the rigorous vector theory, but it also demonstrates that our non-paraxial 

model indeed predicts the Rayleigh anomalies[97,99,109] that occur when a propagating 

order goes evanescent.  Note the abrupt increase in diffraction efficiency at λ/d = 0.67.  

This is precisely the value at which the -1 and +2 diffracted orders go evanescent. 

 

 

 
 

Figure 3-15: Diffraction grating efficiency of the first order for a perfectly conducting 
sinusoidal phase grating with h/d = 0.15 used in the Littrow condition as 
predicted by the Beckmann-Kirchhoff theory, the paraxial scalar theory, our 
non-paraxial scalar theory, and a rigorous integral vector theory 
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Figure 3-16 shows that our non-paraxial scalar model continues to predict the 

major features of the diffraction efficiency curve even for an h/d value of 0.30.  The 

diminishing agreement over the middle part of the λ/d range may be due to the fact that 

our model does not account for shadowing and multiple scattering effects.  However, our 

non-paraxial model is still a large improvement over the classical paraxial theory.  Note 

that both our non-paraxial model and the rigorous theory predict a maximum diffraction 

efficiency that approaches unity while the maximum of the paraxial theory is 0.3386. 

 

 

 
 

Figure 3-16: Diffraction grating efficiency of the first order for a perfectly conducting 
sinusoidal phase grating with h/d = 0.30 used in the Littrow condition as 
predicted by the Beckmann-Kirchhoff theory, the paraxial scalar theory, our 
non-paraxial scalar theory, and a rigorous integral vector theory 
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There is a substantial difference in the peak values of the oscillatory behavior in 

the paraxial regime as predicted by the paraxial and the non-paraxial scalar theories in 

Figures 3-13, 3-15, and 3-16.  The diffraction efficiency predicted by the non-paraxial 

scalar theory is given by equation 3.70.  As λ/d becomes very small (paraxial regime), the 

number of diffracted orders becomes very large and the denominator of equation 3.70 

approaches unity resulting in the well known paraxial result given by equation 3.63.  

Clearly for a finite number of propagating orders, the denominator is less than unity.  

This results in a higher value for the non-paraxial prediction compared to the paraxial 

result.  Our non-paraxial model assumes that the energy previously contained in the 

evanescent orders is distributed uniformly over the remaining propagating orders.  This 

may or may not be an accurate assumption.  Additional rigorous data, or experimental 

results, are needed to quantitatively evaluate the deviation between the non-paraxial 

scalar theory and the rigorous theory in the paraxial regime. 
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CHAPTER 4: 

MODIFIED BECKMANN-KIRCHHOFF SURFACE SCATTER THEORY 

The development of a linear systems formulation of non-paraxial scalar 

diffraction phenomena discussed in chapter three indicating that diffracted radiance is a 

fundamental quantity predicted by scalar diffraction theory, and the fact that it was 

scattered radiance that was shown to exhibit shift-invariant behavior when presented in 

the proper format has led to a re-examination of the classical Beckmann-Kirchhoff 

scattering theory.  In this chapter, we will demonstrate an empirically modified 

Beckmann-Kirchhoff theory that accurately predicts non-intuitive experimental scatter 

data for rough surfaces at large incident and large scatter angles, yet also agrees with 

Rayleigh-Rice predictions within its domain of applicability for smooth surfaces. 

4.1 Non-Intuitive Surface Scatter Measurements 

A detailed experimental investigation of light scattering from well-characterized 

random surfaces was reported by O’Donnell and Mendez in 1987 [110].  The surfaces 

were made by first exposing photoresist to a laser speckle pattern, and then applying a 

gold coating.  The surface autocovariance (ACV) function was almost a perfect Gaussian.  

The measured root-mean-square (RMS) surface roughness was σs = 2.27 μm and the 

measured autocovariance length (e-1 half-width of the ACV function) was lc = 20.9 μm.  

For the small slopes represented by these parameters, multiple scattering effects are 

negligible.  Conventional high angular resolution scattering data was measured for two 

wavelengths, λ = 0.6328 μm and λ = 10.6 μm, and two angles of incidence, θi = 20 
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degrees and θi = 70 degrees.  At these wavelengths and incident angles, this surface is too 

rough to satisfy the Rayleigh-Rice smooth-surface requirement. 

When the experimental scattered intensity measurements were compared with 

classical Beckmann-Kirchhoff scattering theory, several puzzling effects were observed.  

For a wavelength of 10.6 μm and small angles of incidence, the Beckmann-Kirchhoff 

solution agrees quite well with the experimental data; however, the authors noticed a 

persistent tendency for the data to be narrower than the theoretical predictions.  This can 

be seen in Figure 4-1, where the Beckmann-Kirchhoff theory is compared to 

experimental data obtained from [110].  This behavior is non-intuitive, as the presence of 

experimental error sources (jitter, turbulence effects, etc.) would tend to make the 

experimental curve broader than the theoretical curve.  It was suggested by the authors 

that this minor departure might be due to a resonance effect since l ~ λ; however, this 

was not verified.  The total integrated scatter is given by [3] 

 ( )2
1 exp 4 cos /i sTIS π θ σ λ⎡ ⎤= − −⎣ ⎦ . (4.1) 

From equation 4.1, we find that there is no discernable specular beam for an incident 

angle of 20 degrees with a wavelength of 10.6 μm as the total integrated scatter is almost 

unity. 

For angles of incidence greater than 50 degrees, substantial disagreement between 

the theoretical predictions and experimental measurements was observed.  For a 

wavelength of 10.6 μm and an incident angle of 70 degrees, there is a specular beam 

containing over 40% of the reflected radiant power.  The data points representing the 
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specular beam have been omitted from the experimental data shown in Figure 4-2.  The 

peak of the measured scattering function does not lie in the specular direction, but instead 

lies approximately 10 degrees inside of the specular beam.  The Beckmann-Kirchhoff 

theoretical prediction no longer exhibits symmetry about the specular direction, and 

shows a similar shift of the peak of the diffuse component of the scattered light 

distribution.  The Beckmann-Kirchhoff prediction also contains an unphysical 

discontinuity at 90 degrees.  The authors offered no explanation for this non-intuitive 

behavior. 

 

 

 
 

Figure 4-1: Classical Beckmann-Kirchhoff theory compared to O’Donnell-Mendez 
experimental data for λ = 10.6 μm,  θi = 20° 

θ i = 20° 
λ = 10.6 μm 
TIS = 0.998 
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Figure 4-2: Classical Beckmann-Kirchhoff theory compared to O’Donnell-Mendez 
experimental data for λ = 10.6 μm,  θi = 70° 

In Figure 4-3 the Beckmann-Kirchhoff prediction is compared to experimental 

data for a wavelength of 0.6328 μm and an incident angle of 70°.  The experimental data 

is highly asymmetrical about the specular direction.  There is no specular beam, however, 

as all of the light is diffusely scattered.  The experimental data drops smoothly to zero at 

−90 degrees.  The classical B-K theory predicts a symmetrical intensity distribution about 

the specular direction, though it is unphysical in that it exhibits a discontinuity at −90 

degrees.  The authors suggested that the failure of the Beckmann-Kirchhoff theory at this 

angle of incidence and wavelength is perhaps due to shadowing and multiple scattering 

θ i = 70° 
λ = 10.6 μm 
TIS = 0.571 
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effects, and stated that they are unaware of any available theory that compares to their 

measured data. 

 

 

 
 

Figure 4-3: Classical Beckmann-Kirchhoff theory compared to O’Donnell-Mendez 
experimental data for λ = 0.6328 μm and θi = 70° 

4.2 Qualitative Explanation Of Non-Intuitive Effects 

The Harvey-Shack surface scatter theory was discussed in section 2.2.4 of 

chapter two, and will be further elaborated on in chapter five.  It will be used here briefly, 

however, to attempt to qualitatively explain the non-intuitive surface scatter 

measurements discussed in section 4.1. 

 

θ i = 70° 
λ = 0.6328 μm 
TIS = 1 
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The Harvey-Shack surface transfer function modified to account for radiation 

incident at an arbitrary angle is given by 

 ( ) ( ){ } 

2 2
iˆ ˆ ˆ ˆ ˆ( , ) exp 4  cos 1 , /S s s sH x y C x yπ θ σ σ⎡ ⎤= − −⎣ ⎦ , (4.2) 

where the “hats” indicate scaling by the wavelength, e.g. ˆ /x x λ= , and Cs is the surface 

autocovariance function.  For the surface described in section 4.1, the autocovariance 

function is Gaussian and is given by 

 
2 2

2

2

ˆ ˆ
ˆ ˆ( , ) exp

ˆS S

c

x y
C x y σ

⎡ ⎤⎛ ⎞+
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, (4.3) 

with σs = 2.27 μm and lc = 20.9 μm as stated previously.  A radial plot of the 

autocovariance function is shown in Figure 4-4.  As discussed in chapter two, the Fourier 

transform of the surface transfer function yields the angle spread function 

 ( ) ( ){ }ˆ ˆ, , ;s iASF H x yα β γ= F , (4.4) 

which includes both the specular reflection and the diffuse scattering from the surface.  

The surface transfer function in equation 4.2 is defined as the normalized autocorrelation 

of the complex pupil function.  From the autocorrelation theorem of Fourier transform 

theory [1], the angle spread function is therefore also given by the squared modulus of the 

Fourier transform of the complex pupil function.  From equation 3.21, we thus know that 

the angle spread function is a scattered radiance distribution function.  If any of the 

radiance distribution falls outside of the unit circle in direction cosine space, the radiance 

needs to be truncated and re-normalized as dictated by equation 3.29.  To convert the 
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scattered radiance to intensity, we use equation 3.31, multiplying the radiance by cosθ 

and integrating over the illuminated area of the scattering surface:  

 ( , ) ( , ) cos  ( , ) cos
s

s

A

I L A L Aα β α β θ α β θ= ∂ =∫ . (4.5) 

Equations 4.2 through 4.5 can be used to predict the scattered radiance and intensity for 

the scattering surface described in section 4.1. 

 

 

 
 

Figure 4-4: ACV of equation 4.3 with σs = 2.27 μm and lc = 20.9 μm 
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For small angles of incidence, applying equation 4.5 to the scattered radiance 

distribution will always result in an intensity distribution that is slightly narrower than the 

radiance distribution.  An example of this is shown in Figure 4-5, which shows a 

comparison between scattered radiance and scattered intensity as predicted by the H-S 

theory for a 10.6 μm wavelength beam normally incident upon the surface characterized 

by the autocovariance function of Figure 4-4.  This behavior is similar to the persistent 

effect, noted by O’Donnell and Mendez, of the experimental scattering data being 

narrower than the Beckmann-Kirchhoff prediction for small incident angles. 

 

 

 
 

Figure 4-5: Harvey-Shack prediction of the scattered radiance and intensity distributions 
for the O’Donnell-Mendez surface with θi = 0° and λ = 10.6 μm 
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For large angles of incidence, the Harvey-Shack scattered radiance function is 

substantially shifted, and abruptly truncated by the unit circle in direction cosine space.  

The scattered radiance and intensity as predicted by the Harvey-Shack theory are 

compared in Figure 4-6 for a 10.6 μm wavelength beam at an incident angle of 70 

degrees reflected from the scattering surface characterized by the autocovariance function 

of Figure 4-4.  The scattered radiance distribution is discontinuous at −90 degrees, as was 

the B-K prediction, but the application of equation 4.5 causes the scattered intensity to 

fall gracefully to zero at that angle.  Applying equation 4.5 to the radiance also causes the 

peak of the intensity distribution to shift inside of the specular beam, similar to the 

experimental data in Figure 4-2. 

 

 
 

Figure 4-6: Harvey-Shack prediction of the scattered radiance and intensity distributions 
for the O’Donnell-Mendez surface with θi = 0° and λ = 10.6 μm 
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The Harvey-Shack scattering predictions, at least qualitatively, seem to explain 

the non-intuitive scattering results of Figures 4-1, 4-2, and 4-3.  Since the solid angle 

subtended by the collecting aperture of the scatterometer used by O’Donnell and Mendez 

was constant as they scanned the observation hemisphere, the voltage signal received 

from their instrument is indeed proportional to scattered intensity.  However, the 

predictions from the Beckmann-Kirchhoff theory appear to be a better representation of 

scattered radiance than scattered intensity.  This leads us to believe that the non-intuitive 

results of Figures 4-1, 4-2, and 4-3 might be the result of inappropriately comparing 

different radiometric quantities. 

4.3 Empirical Modification Of The Beckmann-Kirchhoff Theory 

The classical B-K theory that O’Donnell and Mendez used to predict the 

scattering in Figure 4-1 and Figure 4-2 was the closed-form solution valid only for 

Gaussian surface autocovariance functions given in [90] and outlined in section 2.2.3 of 

this dissertation.  From equation 2.85, this closed-form solution is given by 

 { } ( ) 2 22 2

1

exp -
 exp

! 4

m
xy cc

ms

vF g g
D

A m m m

π
ρ

∞

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , (4.6) 

where As is the illuminated are of the scattering surface, lc is the correlation length, and F 

is a geometrical factor defined in terms of incident and scattering angles in the spherical 

coordinate system as 
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+
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The function g in equation 4.6 is a measure of the phase variation introduced by an RMS 

surface roughness, σs, and is given by 

 ( )
2

22
cos coss

i sg
πσ θ θ
λ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, (4.8) 

while vxy is given by 

 2 22
sin 2sin sin cos sinxy i i s s sv

π θ θ θ φ θ
λ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

. (4.9) 

If g << 1, the surface can be classified as smooth, and only the first term of the series in 

equation 4.6 needs to be used.  For larger values of g, equation 4.6 needs to be used with 

enough terms to ensure that the series converges.  If g >> 1, the surface can be classified 

as very rough, and the series will converge very slowly.  When this is the case, equation 

2.90 can be used instead: 

 { }
22 2

exp
4
xy cc

s

vF
D

A g g

πρ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

, (4.10) 

where As, lc, F, g, and vxy are the same as for the general case above. 

The quantity D{ρ} in equations 4.6 and 4.9, which corresponds to the diffusely 

scattered light, is proportional to the time average of the squared modulus of the electric 

field vector and is called the mean scattered power by Beckmann and Spizzichino [90].  

Many physicists would interpret this quantity to be proportional to radiant power density 
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on the collecting surface, and perhaps call it intensity.  The geometrical factor F is an 

attempt to account for the fact that the local surface normal and mean surface normal of 

the scattering surface are not the same. 

The insight provided by equations 3.30 and 3.29, in which diffracted radiance is 

presented as the fundamental quantity predicted by scalar diffraction theory, as well as 

the successful application of the non-paraxial scalar diffraction theory of chapter three to 

the calculation of diffraction grating efficiencies, and the qualitative success of the 

Harvey-Shack surface scatter theory in explaining the non-intuitive scattering behavior 

described in section 4.1 have all led to an empirical modification of the Beckmann-

Kirchhoff scattering theory [111].  Three explicit modifications include: (i) eliminating 

the geometrical factor F2; (ii) introducing a renormalization factor, analogous to K in 

equation 3.29, which accounts for the re-distribution of radiant energy from the 

evanescent waves into the propagating waves; and (iii) equating the right side of 

equations 4.6 and 4.9 to scattered radiance.   

Applying the modifications above to equation 4.6 results in the following 

expression of the modified Beckmann-Kirchhoff scatter theory for smooth or moderately 

rough surfaces with Gaussian autocovariance functions: 

 ( ) ( ) 2 22
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! 4

m
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s s
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A m m m
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∞
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∑ . (4.11) 

To obtain the scattered intensity distribution, we merely use equation 4.5, yielding 
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For very rough surfaces with Gaussian autocovariance functions, the modified Beckmann-

Kirchhoff scatter theory is given by 

 ( )
22

, exp
4
xy cc

s s
s

v
L K

A g g

πθ φ
⎛ ⎞
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⎝ ⎠

. (4.13) 

Using equation 4.5 to convert from radiance to intensity yields: 

 ( )
22

, cos exp
4
xy cc

s s s

v
I K

g g

πθ φ θ
⎛ ⎞
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⎝ ⎠

. (4.14) 

4.4 Comparison With Experimental Measurements For Rough Surfaces 

We will now use the modified Beckmann-Kirchhoff theory given by equations 

4.12 and 4.14 to predict the scattering from the surface discussed in section 4.1 and 

compare it to both the classical Beckmann-Kirchhoff theory and the O’Donnell-Mendez 

experimental results. 

Recall from section 4.1 that for a wavelength of 10.6 μm and an incident angle of 

20 degrees, almost all of the reflected light is scattered (TIS = 0.998) and there is virtually 

no specular beam.  In Figure 4-7, scattered intensity predictions from the modified 

Beckmann-Kirchhoff theory expressed by equation 4.12 are compared with the classical 

Beckmann-Kirchhoff theory and the experimental data from Figure 4-1.  Since we only 

have one-dimensional experimental scattering profile data, we merely normalize the peak 

of the scattering function to unity, and label the curve relative intensity.  For this modest 

20 degree incident angle, the departure of the predictions from the classical Beckmann-
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Kirchhoff and the modified Beckmann-Kirchhoff theories are not severe; however, the 

modified theory does more closely match the experimental data. 

 

 

 
 

Figure 4-7: BK and MBK compared to experimental data for λ = 10.6 μm and θi = 20° 

For a 70 degree incident angle and a wavelength of 10.6 μm, the departure 

between the experimental data and the prediction of the classical Beckmann-Kirchhoff 

theory in Figure 4-2 was significant.  In addition, there was a particularly bothersome 

(non-physical) discontinuity in the predicted curve at a scattering angle of −90 degrees.  

At this large incident angle, almost half of the reflected radiant power resides in the 

specular beam (TIS = 0.571) and, as previously noted, the peak of the scattering function 
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is shifted approximately ten degrees from the specular direction.  As seen in Figure 4-8, 

the modified Beckmann-Kirchhoff theory given by equation 4.12 once again more 

closely matches the experimental measurements, and it does not exhibit the non-physical 

discontinuity at a scattering angle of −90 degrees. 

 

 
 

Figure 4-8: BK and MBK compared to experimental data for λ = 10.6 μm and θi = 70° 

For the much shorter wavelength of 0.6328 μm, the O’Donnell-Mendez surface 

must be categorized as very rough as σs/λ = 3.59, and for θi = 70 degrees, the maximum 

value of g is approximately equal to 915.  For such a rough surface, all of the incident 

light is scattered and there is no specular beam.  Equation 4.12 will converge very slowly 

for this situation, and we can instead use the rough surface expression of equation 4.14.  
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In Figure 4-9, scattered intensity predictions from the modified Beckmann-Kirchhoff 

theory expressed by equation 4.14 are compared with the classical Beckmann-Kirchhoff 

theory and experimental data from Figure 4-3.  We again normalized the peak of the 

modified Beckmann-Kirchhoff scattering profile to unity.  For this short wavelength and 

a 70 degree incident angle, the departure between the predictions of the classical and the 

modified theory is quite dramatic.  The classical Beckmann-Kirchhoff theory indicates a 

very significant (non-physical) discontinuity at a scattering angle of −90 degrees and is 

clearly not capable of making accurate surface scatter predictions for very rough surfaces 

at these large incident angles.  The empirically modified Beckmann-Kirchhoff theory, 

however, agrees extremely well with the experimental data. 

 

 
 

Figure 4-9: BK and MBK compared to experimental data for λ = 0.6328 μm and θi = 70° 
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4.5 Comparison With The Rayleigh-Rice Theory For Smooth Surfaces 

The Rayleigh-Rice surface scatter theory discussed in section 2.2.2 has been 

widely accepted and extensively validated for smooth surfaces (σs/λ << 1) even for large 

incident and scattering angles.  We will therefore compare the modified Beckmann-

Kirchhoff surface scatter theory with predictions from the Rayleigh-Rice theory for 

smooth surfaces. 

From equation 2.39, the Rayleigh-Rice prediction of scattered intensity  can be 

written as 

 ( ) ( )
2

2
s4

16
, ; cos cos   ,RR s s i i i x yI P Q PSD f f

πθ φ θ θ θ
λ

= . (4.15) 

The dimensionless quantity Q in equation 4.15 is the polarization dependent reflectance 

of the surface as discussed in section 2.2.2.  For an infinitely conducting surface, Q = 1 in 

the plane of incidence.  The PSD is the two-dimensional power spectral density of the 

scattering surface expressed in terms of spatial frequencies and  x yf f .  These spatial 

frequencies are related to incident and scattering angles in the spherical coordinate 

system by 

 
sin cos sin sin sin

,   s s i s s
x yf f

θ φ θ θ φ
λ λ

−
= = . (4.16) 

If we assume a Gaussian autocovariance function given by 

 ( )2 2exp /s cACV rσ ⎡ ⎤= −⎣ ⎦ , (4.17) 
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then the PSD, which is the two-dimensional Fourier transform of the ACV, is given by 

 ( ) ( )2 2 2 2 2 2, expx y s c c x yPSD f f f fπσ π⎡ ⎤= − +⎣ ⎦ . (4.18) 

Using equation 4.16, we can write the x-profile of equation 4.18 as 

 ( ) ( )
2 2

22 2

2
exp sin sinc

x s c s oPSD f
ππσ θ θ

λ
⎡ ⎤

= − −⎢ ⎥
⎣ ⎦

. (4.19) 

The intensity in the plane of incidence, as predicted by the Rayleigh-Rice theory is 

therefore given by 

      ( ) ( )
3 2 2 2 2

22
s4 2

16
, ; cos cos   exp sin sins c c

RR s s i i i s oI P Q
π σ πθ φ θ θ θ θ θ

λ λ
⎛ ⎞ ⎡ ⎤

= − −⎜ ⎟ ⎢ ⎥
⎝ ⎠ ⎣ ⎦

. (4.20) 

We will assume a perfectly conducting surface so that Q = 1, and use equations 

4.6, 4.12, and 4.20 to compare the classical Beckmann-Kirchhoff theory, the modified 

Beckmann-Kirchhoff theory, and the Rayleigh-Rice theory for several cases. 

Figure 4-10 shows a comparison of the three theories for a smooth surface at 

normal incidence, and with lc/λ = 2.  This surface will produce a fairly narrow scattering 

function and, as the figure shows, all three theories predict essentially the same results. 

In Figure 4-11, we retained the same RMS roughness and wavelength, but 

reduced the correlation length by a factor of five.  These changes yield fairly wide-angle 

scattering, and the classical Beckmann-Kirchhoff theory starts to break down, exhibiting 

a non-physical discontinuity at ± 90 degrees.  The modified Beckmann-Kirchhoff theory, 

on the other hand, continues to agree extremely well with the Rayleigh-Rice theory. 
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Figure 4-10: BK, MBK, and RR compared for a smooth surface at normal incidence and 
with small scattering angles 

 
 

Figure 4-11: BK, MBK, and RR compared for a smooth surface at normal incidence and 
with large scattering angles 

σs/λ = 0.02 
lc/λ = 2 
θi  = 0° 

σs/λ = 0.02 
lc/λ = 0.4 
θi  = 0° 
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In Figures 4-12, 4-13, and 4-14, the classical Beckmann-Kirchhoff, modified 

Beckmann-Kirchhoff, and Rayleigh-Rice theories are compared for incident angles of 20, 

50, and 70 degrees and lc/λ ratios of 5, 1, 0.5, and 0.25. 

For the 20 degree angle of incidence in Figure 4-12, all three theories agree very 

well for lc/λ = 5 and lc/λ = 1.  For lc/λ = 0.5, the departure of the classical 

Beckmann-Kirchhoff theory from the others becomes significant, and it exhibits a 

discontinuity at −90 degrees.  For lc/λ = 0.25, the disagreement between the classical 

Beckmann-Kirchhoff and the other two theories is quite severe, with discontinuities at 

both ±90 degrees.  The peak of the classical Beckmann-Kirchhoff theory is also shifted 

slightly away from the peaks of the other two theories and towards zero degrees.  The 

modified Beckmann-Kirchhoff and Rayleigh-Rice theories agree extremely well at this 

incident angle for all values of lc/λ, except for very small differences at larger scattering 

angles for the smaller correlation lengths.  Note that the peaks of all three theories shift 

away from the specular beam and towards zero degrees as lc/λ decreases. 

For the 50 degree incident angle in Figure 4-13, all three theories again yield 

virtually identical results for lc/λ = 5.  The disagreement between the classical 

Beckmann-Kirchhoff theory and the other two theories is more significant for the rest of 

the values of lc/λ than it was for the 20 degree incident angle. We can also see that the 

peak of the classical Beckmann-Kirchhoff prediction increasingly shifts away from the 

peaks of the other two theories as the correlation length is decreased.  The agreement 

between the modified Beckmann-Kirchhoff theory and the Rayleigh-Rice theory 

continues to be excellent, again except for some very small differences at larger angles. 
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Figure 4-12: BK and MBK compared to RR for θi = 20°, σs/λ = 0.02, and lc/λ = 5, 1, 0.5, and 0.25 

σs/λ = 0.02 
lc/λ = 5 
θi  = 20° 

σs/λ = 0.02 
lc/λ = 1 
θi  = 20° 

σs/λ = 0.02 
lc/λ = 0.5 
θi  = 20° 

σs/λ = 0.02 
lc/λ = 0.25 
θi  = 20° 
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Figure 4-13: BK and MBK compared to RR for θi = 50°, σs/λ = 0.02, and lc/λ = 5, 1, 0.5, and 0.25 

σs/λ = 0.02 
lc/λ = 5 
θi  = 50° 

σs/λ = 0.02 
lc/λ = 1 
θi  = 50° 

σs/λ = 0.02 
lc/λ = 0.5 
θi  = 50° 

σs/λ = 0.02 
lc/λ = 0.25 
θi  = 50° 
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Figure 4-14: BK and MBK compared to RR for θi = 70°, σs/λ = 0.02, and lc/λ = 5, 1, 0.5, and 0.25 

σs/λ = 0.02 
lc/λ = 5 
θi  = 70° 

σs/λ = 0.02 
lc/λ = 1 
θi  = 70° 

σs/λ = 0.02 
lc/λ = 0.5 
θi  = 70° 

σs/λ = 0.02 
lc/λ = 0.25 
θi  = 70° 
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For the 70 degree angle of incidence in Figure 4-14, the disagreement between the 

classical Beckmann-Kirchhoff theory and the other two theories is worse than it was for 

the smaller incident angles.  For lc/λ = 5, it agrees fairly well with the predictions of the 

other two theories, except for small differences at large negative scattering angles and a 

discontinuity at −90 degrees.  The disagreement of the classical Beckmann-Kirchhoff 

theory with the other two theories becomes increasingly worse as lc/λ is decreased.  The 

modified Beckmann-Kirchhoff theory again agrees extremely well with the 

Rayleigh-Rice theory for this angle of incidence.  For lc/λ values of 1, 0.5, and 0.25 the 

modified Beckmann-Kirchhoff prediction is shifted slightly from the Rayleigh-Rice 

prediction.  Compared to the shift of the classical Beckmann-Kirchhoff theory, however, 

the shift of the modified Beckmann-Kirchhoff theory is relatively minor. 

The modified Beckmann-Kirchhoff theory is obviously a significant improvement 

over the classical Beckmann-Kirchhoff theory.  The disagreement between the classical 

theory and the Rayleigh-Rice theory becomes increasingly significant with both 

decreasing correlation length and increasing incident angle.  The modified theory, on the 

other hand, agrees extremely well with the Rayleigh-Rice theory for both large incident 

angles and large scattering angles (i.e. small correlation lengths). 

4.6 Range Of Validity Of The Modified Beckmann-Kirchhoff Equations 

In the derivation of his scattering theory, Beckmann provided [90] some general 

criteria for when to use each of the closed-form equations.  When g << 1 (smooth 

surfaces), he suggested that one need only use the first term of the infinite series in 
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equation 4.6.  For g ≈ 1 (moderately rough surfaces), he stated that equation 4.6 could be 

used with an appropriate number of terms.  And for g >> 1 (very rough surfaces), he 

derived the approximation given by equation 4.9. 

But how much smaller than one does g need to be in order for a surface to be 

considered smooth?  How much larger than one does g need to be in order for a surface to 

be rough?  And for moderately rough surfaces, what constitutes an appropriate number of 

terms?  We will now take a closer look at these roughness regimes and try to gain a better 

understanding of when it is appropriate to use each of the equations that make up the 

Beckmann-Kirchhoff theory.  Note from equation 4.8 that for a given incident angle, g is 

actually a function of the scattering angle.  When we discuss g as a parameter in the 

following analysis, we refer to its maximum value which always occurs at a scattering 

angle of zero degrees. 

4.6.1 Smooth Surface Approximation 

For smooth surfaces, only the first term of equation 4.12 needs to be used, as all 

higher terms should be negligible.  To determine what constitutes a “smooth” surface, we 

can compare predictions using equation 4.12 with many terms to predictions using 

equation 4.12 with only one term for various values of the parameter g.  Examples of this 

are shown in Figure 4-15 for four values of g.  The angle of incidence was assumed to be 

zero degrees, the quantity lc/λ was assumed to be unity, and the RMS roughness, σs, was 

varied to obtain the different values of g.  The smooth approximation is the result of 

using one term in equation 4.12, while 50 terms were used to obtain the general result. 



 

 
 

125

            
 

            
 

Figure 4-15: Comparison between the general MBK solution using 50 terms in equation 4.12 and the MBK smooth surface 
approximation of using only one term in equation 4.12 for g = 2, 0.5, .1, and 0.01 

θi = 0° 
lc/λ = 1 
σs/λ = 0.113 
 
g = 2 
error = 45.7% 

θi = 0° 
lc/λ = 1 
σs/λ = 0.056 
 
g = 0.5 
error = 12.3% 

θi = 0° 
lc/λ = 1 
σs/λ = 0.025 
 
g = 0.1 
error = 2.49% 

θi = 0° 
lc/λ = 1 
σs/λ = 0.008 
 
g = 0.01 
error = 0.25% 



 

 
 

126

We can see from Figure 4-15, that as g is decreased and the smooth surface 

approximation gets closer to the general result, the largest discrepancy between the two 

results occurs at their peaks.  Because of this behavior, we decided that the maximum 

error between the two predictions was a better measure of the validity of the 

approximation than some other quantity, such as RMS error.  The maximum error in 

Figure 4-15 ranges from 45.7% for g = 2 to 0.25% for g = 0.01.  Calculations of the 

maximum error were performed over a range of g values from 0 to 0.5 for several 

incident angles.  These results are shown in Figure 4-16. 

 

 

 
 

Figure 4-16: Maximum error between the general MBK solution using 50 terms in 
equation 4.12 and the MBK smooth approximation using 1 term in 
equation 4.12 as a function of g for θi = 0°, 50°, and 70° 
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As seen in Figure 4-16, the maximum error between the general solution of the 

modified Beckmann-Kirchhoff theory and the smooth surface approximation varies 

linearly with the parameter g.  We can also see that the slope of this linear relationship 

increases with increasing incident angle.  Determining the value of g for which the 

smooth approximation is valid depends on how much error can be tolerated.  A tolerance 

of 2% on the maximum error, for instance, would allow one to use the smooth surface 

approximation when g is less than 0.05 for incident angles less than 70 degrees. 

4.6.2 Moderately Rough Surfaces 

For surfaces that cannot be classified as either smooth (g << 1) or very rough 

(g >> 1), the general modified Beckmann-Kirchhoff solution of equation 4.12 needs to be 

used with an appropriate number of terms.  We therefore want to determine how the 

number of terms needed varies with the parameter g. 

We will first create a quantity we call Term Importance (TI), which will be 

defined as the value of a single term of equation 4.12 divided by the sum of all terms in 

equation 4.12.  In other words, the Term Importance of the nth term is given by 

 ( )

2 2

2 2
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∑
. (4.21) 

Note that since vxy is a function of scattering angle, Term Importance is also a function of 

scattering angle.  Therefore equation 4.21 represents the fraction of the total scattered 
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intensity contributed by the nth term for a given scattering angle.  It is important to realize 

that the number of terms (m) used to calculate the denominator of equation 4.21 needs to 

be large enough to assure convergence of the series. 

An example of the Term Importance is shown in Figure 4-17 as a function of the 

scattering angle.  The light was assumed to be normally incident on the surface, and g 

was set equal to 50.  A total of 400 terms were used to calculate the denominator of 

equation 4.21, and the Term Importance plotted in Figure 4-17 is that of the 45th term.  

From this plot, we can see, for instance, that this term accounts for approximately 5% of 

the total scatter distribution at a scattering angle of zero degrees and roughly 7.5% at a 

scattering angle of 52 degrees. 

 

 
 

Figure 4-17: Term Importance as a function of scattering angle in the plane of incidence 
for θi = 0°, lc/λ = 10, g = 50, n = 45, and m = 400 
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We next define a quantity we call the Average Term Importance.  This quantity is 

given by the average of the Term Importance for a given term over all scattering angles.  

It is therefore a measure of how much each term contributes to the total scatter 

distribution for all scattering angles.  For the example shown in Figure 4-17, the average 

term importance is 0.0489.  If we calculate the Average Term Importance for each term 

used to calculate the total distribution and plot it against the term number, we obtain a 

visual tool showing us approximately how important each term is to the total scattering 

distribution.   

For the above example where g = 50, the Average Term Importance (normalized 

to a peak of 1) is shown in Figure 4-18.  From this figure we can immediately see that the 

first 20 terms hardly contribute at all to the scatter distribution, and neither do terms 

higher than the 70th term.  Using 400 terms to calculate the scattering function when 

g = 50 is obviously not necessary.  If we had not used enough terms to calculate the 

denominator of equation 4.21, the plot of the Average Term Importance would exhibit a 

discontinuity at the maximum term number. 

Figure 4-19 shows another example of the Average Term Importance, this time 

for g = 300.  From the figure, we can see that the highest average contribution to the 

scattering distribution comes from the 284th term, but that all terms from around n = 60 to 

n = 360 are important to the calculation of the scattering distribution. 

We then decided that the number of terms needed for a given value of g would be 

determined by the point at which the Average Term Importance drops to 1/1000th of its 

maximum value.  Based on this criterion, we calculated the number of terms needed as a 

function of g for several angles of incidence.  The results are shown in Figure 4-20. 
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Figure 4-18: Average Term Importance as a function of term number for θi = 0°, 
lc/λ = 10, g = 50, and m = 400 

 
 

Figure 4-19: Average Term Importance as a function of term number for θi = 0°, 
lc/λ = 10, g = 300, and m = 500 
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Figure 4-20: Number of terms needed to calculate the general MBK result of equation 
4.12 as a function of g for θi = 0°, 50°, and 70° 

As Figure 4-20 shows, the relationship between the number of terms needed to 

calculate the general modified Beckmann Kirchhoff scattering distribution of equation 

4.12 is linear in nature, and does not depend on the angle of incidence.  Based on a linear 

fit to the data points in Figure 4-20, the number of terms needed to calculate equation 

4.12 as a function of g is given by 

 Number of Terms  1.10   + 40g= × . (4.22) 

Equation 4.22 can easily be made part of any numerical routine used to calculate 

the modified Beckmann-Kirchhoff theory when using equation 4.12.  As a final 

comment, it is important to realize for large values of m in equation 4.12, some of the 
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intermediate steps, such as the factorial, result in very large numbers, even though the 

final result may not be large.  This can be a problem when using some software packages 

to do the calculations.  MATLAB®, for instance, can only accurately calculate factorials 

of up to 25 since it uses double precision, and above values of 170 it gives the result as 

infinity.  MATHEMATICA®, on the other hand, is able to use arbitrary precision, and 

can therefore better handle a larger number of terms.  For the calculations above and in 

the next section as well, we used a combination of the two programs.  The majority of the 

calculations were performed in MATLAB®, and a linking program was used to call 

MATHEMATICA® to perform the calculations requiring arbitrary precision.  These 

results were then returned to MATLAB® where the calculations were completed. 

4.6.3 Very Rough Approximation 

For very rough surfaces, the approximate expression of equation 4.14 can be used 

to calculate the scattered intensity distribution.  This can be extremely useful because 

using equation 4.12 for these surfaces can involve a rather large number of terms and 

require a great deal more computation.  To determine what constitutes a “very rough” 

surface, we can compare predictions calculated using equation 4.12 (with an appropriate 

number of terms given by equation 4.22) with predictions from the very rough 

approximation of equation 4.14.  Examples of this are shown in Figure 4-21 for four 

values of g.  The angle of incidence was assumed to be zero degrees, the quantity lc/λ 

was assumed to be 10, and the RMS roughness, σs, was varied to obtain the different 

values of g. 
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Figure 4-21: Comparison between the general MBK solution of equation 4.12 with an appropriate number of terms, and the MBK 
very rough surface approximation of equation 4.14 for g = 5, 20, 100, and 400 

θi = 0° 
lc/λ = 10 
σs/λ = 0.178 
 
g = 5 
error = 21.9% 

θi = 0° 
lc/λ = 10 
σs/λ = 0.356 
 
g = 20 
error = 5.30% 

θi = 0° 
lc/λ = 10 
σs/λ = 0.796 
 
g = 100 
error = 1.01% 

θi = 0° 
lc/λ = 10 
σs/λ = 1.59 
 
g = 400 
error = 0.25% 
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As was the case for the smooth surface approximation, the largest discrepancy 

between the general Beckmann-Kirchhoff solution and the very rough approximation also 

occurs at the peaks of the two functions.  The maximum error is therefore again a good 

measure of the validity of the approximation.  The maximum error for the example in 

Figure 4-21 varies from 21.9% for g = 5 to 0.25% for g = 400.  Calculations of the 

maximum error were performed over a range of g values from 0 to 0.5 for several 

incident angles.  These results are shown in Figure 4-22. 

 

 

 
 

Figure 4-22: Maximum error between the general MBK solution and the MBK very 
rough approximation as a function of g for θi = 0°, 50°, and 70° 
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We can see from Figure 4-22 that the relationship between the maximum error 

and g is basically an inverse power law relationship, as the error for each incident angle is 

nominally a straight line when plotted in a log-log format.  We also see that the 

maximum error for larger incident angles can be much greater than the error for smaller 

incident angles.  Determining the value of g for which the very rough surface 

approximation is valid again depends on how much error can be tolerated.  If your 

tolerance was 1%, then for normal incidence, the very rough approximation could be 

used when g ≈ 100.  For a 70 degree incident angle, however, a tolerance of 1% would 

require that the very rough surface approximation be used only when g > 800. 
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CHAPTER 5: 

GENERALIZED HARVEY-SHACK SURFACE SCATTER THEORY 

In the previous chapter, a modification to the Beckmann-Kirchhoff scattering 

theory was found to more accurately predict surface scatter than the original 

Beckmann-Kirchhoff theory for rough surfaces, while at the same time yielding results 

comparable to the Rayleigh-Rice theory for smooth surfaces, even at large incident and 

scattering angles.  The modified theory as presented in chapter four is only applicable to 

surfaces with Gaussian autocovariance functions, however, and while it can be further 

modified to allow surfaces with other autocovariance functions, it is not all that 

straightforward to do so.  In addition, the fact that the modification is empirical is less 

than completely satisfying.  Therefore, we will now turn our attention to the Harvey-

Shack surface scatter theory and attempt to generalize it to overcome some of its key 

limitations. 

5.1 The Original Harvey-Shack Theory 

As discussed in chapter two, the original Harvey-Shack theory uses a linear 

systems approach to predict scatter from surface roughness.  It assumes that the scattering 

surface can be described by a surface transfer function, H, given by 

 { } 
2 2ˆ ˆ ˆ ˆ ˆ( , ) exp (4 ) 1 ( , ) /S s s sH x y C x yπ σ σ⎡ ⎤= − −⎣ ⎦ , (5.1) 

where as before ˆ
sσ  is the RMS roughness, the “hats” indicate scaling by the wavelength, 

and sC  is the surface autocovariance function.  The transfer function can also be written 
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in the form 

 ( ) ( )ˆ ˆ ˆ ˆ,  ,SH x y A B G x y= + , (5.2) 

where  ( )2
ˆexp 4 sA πσ⎡ ⎤= −⎣ ⎦ , (5.3) 

 ( )2
ˆ1 exp 4 sB πσ⎡ ⎤= − −⎣ ⎦ , (5.4) 

and 
( ) ( )

( )

 

2

2

ˆ ˆ ˆexp 4 , 1
ˆ ˆ( , )

ˆexp 4 1s

C x y
G x y

π

πσ

⎡ ⎤ −⎣ ⎦=
⎡ ⎤ −⎣ ⎦

 . (5.5) 

The scattering distribution, which Harvey called the Angle Spread Function (ASF), is 

given by the Fourier transform of the transfer function: 

 ( ) ( ){ } ( ) ( )ˆ ˆ, , , ,SASF H x y A Sα β δ α β α β= = +F , (5.6) 

where ( ) ( ){ }ˆ ˆ,  ,S B G x yα β = F . (5.7) 

We can see from equation 5.6 that the ASF is the sum of a delta function at the location of 

specular reflection and a scattering function that surrounds it.  The percentage of the total 

power in the specular reflection is given by A, and the percentage of the total power in the 

scattering function is given by B, also known as the total integrated scatter (TIS). 

The derivation of the original Harvey-Shack theory contained no explicit smooth 

surface approximations.  It did, however, have limitations.  These are notably: i) It is a 

scalar theory and therefore does not account for polarization effects, ii) It is limited to 

small incident and scattering angles, and iii) It does not account for the redistribution of 
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energy from evanescent to propagating waves.  The third limitation has already been 

addressed by the non-paraxial scalar diffraction theory developed in chapter three.  The 

Harvey-Shack formulation is an application of that theory, and a renormalization 

constant, analogous to K in equation 3.29, can therefore be implemented in the scattering 

theory.  The first two limitations will be addressed in the following development. 

5.2 The Modified Harvey-Shack Formulation 

In the development of the original Harvey-Shack theory, an assumption was made 

about the random component of the pupil function described by equation 2.97.  The 

random phase variations introduced upon reflection from the scattering surface were 

assumed to be given by 

 ( ) ( ) ( )  
ˆˆ ˆ ˆ ˆ, ;0 2 / 4 , ;0x y OPD h x yφ π λ π= = , (5.8) 

where ĥ  is the height variation of the random rough surface scaled by the wavelength of 

light.  Equation 5.8 corresponds to the phase variations that would be introduced onto a 

wavefront striking the surface at normal incidence.  This assumption limits the theory to 

both very small incident and scattering angles. 

Figure 5-1 shows a ray incident upon a scattering surface at an arbitrary angle of 

incidence θi.  The optical path difference of a ray reflected from the surface in the 

specular ( )0 iθ θ= −  direction is given by 

 ( ) ( ) ( )  ˆ ˆ ˆ ˆcos cos , ;0 2cos , ;0i o iOPD h x y h x yθ θ θ= + = , (5.9) 
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and the corresponding phase variation is given by 

 ( ) ( ) ( )  
ˆˆ ˆ ˆ ˆ, 2 / 4 cos , ;0ix y OPD h x yφ π λ π θ= = . (5.10) 

Provided that the scattering angles are small relative to the angle of specular reflection, 

the phase function of equation 5.10 describes the phase variations introduced upon 

reflection from a scattering surface for a wavefront incident at an arbitrary angle.  
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Figure 5-1: Illustration of the OPD for a specularly reflected ray 

In the late 1980s, equation 5.10 was used to modify the original Harvey-Shack 

theory to account for the extremely large incident angles inherent to grazing incidence 

X-ray telescopes [54].  This resulted in a system transfer function given by 
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 ( ) 

2
2ˆ

ˆ ˆ ˆ ˆ( , ; ) exp 4 2 sin 1 , /
sinS s s s

y
H x y C xϕ π ϕ σ σ

ϕ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − −⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
, (5.11) 

where ϕ  is the grazing angle, which is the complement to the incident angle iθ .  The 

factor of 2 is due to reflection from two mirrored surfaces.  This modified transfer 

function is in actuality a one-parameter family of surface transfer functions.  The 

scattering process can no longer be considered shift-invariant with respect to incident 

angle, as a different transfer function is required for each incident angle.   This does not 

diminish the usefulness of the theory, however.   It is quite analogous to the common 

practice of applying linear systems theory to characterize imaging systems exhibiting 

field-dependent aberrations, where a different modulation transfer function is used for 

multiple field angles. 

The transfer function in equation 5.11 was later adapted [112] to predict scattering 

for a single scattering surface for non-grazing incidence, where the transfer function was 

given as 

 ( ) 

2 2
i

ˆ
ˆ ˆ ˆ ˆ( , ) exp 4  cos 1 , /

cosS s s s
i

y
H x y C xπ θ σ σ

θ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − −⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

. (5.12)  

This form of the transfer function is incorrect, however, due to the scaling of ŷ  by the 

cosine of the incident angle in the autocovariance function sC .  For grazing incidence 

applications, this scaling was done to calculate the scattering distribution not in a 

hemisphere centered about the scattering surface, but at the focal plane of the 

grazing-incidence telescope.  The autocovariance function in equations 5.11 and 5.12 is 
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not given in terms of the coordinates of the scattering surface, but in a rotated coordinate 

system where ˆ ˆ ˆ ˆ  and  / cos ox x y y θ= = .  For the usual scattering geometry, the correct 

form of the modified transfer function for an arbitrary incident angle is therefore given by 

 ( ) ( ){ } 

2 2
iˆ ˆ ˆ ˆ ˆ( , ) exp 4  cos 1 , /S s s sH x y C x yπ θ σ σ⎡ ⎤= − −⎣ ⎦ . (5.13) 

This can again be written in the form 

 ( )ˆ ˆ ˆ ˆ( , )  ,SH x y A B G x y= + , (5.14) 

where  ( )2
ˆexp 4 cos i sA π θ σ⎡ ⎤= −⎣ ⎦ , (5.15) 

 ( )2
ˆ1 exp 4 cos i sB π θ σ⎡ ⎤= − −⎣ ⎦ , (5.16) 

and 
( )

( )

 

2

2

ˆ ˆ ˆexp 4 cos ( , ) 1
ˆ ˆ( , )

ˆexp 4 cos 1

i

i s

C x y
G x y

π θ

π θ σ

⎡ ⎤ −⎣ ⎦=
⎡ ⎤ −⎣ ⎦

. (5.17) 

A wavefront incident on the scattering surface at an angle iθ  is equivalent to 

introducing a linear phase shift across the pupil.  Assuming the plane of incidence to be 

the x-z plane, this will cause a shift of the scattering function in direction cosine space of 

oα α− , where sino oα θ= .  The ASF is therefore given by the Fourier transform of the 

transfer function in equation 5.13 (or 5.14) multiplied by the linear phase shift: 

 ( ) ( ) ( ){ } ( ) ( )ˆ ˆ ˆ, , exp 2 , ,S o o oASF H x y i x A Sα β πα δ α α β α α β= − = − + −F . (5.18) 
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where ( ) ( ) ( ){ }ˆ ˆ ˆ,  , exp 2o oS B G x y i xα α β πα− = −F . (5.19) 

This is again the sum of a delta function at the location of the specular direction 

surrounded by a scattering function, S, where the total power in the specular reflection is 

given by A, the percentage of total power in the scattering function (TIS) is given by B, 

and A + B = 1. 

If any portion of the scattering function S in equation 5.18 falls outside of the unit 

circle in direction cosine space, it will need to be truncated and renormalized to account 

for conservation of energy.  This is accomplished in the same manner as was done for 

diffraction in section 3.3 of chapter three.  Similar to equation 3.29, the renormalization 

constant, K, for the scattering function is given by 

 

( )

( )
2

2

  

1 1-

1   1-

     ASF ,    

  ASF ,    

d d

K

d d

βα
α

α β α

α β α β

α β α β

∞ ∞

= −∞= −∞

=− = −

=
∫ ∫

∫ ∫

. (5.20) 

The numerator in equation 5.20 is simply equal to unity, however.  The normalization 

constant can therefore be written as 

 

( )
2

2

1 1-

1   1-

1

 ASF ,    

K

d d
α

α β α

α β α β
=− = −

=

∫ ∫
, (5.21) 

and the angle spread function is then given by 

 ( ) ( ) ( ){ }ˆ ˆ ˆ, , exp 2S oASF K H x y i xα β πα′ = −F . (5.22) 
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Recall from section 2.2.4 that the ASF is a normalized radiance function. We can 

therefore convert the angle spread function to intensity by using equation 2.96.  The 

scattered intensity is therefore given by 

 ( ) ( ) s,  ,  cosiI P ASFα β α β θ=  . (5.23) 

5.2.1 Smooth Surface Approximation 

We will now compare the original and modified Harvey-Shack theories to each 

other and with the well-established Rayleigh-Rice theory for smooth surfaces.  Although 

it is not necessary, it will be useful to make a smooth surface approximation to the 

Harvey-Shack theories to aid in the comparison. 

A smooth surface implies that the roughness is small compared to the wavelength 

of light.  If we let ˆ sσ λ<< in equations 5.3-5.5 for the original Harvey-Shack theory, we 

obtain 

 [ ]2
ˆ1 4 sA πσ≈ − , (5.24) 

 [ ]2
ˆ4 sB πσ≈ , (5.25) 

and ( ) ( ) 2ˆ ˆ ˆ ˆ, , /s sG x y C x y σ=  . (5.26) 

Using equation 5.7, the scattering function is then given by 

 ( ) ( ){ }
2

2

16
ˆ ˆ,  ,sS C x y

πα β
λ

= F . (5.27) 
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After a change of variables from ( )ˆ ˆ,x y  to ( ),x y , and recognizing that the autocovariance 

function sC  and the surface power spectral density (PSD) constitute a Fourier transform 

pair, the scattering function can be written in terms of scattering angles as 

 ( ) ( )
2

4

16
, ;  ,OHS s s i x yS PSD f f

πθ φ θ
λ

= , (5.28) 

where 
sin cos sin sin sin

,   s s i s s
x yf f

θ φ θ θ φ
λ λ

−
= = . (5.29) 

From equation 5.23 the scattered intensity for the original Harvey-Shack (OHS) theory is 

therefore given by 

 ( ) ( )
2

4

16
, ; cos  ,OHS s s i i s x yI P PSD f f

πθ φ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (5.30) 

Similarly, the intensity for the modified Harvey-Shack (MHS) theory for smooth surfaces 

is given by 

 ( ) ( )
2

2

4

16
, ;  cos cos ,MHS s s i i s x yi

I P PSD f f
πθ φ θ θ θ

λ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (5.31) 

Recall from equation 2.39 that the intensity (normalized by incident power) for the 

Rayleigh-Rice (RR) theory, assuming a perfect conducting surface and TE polarization, 

is given by 

 ( ) ( )
2

2
4

16
, ; cos cos  ,RR s s i i i s x yI P PSD f f

πθ φ θ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (5.32) 
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Comparing equation 5.30 with 5.31, we can see that the original Harvey-Shack 

and the modified Harvey-Shack theories are only strictly equal for normal incidence.  

They should give similar results, however, for paraxial incident angles when cos 1iθ ≈ .  

Comparing both versions of the Harvey-Shack theory to the Rayleigh-Rice theory, we 

can see that all three should agree fairly well when both the incident and scattering angles 

are paraxial, for which cos ,cos 1i sθ θ ≈ .  For larger incident angles, the original 

Harvey-Shack will predict both a higher peak and larger TIS than either the modified 

Harvey-Shack or the Rayleigh-Rice theories.  For all incident angles, the modified 

Harvey-Shack and Rayleigh-Rice theories are equal at the location of specular reflection 

where cos cosi sθ θ= .  They should agree fairly well elsewhere provided that the spread 

of the scattering function around the specular beam is small. 

For comparison purposes, we will assume the scattering surface to have a 

Gaussian autocovariance function of the form 

 ( )
2 2

2
2

, exps s
c

x y
C x y σ

⎡ ⎤+
= −⎢ ⎥

⎣ ⎦
. (5.33) 

The PSD is then given by 

 ( ) ( )2 2 2 2 2 2, expx y s c c x yPSD f f f fπσ π⎡ ⎤= − +⎣ ⎦ , (5.34) 

where lc is the correlation length, and ,x yf f  are given by equation 5.29.  To calculate the 

intensity for the three theories, equation 5.34 is substituted into equations 5.30, 5.31, and 

5.32.  For smooth surfaces, the RMS roughness only affects the magnitude of the 
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scattering function, not its shape.  Therefore we will only use one roughness scale, 

/ 0.02sσ λ = , when calculating scatter for smooth surfaces.  

Figure 5-2 shows a comparison of the original and modified Harvey-Shack 

theories with the Rayleigh-Rice theory for a surface with the autocovariance function 

given in equation 5.33.  The incident angle is zero degrees and the ratio of the correlation 

length to the wavelength of light (lc/λ) is five.  The original and modified Harvey-Shack 

theories are exactly equal for normal incidence as discussed above.  The ratio of lc/λ 

determines the angular spread of the scattering function and, in the case of Figure 5-2, the 

spread is narrow enough that the Harvey-Shack theories and Rayleigh-Rice theories yield 

virtually identical results. 

 
 

Figure 5-2: OHS and MHS compared to RR for θi = 0° and lc/λ = 5 

θi = 0° 
σs/λ = 0.2 
lc/λ = 5 
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In Figure 5-3, the incident angle is again zero degrees, but lc/λ has been decreased 

by a factor of ten to 0.5.  This results in a much wider angular spread of the scattering 

function than in Figure 5-2, and the Harvey-Shack theories depart from the Rayleigh-

Rice theory at larger scattering angles.  The original and modified Harvey-Shack theories 

still yield identical results since the light is normally incident on the scattering surface. 

 

 

 
 

Figure 5-3: OHS and MHS compared to RR for θi = 0° and lc/λ = 0.5 

In Figure 5-4, lc/λ has again been set to five, resulting in a small angular spread of 

the scattering function.  The incident angle has been increased slightly to five degrees.  

θi = 0° 
σs/λ = 0.02 
lc/λ = 0.5 



 

 
 

148

The agreement between the three theories is still good; however the original Harvey-

Shack theory deviates slightly from the other two theories near the location of the 

specular reflection. 

 

 

 
 

Figure 5-4: OHS and MHS compared to RR for θi = 5° and lc/λ = 5 

In Figure 5-5, lc/λ has been kept at five, but the incident angle has been increased 

to 40 degrees.  The agreement between the modified Harvey-Shack and Rayleigh-Rice 

theories is still generally good.  The original Harvey-Shack theory departs drastically 

from the other two theories.  From equation 5.25, the original Harvey-Shack theory 

θi = 5° 
σs/λ = 0.02 
lc/λ = 5 
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predicts that 6.32% of the total energy is contained in the scattering function, while both 

the modified Harvey-Shack and Rayleigh-Rice theories predict that the scattering 

function contains 3.71% of the total energy.  The departure will only get worse with 

increasing incident angle, as the original Harvey-Shack theory will continue to predict a 

TIS of 6.32%, regardless of what the incident angle is, while the TIS predicted by the 

modified Harvey-Shack and Rayleigh-Rice theories will continue to decrease with 

increasing incident angle. 

 

 

 
 

Figure 5-5: OHS and MHS compared to RR for θi = 40° and and lc/λ = 5 

θi = 40° 
σs/λ = 0.02 
lc/λ = 5 
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The modified Harvey-Shack theory is obviously a large improvement over the 

original Harvey-Shack theory whenever the incident angle is not small.  Therefore, we 

will continue to compare only the modified Harvey-Shack theory with the Rayleigh-Rice 

theory.  In Figures 5-6, 5-7, and 5-8 the two theories are compared for incident angles of 

20, 50, and 70 degrees and lc/λ ratios of 1, 5, 10, and 40.   

For an incident angle of 20 degrees in Figure 5-6, the only significant departure of 

the modified Harvey-Shack theory from the Rayleigh-Rice theory occurs for lc/λ = 1, 

when the angular spread of the scattering function is almost 80 degrees.  Even then, the 

departure is not severe. 

For an incident angle of 50 degrees in Figure 5-7, the modified Harvey-Shack 

theory departs slightly from the Rayleigh-Rice theory for lc/λ = 5, where the scattering 

function is roughly 20 degrees wide.  For lc/λ = 1, the departure is quite severe. 

In Figure 5-8, where the incident angle is 70 degrees, there is only good 

agreement between the two theories when lc/λ = 40, where the width of the scattering 

function is about 6 degrees.  For all of the other lc/λ ratios, the modified Harvey-Shack 

theory departs significantly from the Rayleigh-Rice theory. 

The two theories should agree when the angular spread of the scattering function 

is small.  For small incident angles, the modified Harvey-Shack theory is fairly accurate 

even for very wide scattering functions.  The restriction on the angular spread becomes 

more severe with increasing incident angle, however, and for a given surface, the theory 

may work well for smaller incident angles but may break down at larger incident angles. 
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Figure 5-6: MHS compared to RR for θi = 20° and lc/λ = 40, 10, 5, and 1 

θi = 20° 
σs/λ = 0.02 
lc/λ = 40 

θi = 20° 
σs/λ = 0.02 
lc/λ = 10 

θi = 20° 
σs/λ = 0.02 
lc/λ = 5 

θi = 20° 
σs/λ = 0.02 
lc/λ = 1 
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Figure 5-7: MHS compared to RR for θi = 50° and lc/λ = 40, 10, 5, and 1 

θi = 50° 
σs/λ = 0.02 
lc/λ = 40 

θi = 50° 
σs/λ = 0.02 
lc/λ = 10 

θi = 50° 
σs/λ = 0.02 
lc/λ = 5 

θi = 50° 
σs/λ = 0.02 
lc/λ = 1 



 

 
 

153

   
 

  
 

Figure 5-8: MHS compared to RR for θi = 70° and lc/λ = 40, 10, 5,  and 1 

θi = 70° 
σs/λ = 0.02 
lc/λ = 40 

θi = 70° 
σs/λ = 0.02 
lc/λ = 10 

θi = 70° 
σs/λ = 0.02 
lc/λ = 5 

θi = 70° 
σs/λ = 0.02 
lc/λ = 1 
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5.2.2 Rough Surfaces 

For rough surfaces, a numerical solution to equation 5.18 (or 5.22) will most 

likely be required.  This is easily accomplished with computational software, such as 

MATLAB®, which is what we will use to perform the calculations using the built-in FFT 

routine. 

Given the ACV function of a surface, as well as the wavelength of light, the 

surface transfer function of equation 5.13 or 5.14 is calculated first.  If the ACV of the 

surface is not known, but the PSD is, the ACV can be calculated from the PSD since the 

two constitute a Fourier transform pair.  Care must be taken, however, since the PSD is 

usually known only over some band-limited region.  Fitting the PSD to some functional 

form can be useful in these cases to allow extrapolation beyond the known portion of the 

PSD. 

Figure 5-9 shows the surface transfer function for the O’Donnell-Mendez surface 

[110] discussed in chapter four.  In this case λ = 10.6 μm, θi = 70°, σs = 2.27 μm, and 

lc = 20.9 μm.  As seen in the figure, the transfer function consists of the sum of a constant 

and a bell-shaped function.   

We next use equation 5.18 to calculate the angle spread function which is shown 

in Figure 5-10.  The constant portion of Figure 5-9 will Fourier transform into a delta 

function in the location of specular reflection, while the bell-shaped function will Fourier 

transform into the scattering function.  The peak of the transfer function is unity, and 

therefore from the central ordinate theorem of Fourier transform theory [1], the volume  



 

 
 

155

 
 

Figure 5-9: MHS surface transfer function for a scattering surface with a Gaussian ACV 
function.  λ = 10.6 μm, θi = 70°, σs = 2.27 μm, lc = 20.9 μm. 

 
 

Figure 5-10: The ASF calculated by taking the Fourier transform of the transfer function 
in Figure 5-9 
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under its Fourier transform (the ASF) will also be unity.  The constant portion of the 

transfer function determines the percentage of the total power that resides in the specular 

portion of the ASF, given by A in equation 5.15.  The percentage of the total power in the 

scattering function is then given by B = 1 – A.  For this specific case, B = 0.571. 

Any portion of the ASF that falls outside of the unit circle in direction cosine 

space is not real and does not propagate.  The ASF then needs to be truncated at the unit 

circle and renormalized according to equations 5.21 and 5.22.  This renormalization 

redistributes the energy from that portion of the scattering function that falls outside the 

unit circle back into both the real part of the scattering function and the specularly 

reflected light.  Figure 5-11 shows the result of this truncation and renormalization for the 

ASF of Figure 5-10.  For this situation, the renormalization factor K is equal to 1.244. 

 

 
 

Figure 5-11: Truncated and renormalized ASF of Figure 5-10 
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Figure 5-12 shows a profile of the diffusely scattered portion of the ASF along the 

plane of incidence both before and after the truncation and renormalization is performed. 

The specular reflection has been omitted.  The two profiles differ in magnitude by a 

factor of K = 1.244, as calculated from equation 5.21  When plotted as a function of 

direction cosines, the scattering function as predicted by the modified Harvey-Shack 

theory is symmetrical about the location of specular reflection. 

 

 

 
 

Figure 5-12: Plane-of-incidence profile of the diffusely scattered portion of the ASF in 
Figure 5-10 both before and after renormalization. 
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The scattered intensity can be calculated from the ASF using equation 5.23.  

Figure 5-13 shows a profile of the scattered intensity in the plane-of-incidence as a 

function of scattering angle for the diffusely scattered portion of the ASF of Figure 5-10.  

The scattered intensity is highly asymmetrical about the direction of specular reflection, 

and the peak of the scattered intensity is shifted inside of the specular reflection.   The 

shift is due to the multiplication of the radiance by a cosine of the scattering angle to 

convert it to intensity.  The asymmetry is due to both the cosine and the fact that it is 

plotted as a function of scattering angle instead of the direction cosine of that angle. 

 

 

 
 

Figure 5-13: Scattered intensity in the plane of incidence as a function of scattering angle 
for the diffusely scattered portion of the ASF of Figure 5-10 
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A comparison of scattered intensity predicted by the original and modified 

Harvey-Shack theories is shown in Figure 5-14 for the O’Donnell-Mendez surface with a 

wavelength of 10.6 μm at incident angles of 0, 20, 50, and 70 degrees.  Experimental data 

taken from [110] for 20 and 70 degrees is also plotted for comparison.  For incident 

radiation with a wavelength of 10.6 μm, σs/λ = 0.214, and this surface can be considered 

moderately rough.  Since we only know the profile of the scattered intensity from the 

experimental data, we are not able to calculate its volume to scale it to the theoretical 

predictions.  The peak of the experimental data was therefore normalized to the peak of 

the modified Harvey-Shack prediction. 

For normal incidence in Figure 5-14, the original and modified Harvey-Shack 

theories give the same result.  This will always be the case, regardless of how rough the 

surface is.  For normally incident 10.6 μm radiation, both theories predict that all of the 

light will be diffusely scattered, and there will therefore be no specular reflection. 

For a 20 degree incident angle, both theories still predict that all of the light will 

be diffusely scattered.  The original Harvey-Shack theory predicts a smaller peak and a 

slightly wider scattering function.  The modified Harvey-Shack theory gives a fairly good 

fit to the experimental data for this small incident angle, even though the scattering 

function has an angular spread of roughly 80 degrees. 

For a 50 degree incident angle, the disagreement between the theories is far more 

pronounced.  The peak of the original Harvey-Shack prediction is about half of the 

modified Harvey-Shack peak, and the angular spread is larger.  In addition, the original 

Harvey-Shack theory still predicts a TIS of 1, while the TIS from the modified 

Harvey-Shack theory drops slightly to 0.942.  
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Figure 5-14: MHS compared to OHS and OM experimental data for σs/λ = 0.214, lc/λ = 1.97, and θi = 0°, 20°, 50°, and 70° 

θi = 0° 
σs/λ = 0.214 
lc/λ = 1.97 
TISOHS = 1 
TISMHS = 1 

θi = 20° 
σs/λ = 0.214 
lc/λ = 1.97 
TISOHS = 1  
TISMHS = 1 

θi = 50° 
σs/λ = 0.214 
lc/λ = 1.97 
TISOHS = 1 
TISMHS = 0.94 

θi = 70° 
σs/λ = 0.214 
lc/λ = 1.97 
TISOHS = 1 
TISMHS = 0.47 
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For the 70 degree incident angle in Figure 5-14, the disagreement between the 

original and modified Harvey-Shack theories is worse still.  The peak of the original 

theory is once again smaller than the modified theory, and the angular spread wider.  In 

addition, while both theories predict that the peak of the scattering function is shifted 

from the specular direction, the original theory predicts a larger shift.  Even more 

significant is that the original Harvey-Shack theory continues to predict that all of the 

light will be diffusely scattered, while the modified Harvey-Shack theory predicts that the 

TIS will drop to 0.465 for this incident angle.  Comparing the theories with the 

experimental data, it is once again obvious that the modified Harvey-Shack theory is a 

vast improvement over the original theory, especially at large incident angles.  Even so, 

the agreement of the modified theory with the experimental data is far from ideal.  This is 

understandable, however, as it can not be expected to work well with such wide angle 

scattering at large incident angles. 

In Figure 5-15, we are once again comparing the original and modified 

Harvey-Shack theories with experimental data for the O’Donnell-Mendez surface, this 

time for visible light at 0.6328 μm.  At this wavelength, σs/λ = 3.59, and the surface can 

be considered very rough.  Both the original and modified theories predict that all of the 

light will be diffusely scattered, with no specular reflection.  The disagreement between 

the theories is once again quite severe, however, with the original theory having a much 

smaller peak and a much larger angular spread.  The modified theory may be an 

improvement, but its agreement with the data is still not very good.  The peak of the 

modified theory is once again shifted inside of the specular direction, but in this case the 

data does not exhibit the same shift.  The slope of the scattering function in the 
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backwards scattering direction is also much steeper for the modified Harvey-Shack 

prediction than it is for the experimental data.  Once again, the inaccuracy of the theory 

should not be surprising, since the assumption of small angle scattering has been violated. 

 

 

 
 

Figure 5-15: MHS compared to OHS and OM experimental data for σs/λ = 3.59, 
lc/λ = 33.0, and θi = 70° 

5.3 The Generalized Harvey-Shack Formulation 

The modified version of the Harvey-Shack theory was clearly an improvement 

over the original Harvey-Shack theory, especially for anything larger than paraxial 

incident angles.  However, the restriction of small angular spread of the scattering 

function, which becomes more stringent at large incident angles, is very limiting.  We 

θi = 70° 
σs/λ = 3.59 
lc/λ = 33.0 
TISOHS = 1 
TISMHS = 1 



 

 
 

163

will remove this limitation in the following development by generalizing the 

Harvey-Shack theory for large incident and scattering angles. 

Figure 5-16 illustrates radiation incident on a scattering surface at an arbitrary 

incident angle, θi.  It is obvious from examining the figure that the optical path difference 

introduced upon reflection depends not just on the surface height and incident (and 

specular) angle, but also on the scattering angle θs.  The OPD can be written as 

 ( ) ( ) ˆ ˆcos cos , ;0i sOPD h x yθ θ= + . (5.35) 
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Figure 5-16: Illustration of the OPD for a ray scattered at an arbitrary angle θs 

The random phase variation of the reflected wavefront can therefore be written as 

 ( ) ( ) ( ) ( )  
ˆˆ ˆ ˆ ˆ, 2 / 2 , ;0i sx y OPD h x yφ π λ π γ γ= = + , (5.36) 
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where  cos  and cosi i s sγ θ γ θ= =  . (5.37) 

If we return to the derivation of the original Harvey-Shack theory which was 

summarized in chapter two, we can use equation 5.36 to rewrite the random component 

of the pupil function given by equation 2.97 as 

 ( ) ( ) ( ) ( )ˆˆ ˆ ˆ ˆ ˆ ˆ, ;0 , ;0  exp 2 , ;0R s i sP x y a x y i h x yπ γ γ⎡ ⎤= +⎣ ⎦  . (5.38) 

Substituting equation 5.38 into equation 2.97, and completing the derivation as before 

results in a surface transfer function given by 

 ( ) ( ) ( ){ } 

2 2ˆ ˆ ˆ ˆ ˆ, ; , exp 2 1 , /S i s s i s s sH x y C x yγ γ π σ γ γ σ⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ . (5.39) 

 This generalized Harvey-Shack transfer function is in reality a two-parameter family of 

surface transfer functions.  A different transfer function is required for each incident and 

scattering angle.  The angle spread function is given by 

 ( ) ( ) ( ){ }
,

ˆ ˆ ˆ, , ; , exp 2s s S i s o
s s

ASF H x y i x
α α β β

α β γ γ πα
= =

= −F . (5.40) 

Equation 5.40 corresponds to the light scattered in the αs, βs direction.  The direction 

cosines αs and βs are related to γs by 

 2 21s s sγ α β= − − . (5.41) 

As before, the surface transfer function can be written in the form 

 ( ) ( )ˆ ˆ ˆ ˆ, ; ,  , ; ,S i s i sH x y A B G x yγ γ γ γ= + , (5.42) 
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where ( ){ }2
ˆexp 2 i s sA π γ γ σ⎡ ⎤= − +⎣ ⎦ , (5.43) 

 ( ){ }2
ˆ1 exp 2 i s sB π γ γ σ⎡ ⎤= − − +⎣ ⎦ , (5.44) 

and 
( ) ( ){ }

( )

 

2

2

ˆ ˆ ˆexp 2 , 1
ˆ ˆ( , ; , )

ˆexp 2 1

i s

i s

i s s

C x y
G x y

π γ γ
γ γ

π γ γ σ

⎡ ⎤+ −⎣ ⎦
=

⎡ ⎤+ −⎣ ⎦
. (5.45) 

The ASF can then be written as 

 ( ) ( ) ( )
,

, , ,s s o o
s s

ASF A S
α α β β

α β δ α α β α α β
= =

⎡ ⎤= − + −⎣ ⎦ , (5.46) 

where ( ) ( ) ( ){ }ˆ ˆ ˆ,  , ; , exp 2o i s oS B G x y i xα α β γ γ πα− = −F . (5.47) 

Equations 5.40 and 5.46 indicate that for a given incident angle, a different 

Fourier transform needs to be performed in order to calculate the ASF for each scattering 

angle.  This process can be avoided if the Fourier transform can be solved analytically.  

When this is the case, γs is just treated as a constant since it is not a function of the 

variables of integration ˆ ˆ and x y .  When a numerical solution is required, multiple 

transforms will indeed have to be performed in order to calculate the entire angle spread 

function. 

Since the delta function in equation 5.46 is equal to zero except when oα α= , 

equation 5.43 corresponds to the percentage of the total power that resides in the 

specularly reflected light when i sγ γ= .  A is then given by 
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 [ ]{ }2
ˆexp 4 i sA πγ σ= − . (5.48) 

This is the same value predicted by the modified Harvey-Shack theory.  The percentage 

of the total power that is diffusely scattered is therefore given by 

 [ ]{ }2
ˆ1 1 exp 4 i sB A πγ σ= − = − − . (5.49) 

Once the ASF is known over the entire observation hemisphere, equation 5.21 can be 

used to renormalize the ASF to unit volume and thus ensure conservation of energy. 

5.3.1 Smooth Surface Approximation 

For smooth surfaces, we will compare the predictions of the generalized 

Harvey-Shack theory to both the modified Harvey-Shack theory and the well-established 

Rayleigh-Rice scattering theory.  When the roughness of a surface is small compared to 

the wavelength of incident light, we can again make an approximation to the surface 

transfer function.  Letting ˆ sσ λ<<  in equations 5.43-5.45 yields 

 ( ) 2
ˆ1 2 s i sA πσ γ γ⎡ ⎤≈ − +⎣ ⎦ , (5.50) 

 ( ) 2
ˆ2 s i sB πσ γ γ⎡ ⎤≈ +⎣ ⎦ , (5.51) 

and ( ) ( ) 2ˆ ˆ ˆ ˆ, , /s sG x y C x y σ= . (5.52) 

Using equation 5.47, the scattering function can be written as 
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 ( ) ( ) ( ){ }
2

2

i2

4
ˆ ˆ,  ,s sS C x y

πα β γ γ
λ

= + F . (5.53) 

Writing this in integral form gives 

 ( ) ( ) ( ) ( )
2

2

i2
- -

4
ˆ ˆ ˆ ˆ ˆ ˆ,  , exp 2s sS C x y i x y dxdy

πα β γ γ π α β
λ

∞ ∞

∞ ∞

⎡ ⎤= + − +⎣ ⎦∫ ∫ . (5.54) 

Performing a change of variables from ( ) ( )ˆ ˆ,  to ,x y x y  yields 

 ( ) ( ) ( ) ( )
2

2

i2 2
- -

4 1
,  , exp 2s s x yS C x y i f x f y dxdy

πα β γ γ π
λ λ

∞ ∞

∞ ∞

⎡ ⎤= + − +⎣ ⎦∫ ∫ . (5.55) 

The integral in 5.55 is the Fourier transform of the autocovariance function ( ),sC x y , 

which is simply the power spectral density of the surface.  The scattering function for the 

generalized Harvey-Shack (GHS) theory can therefore be written in terms of spherical 

angles as 

 ( ) ( ) ( )
2

2

4

4
, ; cos cos  PSD ,GHS s s i i s x yS f f

πθ φ θ θ θ
λ

= + , (5.56) 

where from the grating equation 

 
sin cos sin sin sin

,   s s i s s
x yf f

θ φ θ θ φ
λ λ

−
= = . (5.57) 

Using equation 5.23, we can write the diffusely scattered intensity as 

 ( ) ( ) ( )
2

2

s4

4
, ; cos cos cos  PSD ,GHS s s i i i s x yI P f f

πθ φ θ θ θ θ
λ

= + . (5.58) 
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Recall from equation 5.31 that the scattered intensity predicted by the modified 

Harvey-Shack (MHS) theory for a perfectly conducting smooth surface is given by 

 ( ) ( )
2

2

4

16
, ;  cos cos ,MHS s s i i i s x yI P PSD f f

πθ φ θ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (5.59) 

and from equation 5.32 the scattered intensity predicted by the Rayleigh-Rice (RR) 

theory for a perfectly conducting smooth surface and TE polarization is given by 

 ( ) ( )
2

2
4

16
, ; cos cos  ,RR s s i i i s x yI P PSD f f

πθ φ θ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (5.60) 

Comparing equations 5.58, 5.59, and 5.60 we can see that all three equations are 

approximately equal for small incident and scattering angles when cos cos 1i sθ θ≈ ≈ .  All 

three equations should be exactly equal when s iθ θ= , or when s oθ θ=  since 

cos cosi oθ θ= . 

To compare the modified and generalized Harvey-Shack theories with the 

Rayleigh-Rice theory, we will again assume a scattering surface with the Gaussian 

autocovariance function in equation 5.33.  The PSD is then given by equation 5.34.  The 

ratio of the RMS surface roughness to the wavelength will again be assumed to be 0.02.   

Figure 5-17 shows a comparison of the three theories for normal incidence and an 

lc/λ ratio of five.  The angular spread of the scattering function is less than 20 degrees 

wide, which for normal incidence is relatively small.  For this set of parameters, all three 

theories yield virtually identical results. 
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Figure 5-17: GHS and MHS compared to RR for θi = 0° and lc/λ = 5 

In Figure 5-18, the angle of incidence has been kept at 0 degrees, but the ratio of 

lc/λ has been decreased by a factor of ten to 0.5.  This results in a much larger angular 

spread of the scattering function, and the modified Harvey-Shack theory departs from the 

Rayleigh-Rice prediction at larger scattering angles.  The generalized Harvey-Shack 

theory, however, agrees quite well with the Rayleigh-Rice theory even at large scattering 

angles.  

In Figures 5-19, 5-20, and 5-21, the modified Harvey-Shack, generalized Harvey-

Shack, and Rayleigh-Rice theories are compared for incident angles of 20, 50, and 70 

degrees and  lc/λ  ratios of 10, 5, 1, and 0.5. 

θi = 0° 
σs/λ = 0.02 
lc/λ = 5 
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Figure 5-18: GHS and MHS compared to RR for θi = 0° and lc/λ = 0.5 

 

For the 20 degree incident angle in Figure 5-19, the three theories agree extremely 

well for lc/λ = 10 and lc/λ = 5 for which the scattering function is relatively narrow.  For 

lc/λ = 1 and lc/λ = 0.5, the generalized Harvey-Shack and Rayleigh-Rice theories 

continue to agree quite well, while the modified Harvey-Shack theory departs from the 

other two. The only noticeable departure of the generalized Harvey-Shack from the 

Rayleigh-Rice occurs at the larger negative scattering angles for lc/λ = 0.5, and even this 

is relatively minor. 

θi = 0° 
σs/λ = 0.02 
lc/λ = 0.5 
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Figure 5-19: GHS and MHS compared to RR for θi = 20° and lc/λ = 10, 5, 1, and 0.5  

θi = 20° 
σs/λ = 0.02 
lc/λ = 10 

θi = 20° 
σs/λ = 0.02 
lc/λ = 5 

θi = 20° 
σs/λ = 0.02 
lc/λ = 1 

θi = 20° 
σs/λ = 0.02 
lc/λ = 0.5 



 

 
 

172

     
 

     
 

Figure 5-20: GHS and MHS compared to RR for θi = 50° and lc/λ = 10, 5, 1, and 0.5  

θi = 50° 
σs/λ = 0.02 
lc/λ = 1 

θi = 50° 
σs/λ = 0.02 
lc/λ = 0.5 

θi = 50° 
σs/λ = 0.02 
lc/λ = 5 

θi = 50° 
σs/λ = 0.02 
lc/λ = 10 
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Figure 5-21: GHS and MHS compared to RR for θi = 70° and lc/λ = 10, 5, 1, and 0.5  

θi = 70° 
σs/λ = 0.02 
lc/λ = 10 

θi = 70° 
σs/λ = 0.02 
lc/λ = 1 

θi = 70° 
σs/λ = 0.02 
lc/λ = 5 

θi = 70° 
σs/λ = 0.02 
lc/λ = 0.5 
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For the 50 degree incident angle in Figure 5-20, the modified Harvey-Shack 

theory is just beginning to depart from the other two when lc/λ = 10 and lc/λ = 5.  For the 

other two lc/λ values, the departure of the modified Harvey-Shack theory is quite drastic.  

The generalized Harvey-Shack theory, on the other hand, agrees very well with the 

Rayleigh-Rice theory for all values of  lc/λ.  The only departure again comes for the 

larger negative scattering angles for both lc/λ = 1 and lc/λ = 5. 

For the 70 degree incident angle in Figure 5-21, the modified Harvey-Shack 

theory departs significantly from the other two theories for all values of lc/λ.  The 

generalized Harvey-Shack theory and Rayleigh-Rice theory agree very well for lc/λ = 10 

and lc/λ = 5.  For both lc/λ = 1 and lc/λ = 0.5, the two theories depart slightly.  The shapes 

of the scattering function predicted by both theories are virtually identical; however the 

generalized Harvey-Shack result is shifted slightly towards zero degrees.  Despite this 

discrepancy, the agreement is still quite good. 

Most optical surfaces do not have a Gaussian autocovariance function and PSD.  

They instead tend to have a PSD with an inverse power law falloff at larger spatial 

frequencies.  A sufficiently general model for this behavior is the abc or K-correlation 

model [46,113]  The autocovariance function is given by 

 ( ) ( ) ( )

( )1 / 2/ 2
1/ 2

( 1) / 2

2 2 2
2

/ 2

cc

s c

a r r
C r

b c b b

π ππ
−−

−
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟Γ ⎝ ⎠ ⎝ ⎠

K , (5.61) 

where a, b, and c are fitting parameters, ( 1) / 2C−K  is the modified Bessel function of the 

second kind [114], and ( )2 2r x y= + .  The two-dimensional PSD is the Fourier 
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transform of equation 5.61 and is given by 

 ( ) ( )
( ) ( ) ( )1 / 2

2 2 2

1 / 21
,

/ 22 1
x y c

x y

c ab
PSD f f

c b f fπ +

⎡ ⎤Γ +⎣ ⎦=
Γ ⎡ ⎤+ +⎣ ⎦

. (5.62) 

The parameters a and b are usually expressed in units of Å2-μm and μm-1, while the 

parameter c is unitless.  If c is greater than 1, the PSD will have a finite volume equal to 

the square of the RMS roughness given by 

 
( )

( )
2

1 / 2

1 / 2
s

c a

c c b

πσ
⎡ ⎤Γ +⎣ ⎦=

− Γ
. (5.63) 

The intensity predicted by the generalized Harvey-Shack and Rayleigh-Rice 

theories for the K-correlation model can be calculated by substituting equation 5.62 into 

equations 5.58 and 5.60, respectively.  Figure 5-22 shows a comparison of the two 

theories for a surface with a K-correlation PSD with a = 1.5E5, b = 300, c = 1.4, and 

incident radiation with a wavelength of 0.6328 μm for incident angles of 0, 20, 50, and 

70 degrees. 

For all four angles of incidence in Figure 5-22, the biggest disagreement between 

the two theories occurs at the larger scattering angles.  Note however that the intensity is 

plotted on a log scale.  The majority of the power is contained in near-specular region, 

and very little is contained out at the larger angles.  The differences between the two 

theories are therefore relatively minor, and the agreement can still be considered very 

good.  This disagreement will be explored further in section 5.3.3 when we discuss the 

inverse scattering problem. 
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Figure 5-22: GHS and RR for a K-Correlation PSD with a = 1.5E5, b = 300, c = 1.4, λ = 0.6328μm for θi = 0°, 20°, 50°, and 70°

θi = 0° 
a = 1.5E5 
b=300 
c=1.4 
λ=0.6328 μm 

θi = 20° 
a = 1.5E5 
b=300 
c=1.4 
λ=0.6328 μm 

θi = 50° 
a = 1.5E5 
b=300 
c=1.4 
λ=0.6328 μm 

θi = 70° 
a = 1.5E5 
b=300 
c=1.4 
λ=0.6328 μm 
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5.3.2 Quasi-Vectorizing The Harvey-Shack Theory For Smooth Surfaces 

One of the limitations of the original Harvey-Shack theory is the fact that since it 

is a scalar theory, it is unable to account for polarization effects.  This is still true for the 

generalized Harvey-Shack theory presented in the last section.  All of the comparisons we 

have made so far have assumed that the scattering surface is perfectly conducting and that 

the incident light was TE polarized.  The angle spread function was derived to be 

independent of any material effects of the scattering surface.  The ASF is not a quantity 

that can in reality be measured, however.  Intensity is the quantity that is actually 

measured in practice, and when it is it will include the effects of both material properties 

(reflectance) and polarization.   

The intensity for a non-perfectly conducting smooth surface as predicted by the 

generalized Harvey-Shack theory is given by:  

 ( ) ( ) ( )
2

2

s4

4
, ;   cos cos cos  PSD ,GHS s s i i i s x yI P R f f

πθ φ θ θ θ θ
λ

= + , (5.64) 

where R is the reflectance of the scattering surface.  From equation 2.39, the intensity for 

the Rayleigh-Rice theory can be written as 

 ( ) ( )
2

2
s4

16
, ;  cos cos  PSD ,RR s s i i i x yI P Q f f

πθ φ θ θ θ
λ

= , (5.65) 

where Q is the polarization dependent reflectance of the surface given by equations 2.44 

through 2.52.  
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We have already shown in the previous section that apart from some small 

discrepancies at large scattering angles, equations 5.64 and 5.65 give virtually identical 

results for perfectly conducting (i.e., R = Q = 1) surfaces and TE polarized radiation.  

Therefore, we will quasi-vectorize the generalized Harvey-Shack theory for smooth 

surfaces by replacing the reflectance R in equation 5.64 with the polarization dependent 

reflectance Q of the Rayleigh-Rice theory.  This will then allow us to account for 

polarization effects with the generalized Harvey-Shack theory, at least for smooth 

surfaces. 

5.3.3 Inverse Scattering For Smooth Surfaces 

Thus far in this chapter, we have discussed the prediction of surface scatter from 

known surface roughness in the form of the power spectral density or autocovariance 

function of a surface.  It is often desirable to solve the inverse problem: calculation of 

surface roughness from scattering measurements.  The first attempt at solving the inverse 

scattering problem was most likely that of Bennett and Porteus [115] based on the scalar 

theory of Davies [2].  The Rayleigh-Rice vector theory is the most widely used method of 

performing inverse scattering from smooth surfaces, and has been discussed in detail by 

Stover [3]. 

For smooth, clean, front-surface reflecting surfaces, the PSD of a surface is 

related to the scattering BRDF using the Rayleigh-Rice theory by 

 ( ) ( )
2

s4

16
, ; cos cos  PSD ,RR s s i i x yBRDF Q f f

πθ φ θ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (5.66) 
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where, once again,  and x yf f  are related to the incident and scattering angles by 

 
sin cos sin sin sin

,   s s i s s
x yf f

θ φ θ θ φ
λ λ

−
= = . (5.67) 

Using the generalized Harvey-Shack theory, the relationship between the BRDF and the 

surface PSD is given by 

 ( ) ( ) ( )
2

2

s4

4
, ; cos +cos  PSD ,GHS s s i i x yBRDF Q f f

πθ φ θ θ θ
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (5.68) 

where  and x yf f  are given by equation 5.67, and we have used the polarization-dependent 

surface reflectance as discussed in section 5.3.2. 

Given a measured BRDF, we can therefore invert equations 5.66 or 5.68 and solve 

for the PSD.  The PSD determined by this procedure will actually be a bandwidth-limited 

portion of the actual surface PSD; the frequency limits will depend on both the 

wavelength of light and the incident angle as can be seen from equation 5.67.  The 

maximum frequency at which the PSD can be determined will increase with increasing 

angle of incidence and decreasing wavelength.  This is useful in that the PSD calculated 

from scattering measurements for a given wavelength and angle of incidence can then be 

used to calculate angle-limited scattering from different wavelengths and angles of 

incidence.  In addition, if the PSD is well behaved, it can be fit with an analytical 

function and extrapolated to higher frequencies so that scattering can be calculated for 

both larger and smaller wavelengths and angles of incidence.  
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It is important to realize, however, that not all surfaces will scale with wavelength 

in the manner described.  Some may scale correctly over a limited wavelength region, 

while some may not scale correctly at all.  Surfaces that do not scale correctly at a certain 

wavelength most likely do not meet the requirements of being smooth, clean, and 

front-surface reflecting at that wavelength, even though they may meet these 

requirements at other wavelengths. 

As an example of the inverse scattering process, we will use a measured scattering 

BRDF from a molybdenum mirror surface to calculate the surface PSD.  We will then use 

that PSD to predict the BRDF at different angles of incidence and compare it to 

experimental measurements.  All of the BRDF and reflectance measurements for this 

mirror surface were performed and provided to us by John Stover of The Scatterworks 

[116]. 

The measured BRDF for the molybdenum mirror for an incident angle of −5 

degrees, a wavelength of 0.488μm, and TE polarization in the plane of incidence is 

shown in Figure 5-23.  Note that the sharp drop in the curve occurs when the detector 

passes through the incident beam.  The BRDF spans several orders of magnitude and is 

fairly symmetric about the location of specular reflection. 

The reflectance of the molybdenum mirror is shown in Figure 5-24.  The 

reflectance was measured at three different angles and a polynomial fit to the data was 

then performed, with the assumption that the reflectance goes to unity at 90 degrees.  The 

equation of the polynomial fit is given in the figure. 
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Figure 5-23: Measured BRDF of molybdenum mirror for θi = −5° and λ = 0.488 μm 
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Figure 5-24: Reflectance of the molybdenum mirror as a function of angle 
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The PSD of the mirror can now be calculated from the BRDF in Figure 5-23 

through the use of equation 5.66 for the Rayleigh-Rice theory or equation 5.68 for the 

generalized Harvey-Shack theory.  In order to do so, we need to know the polarization 

dependent reflectance, Q.  For TE polarized incident radiation and measurement in the 

plane of incidence, Q is given by [3] 

 ( ) ( ) ( ),o s o sQ R Rθ θ θ θ= , (5.69) 

where ( )oR θ  is the reflectance in the specular direction and ( )sR θ  is the reflectance in 

the scattered direction.  These reflectance values can be calculated through the use of the 

polynomial equation given in Figure 5-24. 

The PSD predicted using equation 5.66 for the Rayleigh-Rice theory is shown in 

Figure 5-25, and the generalized Harvey-Shack prediction from equation 5.68 is shown in 

Figure 5-26.  Both theories predict a PSD that appears linear when plotted on a log-log 

scale, and the agreement between the two is excellent up until a frequency of 1 μm-1.  

Beyond that point, the Rayleigh-Rice prediction demonstrates a sharp up-turn.  The 

generalized Harvey-Shack prediction has a very slight up-turn at the end, but it is not 

nearly as drastic as that of the Rayleigh-Rice theory.  It is possible that this up-turn is due 

to particulate scattering, where light scattering off of particles either in the air or on the 

surface itself dominates the surface scattering.  This does not explain the difference 

between the two theories, however.  Recall from section 5.3.1 that intensity predictions 

for the Rayleigh-Rice and generalized Harvey-Shack theories tend to disagree only at 

large scattering angles.  This disagreement becomes even more apparent when comparing  
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Figure 5-25: Predicted PSD of the molybdenum mirror using the Rayleigh-Rice theory 
and measured BRDF data for θi = −5° and λ = 0.488 μm 
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Figure 5-26: Predicted PSD of the molybdenum mirror using the generalized 
Harvey-Shack theory and measured BRDF data for θi = −5° and 
λ = 0.488 μm 
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the BRDFs predicted by the two theories.  Figure 5-27 shows predicted BRDFs for a 

surface with a K-correlation PSD given by equation 5.62 with a = 1.5E5, b = 300, 

c = 1.4, and incident radiation with a wavelength of 0.6328 μm for normal incidence.  

The agreement between the two theories is extremely good until approximately ±60 

degrees.  After that, the Rayleigh-Rice prediction begins dropping sharply to zero, while 

the generalized Harvey-Shack maintains a steady rate of decrease and has a non-zero 

value at ±90 degrees. 

 

 
 

Figure 5-27: GHS and RR predictions of BRDF for a K-Correlation PSD with a = 1.5E5, 
b = 300, c = 1.4, and λ = 0.6328 μm for normal incidence. 

The fact that the BRDF predicted by the Rayleigh-Rice theory drops to zero at 

±90 degrees is a direct consequence of the factor cosθs in equation 5.66.  The 

Rayleigh-Rice theory predicts that all BRDFs go to zero at ±90 degrees.  The BRDF is a 
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radiance distribution, and while intensity must tend to zero at ±90 degrees, there is no 

requirement that radiance do so.  We know, for instance, that the radiance of a 

Lambertian surface is a constant as a function of angle, and is therefore discontinuous at 

±90 degrees.  We are therefore skeptical of the Rayleigh-Rice BRDF prediction at large 

scattering angles. 

Figure 5-28 again shows the generalized Harvey-Shack prediction of the PSD of 

the molybdenum mirror, but with the addition of a K-correlation fit to the predicted PSD.  

The parameters of the K-correlation PSD are shown on the figure.  We will use this fit to 

predict the scattered BRDF for incidence angles of 5, 45, and 75 degrees. 
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Figure 5-28: K-correlation fit to the PSD prediction shown in Figure 5-26 
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Figure 5-29 shows a comparison of the Rayleigh-Rice and generalized 

Harvey-Shack BRDF predictions with experimental data for an incident angle of −5 

degrees and a wavelength of 0.488 μm.  The two theories agree extremely well out to 

scattering angles of around 60 degrees.  At larger angles, the generalized Harvey-Shack 

prediction seems to agree better with the measured data.  As previously stated, the BRDF 

may be dominated by particulate scattering at large scattering angles, so this agreement 

may simply be fortuitous. 
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Figure 5-29: GHS and RR predictions of the BRDF for the molybdenum mirror compared 
to experimental data for θi = −5° and λ = 0.488 
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Figure 5-30 shows a comparison of the two theories with experimental data for an 

incident angle of −45 degrees and a wavelength of 0.488 μm.  The two theories agree 

extremely well with each other in the backscattered portion of the BRDF, again until 

approximately −60 degrees, and both theories agree very well with the data out to −24 

degrees, or approximately 70 degrees from the location of specular reflection.  Beyond 

that, both theories depart from the data, and this again may be due to the domination of 

particulate scatter at angles far from the specular direction.  This does not explain the 

disagreement in the forward direction, however.  The data at larger scattering angles in 

the forward direction does not tend to zero as predicted by the Rayleigh-Rice theory, but 

instead seems to more closely follow the generalized Harvey-Shack prediction. 
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Figure 5-30: GHS and RR predictions of the BRDF for the molybdenum mirror compared 
to experimental data for θi = −45° and λ = 0.488 
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Figure 5-31 shows a comparison of the two theories with experimental data for an 

incident angle of −75 degrees and a wavelength of 0.488 μm.  The two theories agree 

very well with each other near the specular beam and out to approximately −80 degrees 

in the backscattered portion of the BRDF; however there is a discrepancy between the 

two theories for angles between −75 and +75 degrees.  Comparing equations 5.66 and 

5.68, we can see that the two theories are only strictly equal when the scattering angle is 

equal to either the incident or specular angle.  As the distance between the incident and 

specular angle increases, the disagreement between the two theories will increase at 

points in between those two angles.  The two theories agree well with the data between 

15 and 80 degrees, but they again disagree substantially at large negative scattering 

angles.  Once again, this may be due to the dominance of particulate scatter. 
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Figure 5-31: GHS and RR predictions of the BRDF for the molybdenum mirror compared 
to experimental data for θi = −75° and λ = 0.488 
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5.3.4 Numerical Calculations For Rough Surfaces 

When the roughness of a scattering surface is not small compared to the 

wavelength of the incident radiation, we cannot use the approximations of section 5.3.1.  

If no other approximations can be made that will result in an analytical solution of 

equation 5.40, numerical methods will be required to compute the scattered light 

distribution. 

Recall that the surface transfer function for the generalized Harvey-Shack theory 

is given by 

 ( ) ( ) ( ){ } 

2 2ˆ ˆ ˆ ˆ ˆ, ; , exp 2 1 , /S i s s i s s sH x y C x yγ γ π σ γ γ σ⎡ ⎤⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦ , (5.70) 

where 2 2cos   and  1 cosi i s s s sγ θ γ α β θ= = − − = . (5.71) 

The angle spread function, which consists of both the specular reflection and the diffusely 

scattered light distribution, is given by 

 ( ) ( ) ( ){ }
,

ˆ ˆ ˆ, , ; , exp 2s s S i s o
s s

ASF H x y i x
α α β β

α β γ γ πα
= =

= −F , (5.72) 

where ( )2 2
ssin  and 1o o s sα θ γ α β= = − + . (5.73) 

When numerical solutions of equation 5.72 are required, the parameters iγ  and sγ  

have to be specified before performing the Fourier transform.  Calculating the scattering 

distribution over the entire observation space for a given angle of incidence will therefore 
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require a different transfer function and Fourier transform calculation for every scattering 

angle. 

Direction cosine space is a very convenient space in which to perform the 

necessary calculations, as the entire observation hemisphere can be reduced to a circle 

with unit radius in the α, β plane.  Figure 5-32 shows a grid of discreet values in the α, β 

plane along with the unit circle representing all space.  This unit circle corresponds to 

90sθ =  for all values of sφ  in the spherical coordinate system. 

 

 

 
 

Figure 5-32: Grid of α, β values with unit circle representing the observation space 

αk
2 + βj
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It is straightforward to create a grid like the one shown in Figure 5-32 in 

MATLAB® as a two dimensional array and then perform the calculation of the ASF, 

given by equation 5.72, for each point in the array.  For points that lie outside of the unit 

circle, we can simply assign a value of zero to the ASF, since γs is not a real number at 

those locations.  The calculation of the entire ASF can be written as 

 ( ) ( ), ,jk k j
j k

ASF K ASFα β α β= ∑∑ , (5.74) 

where ( ) ( ) ( ){ }
,

ˆ ˆ ˆ, , ; , exp 2k j s i jk o
s s jk

ASF H x y i x
α α β β

α β γ γ πα
= =

= F , (5.75) 

 2 21jk k jγ α β= − − , (5.76) 

and K is the renormalization constant given by equation 5.21. 

As an example of the process, we will calculate the scattering of the 

O’Donnell-Mendez surface discussed previously.  The Gaussian autocovariance function 

of this surface is given by equation 5.33 with σs = 2.27 μm and lc = 20.9 μm.  We will 

assume that the incident radiation has a wavelength 10.6 μm, and that the angle of 

incidence is 45 degrees ( )2 / 2,  2 / 2o iα γ= − = . 

We first set up a two-dimensional square array of size N 2 for the ASF. Each array 

location corresponds to points in the α, β plane, where α and β are one-dimensional 

arrays of length N; α varies from -1 to 1, while β varies from 1 to -1.  The first location in 

the ASF array (j = 1, k = 1) corresponds to α = −1, β = 1.  The last location in the ASF 

array (j = N, k = N) corresponds to α = 1, β = -1. 
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We will let N=101, so that the ASF is a square array of 101 x 101 locations.  We 

first set k = 1, which corresponds to α = −1, and we set j = 1 which corresponds to β = 1.  

For these values, γjk is a complex number since that location lies outside of the unit circle.  

We therefore assign a value of zero to the ASF at that location.  We then continue to loop 

through values of j and k.  At each step we calculate equation 5.75 if the location lies 

inside the unit circle, or we assign a value of zero to the ASF if the location lies outside 

the unit circle.   

For example, when k = 7 and j = 51, αk = −0.88 and βj = 0.  We use these values 

of α and β to calculate γjk in equation 5.76.  We can then calculate the corresponding 

surface transfer function, which is shown in Figure 5-33. 

 

  
 

Figure 5-33: GHS surface transfer function for a surface with a Gaussian ACV function.  
λ = 10.6 μm, σs = 2.27 μm, lc = 20.9 μm, θi = 45°, αs = −0.88, βs = 0 
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Once the surface transfer function has been calculated, it can be used in equation 

5.75.  The Fourier transform of the surface transfer function yields a two-dimensional 

array, which will be referred to as the intermediate ASF.  From this array, we extract only 

the one data point that corresponds to αj, βk.  The intermediate ASF for the surface 

transfer function of the current example is shown in Figure 5-34.  Only the value 

corresponding to α = −0.88, β = 0 will be retained in the final ASF.  A profile of this 

intermediate ASF along the β = 0 axis is shown in Figure 5-35.  The single data point to 

be extracted is circled. 

 

 

 
 

Figure 5-34: Intermediate ASF calculated from the surface transfer function in Figure 
5-33 where αs = −0.88, βs = 0. 
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Figure 5-35: One-dimensional profile along the β = 0 axis for the intermediate ASF of 
Figure 5-34.  The single data point being extracted is circled. 

 

This procedure is repeated as we continue to loop through j and k.  The final ASF 

function is made up of the array summation of the single data points extracted at each 

step.  The single data point extracted in the example above will be the k = 7, j = 51 

element of the two-dimensional final ASF array.  The final ASF for this example is shown 

in Figure 5-36, and a profile in the plane-of-incidence (β = 0) is shown in Figure 5-37.  

The intensity can be calculated by using equation 5.23. 
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Figure 5-36: Final ASF predicted by the GHS theory for a surface with a Gaussian ACV 
function.  λ = 10.6 μm, σs = 2.27 μm, lc = 20.9 μm, and θi = 45. 

 
 

Figure 5-37: Profile of the ASF in Figure 5-36 in the plane-of-incidence. 
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The process described above is computationally intensive, since for each 

scattering angle we have to perform a two-dimensional discreet Fourier transform of the 

transfer function, extract the one data point corresponding to that scattering angle and 

then repeat the process for all other scattering angles.  If the surface roughness is 

isotropic, the surface transfer function will be rotationally symmetric, and the 

two-dimensional Fourier transform in equation 5.75 reduces to a Hankel transform.  

Since the Hankel transform operation is one-dimensional, this can help to reduce the 

computation time significantly.  The process is still the same, except at each step a 

numerical Hankel transform is performed, yielding the radial profile of the circularly 

symmetric intermediate ASF.  Using this profile, it is a simple matter to use a 

one-dimensional interpolation to obtain the one point corresponding to αk, βj.  For the 

rough surface scattering predictions that follow, we utilized a quasi-discrete Hankel 

transform algorithm based on a Fourier-Bessel series expansion [117]. 

Using the procedure for the generalized Harvey-Shack theory outlined above we 

have performed scattering predictions for the O’Donnell-Mendez scattering surface.  A 

comparison of the scattered intensity predicted by the modified Harvey-Shack theory and 

the generalized Harvey-Shack theory is shown in Figure 5-38 for the O’Donnell-Mendez 

surface with a wavelength of 10.6 μm at incident angles of 0, 20, 50, and 70 degrees.  

Experimental data taken from [110] for 20 and 70 degrees is also plotted for comparison. 

For radiation with a wavelength of 10.6 μm, the surface can be considered moderately 

rough since σs/λ = 0.214.  It will also produce fairly wide angle scatter since lc/λ = 1.97. 
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Figure 5-38: GHS compared to MHS and OM experimental data for σs/λ = 0.214, lc/λ = 1.97, and θi = 0°, 20°, 50°, and 70 

θi = 0° 
σs/λ = 0.214 
lc/λ = 1.97 
TISMHS = 1 
TISGHS = 1 

θi = 20° 
σs/λ = 0.214 
lc/λ = 1.97 
TISMHS = 1  
TISGHS = 1 

θi = 50° 
σs/λ = 0.214 
lc/λ = 1.97 
TISMHS = 0.94 
TISGHS = 0.94 

θi = 70° 
σs/λ = 0.214 
lc/λ = 1.97 
TISMHS = 0.47 
TISGHS = 0.52 
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For normal incidence in Figure 5-38, both the modified Harvey-Shack theory and 

the generalized Harvey-Shack theory predict that all of the light is diffusely scattered 

(TIS = 1).  The generalized Harvey-Shack prediction is slightly higher and narrower than 

the modified Harvey-Shack prediction, however. 

For the 20 degree angle of incidence in Figure 5-38, both theories again predict 

that all of the light is diffusely scattered.  The peak of the generalized Harvey-Shack 

prediction is again higher and slightly narrower than the modified Harvey-Shack peak.  

The agreement between the two theories is better on the right hand side of the peak than 

it is on the left hand side.  The generalized Harvey-Shack provides much better 

agreement with the experimental data. 

For the 50 degree angle of incidence in Figure 5-38, both theories predict that 

there will be a small specular peak, but that 94% of the power will still reside in the 

diffusely reflected light.  The agreement between the two theories is reasonably good, 

although there is some asymmetry since the two theories cross each other on both sides of 

the peak.  The peak of the modified Harvey-Shack theory is actually higher than that of 

the generalized Harvey-Shack prediction for this incident angle, and shifted more towards 

zero degrees. 

For the 70 degree angle of incidence in Figure 5-38, the disagreement between the 

two theories is more pronounced.  The generalized Harvey-Shack theory predicts a TIS of 

0.52 as opposed to the TIS of 0.47 predicted by the modified Harvey-Shack theory.  The 

two theories disagree significantly on both sides of the peak.   Although not perfect, the 

generalized Harvey-Shack theory is a beter fit to the experimental data that the modified 

Harvey-Shack theory. 
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In Figure 5-39, we compare the modified and generalized Harvey-Shack theories 

with experimental data for the O’Donnell-Mendez surface for light with a wavelength of 

0.6328 μm.  For this wavelength, the surface can be considered very rough since 

σs/λ = 3.59, and both theories predict that all of the light will be diffusely scattered.  The 

disagreement between the two theories is substantial, however.  The peak of the modified 

Harvey-Shack theory is shifted substantially from the peak of the generalized Harvey-

Shack theory and is also about 40% higher.  The shapes of the two profiles are also quite 

different.  The agreement between the generalized Harvey-Shack theory and the 

experimental data is excellent, especially considering how rough the surface is. 

 

 

 
 

Figure 5-39: GHS compared to MHS and OM experimental data for σs/λ = 3.59, 
lc/λ = 33.0, and θi = 70° 

θi = 70° 
σs/λ = 3.59 
lc/λ = 33.0 
TISOHS = 1 
TISMHS = 1 
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5.3.5 Comparison With The Modified Beckman-Kirchhoff Theory 

Both the modified Beckmann-Kirchhoff theory of chapter four and the 

generalized Harvey-Shack theory presented in this chapter yield excellent agreement with 

the Rayleigh-Rice theory for scattering from smooth surfaces.  In addition, both theories 

provide very good agreement with measured experimental data for both moderately 

rough and very rough surfaces.  We will therefore perform a direct comparison of the two 

theories and determine exactly how well they agree with each other. 

Recall from equation 4.11 that for smooth or moderately rough surfaces with a 

Gaussian autocovariance function, the radiance predicted by the modified 

Beckmann-Kirchhoff theory is given by 

 ( ) ( ) 2 22

1

exp -
,  exp

! 4

m
xy cc

ms

vg g
L K

A m m m

π
θ φ

∞

=

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , (5.77) 

where ( )
2

22
cos coss

i sg
πσ θ θ
λ

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (5.78) 

and 2 22
sin 2sin sin cos sinxy i i s s sv

π θ θ θ φ θ
λ

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

. (5.79) 

From equation 4.13, the radiance predicted by the modified Beckmann-Kirchhoff 

theory for very rough surfaces with a Gaussian ACV is given by 

 ( )
22

, exp
4
xy cc

s

v
L K

A g g

πθ φ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

, (5.80) 

where g and vxy are again given by equations 5.78 and 5.79 respectively. 
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  Before proceeding to make comparisons of the modified Beckmann-Kirchhoff 

and generalized Harvey-Shack theories, we need to first verify that we are comparing the 

same quantities.  From equation 2.115, we know that the Harvey-Shack ASF is a 

normalized radiance function given by 

 sA
ASF L

P
= , (5.81) 

where L is the radiance, As is the illuminated area of the scattering surface and P is the 

total power.  For the modified Beckmann-Kirchhoff theory, we equated the right sides of 

equations 5.77 and 5.80 to radiance.  However, the derivation of the original 

Beckmann-Kirchhoff theory assumed a unit amplitude plane wave incident on the 

scattering surface.  In order to account for anything other than unit amplitude incident 

radiation, equations 5.77 and 5.80 are more accurately described as radiance normalized 

by the total power.  Therefore, when we compare the two theories we will use the 

quantity in equation 5.81 and call it the ASF for both theories.  Also note that equations 

5.77 and 5.80 only represent the diffuse part of the scattering distribution.  Thus, we will 

only compare the diffusely scattered portion of the ASF for the two theories. 

As a starting point, we will compare the two theories for a moderately rough 

surface with a Gaussian ACV function.  We let lc = 2, σs = 0.1, λ = 0.6328, and θi = 50°. 

This is indeed a moderately rough surface since g ≈ 2.66, and we can use equation 5.77 

with an appropriate number of terms to calculate the modified Beckmann-Kirchhoff 

result.  The generalized Harvey-Shack prediction is calculated using the numerical 

process outlined in section 5.3.4.  The results are shown in Figure 5-40. 
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Figure 5-40: GHS and MBK scattering functions compared for a moderately rough 
surface with a Gaussian ACV function.  lc = 2, σs = 0.1, λ = 0.6328, and 
θi = 50° 

As Figure 5-40 shows, the scattering function predicted by the modified 

Beckmann-Kirchhoff theory has a much lower peak.  Comparison of the numerical 

results shows that the generalized Harvey-Shack prediction is higher by a factor of 1/λ2.  

When the modified Beckmann-Kirchhoff prediction is divided by λ2, the two results are 

identical as shown in Figure 5-41. 

If we let lc = 20, σs = 2.74, λ = 0.6328, and θi = 50°, the surface can be classified 

as very rough since g ≈ 2000.  We can therefore use equation 5.80 to calculate the 

modified Beckmann-Kirchhoff result.  The generalized Harvey-Shack prediction is again 

calculated using the numerical process outlined in section 5.3.4.  A comparison of the 

two theories for this surface is shown in Figure 5-42. 
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Figure 5-41: The same comparison as Figure 5-40, except that the MBK result has been 
divided by λ2 

 
 

Figure 5-42: GHS and MBK angle spread functions compared for a very rough surface 
with a Gaussian ACV function.  lc = 20, σs = 2.74, λ = 0.6328, and θi = 50° 
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As seen in Figure 5-42, the modified Beckmann-Kirchhoff prediction has a much 

lower peak.  After investigating the numerical results, the generalized Harvey-Shack ASF 

was once again found to be higher by a factor of 1/λ2.  When the modified 

Beckmann-Kirchhoff result is divided by λ2, the two predictions are identical as shown in 

Figure 5-43. 

 

 

 
 

Figure 5-43: The same comparison as Figure 5-42, except that the MBK result has been 
divided by λ2 

The discrepancy between the two theories was investigated for numerous cases 

with different roughness values and wavelength.  The modified Beckmann-Kirchhoff 

result was either higher or lower than the generalized Harvey-Shack result; however the 

difference was always a factor of 1/λ2. 
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For smooth surfaces, we can actually obtain an analytical solution for both the 

modified Beckmann-Kirchhoff theory and the generalized Harvey-Shack theory in order 

to compare the two.  For smooth surfaces, g << 1 and we can use equation 5.77 to write 

the diffusely scattered portion of the ASF for the modified Beckmann Kirchhoff theory as 

 ( )
2 22

, exp
4

xy cc
MBK

s

vg
S K

A m

πθ φ
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

. (5.82) 

Using equations 5.78 and 5.79, as well as equations 3.15, equation 5.82 can be rewritten 

in terms of direction cosines as 

 ( ) ( ) ( )
23 2 2 2 2

2 2
2 2

4
, expc s i s c

MBK s o sS K
π σ γ γ πα β α α β

λ λ
+ ⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎣ ⎦⎩ ⎭

. (5.83) 

From equations 5.56, 5.57, and 5.34, as well as equations 3.15, the generalized Harvey-

Shack scattering function can be written in terms of direction cosines as 

 ( ) ( ) ( )
23 2 2 2 2

2 2

4 2

4
, expc s i s c

GHS s o sS K
π σ γ γ πα β α α β

λ λ
+ ⎧ ⎫⎡ ⎤= − − +⎨ ⎬⎣ ⎦⎩ ⎭

. (5.84) 

Comparing equations 5.83 and 5.84, we can see that for smooth surfaces, the modified 

Beckmann-Kirchhoff and generalized Harvey-Shack scattering theories are indeed 

identical except for the extra λ2 in the denominator of the generalized Harvey-Shack 

equation.  We also note the the generalized Harvey-Shack result has the correct units of 

1/Sr, while the modified Beckmann-Kirchhoff result does not. 
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To understand why, apart from the λ2 discrepancy, the two theories predict the 

same results, we need to look back further in the derivation of the Beckmann-Kirchhoff 

theory.  The equations for smooth, moderately rough, and very rough surfaces are all 

approximations to the general solution given by equation 2.71 for isotropic roughness: 

 ( ) ( )
2

0 2

0

2
* J , ;xy z z

F
v v v d

A

πρρ τ χ τ τ τ
∞

= −∫ , (5.85) 

where χ2 is the characteristic function of a joint probability distribution, and F2 is the 

geometrical factor, which was discarded in the modified Beckmann-Kirchhoff theory.  

The quantity on the right side of 5.85, without the geometrical factor, was equated to 

radiance in the modified Beckmann-Kirchhoff theory.  However, as per the previous 

discussion in this section, it will now be equated to radiance normalized by the total 

power.  Using equation 5.81, we can therefore write the general solution of the modified 

Beckmann-Kirchhoff theory as 

 ( ) ( ) ( )0 2

0

2 J , ;MBK xy xy z zASF v v v v dπ τ χ τ τ τ
∞

= −∫ . (5.86) 

If we assume the surface height has a Gaussian distribution, equation 5.86 can be 

rewritten with the help of equation 2.79 as 

 ( ) ( ) ( )( )0

0

2 J exp 1MBK xy xyASF v v g C dπ τ τ τ τ
∞

⎡ ⎤= − −⎣ ⎦∫ , (5.87) 

where g is given by 5.78 and C is the correlation coefficient, which is related to the 

surface autocovariance function Cs by [90] 
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2
s

s

C
C

σ
= . (5.88) 

Using  equations 5.78, 5.88, and the fact that γ = cosθ, equation 5.87 can be rewritten as 

 ( ) ( ) ( ) ( )2

0 2
0

2
2 J exp 1 ss

MBK xy xy i s

C
ASF v v d

τπσπ τ γ γ τ τ
λ σ

∞ ⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪⎛ ⎞= − + −⎨ ⎬⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
∫ . (5.89) 

Examining equation 5.89, we see that the modified Beckmann-Kirchhoff scattering 

distribution is given by the Hankel transform of an exponential function that is exactly 

equal to the generalized Harvey-Shack surface transfer function, except that the spatial 

variables are not scaled by the wavelength. 

We can therefore understand why the two theories produce nearly identical 

results.  However, we still need to account for the difference of the factor 1/λ2.  Equation 

5.89 can be written more generally for surfaces whose roughness may not be isotropic as 

a two-dimensional Fourier transform given by [118] 

 ( ) ( ) ,, exp ( , ; )MBK x y x y s i sASF v v i v x v y H x y dxdyγ γ
∞ ∞

−∞ −∞

⎡ ⎤= − +⎣ ⎦∫ ∫ , (5.90) 

where  ( ) ( ) ( )2

2
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, exp 1 ss

s i s
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πσ γ γ
λ σ

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪⎛ ⎞= − + −⎨ ⎬⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭
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With the help of equation 5.79, as well as equations 3.15, equation 5.90 can be rewritten 

as 
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( ) ( ),, exp 2 , ;os s

MBK s i sASF i x y H x y dxdy
α αα β βπ γ γ
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∞ ∞

−∞ −∞
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∫ ∫ . (5.92)

The ASF from the generalized Harvey-Shack theory is given from equation 5.40 as 

 ( ) ( ){ } ( ),ˆ ˆ ˆ ˆ ˆ ˆ, exp 2 , ;GHS s s o s i sASF i x y H x y dxdyα β π α α β γ γ
∞ ∞

−∞ −∞

⎡ ⎤= − − +⎣ ⎦∫ ∫ , (5.93) 

where ( ),ˆ ˆ, ;s i sH x y γ γ  is given by 5.91 with the spatial variables x and y scaled by the 

wavelength. 

Examining equations 5.92 and 5.93, we see that for the modified 

Beckmann-Kirchhoff equation, the Fourier transform variables are ( ),x y  and 

( )/ , /α λ β λ , while the Fourier transform variables for the generalized Harvey-Shack 

equation are ( )ˆ ˆ,x y  and ( ),α β .  We can put the modified Beckmann-Kirchhoff result in 

the same “space” as the generalized Harvey-Shack result by performing a change of 

variables on equation 5.92, letting ˆ ˆ/ ,  /x x y yλ λ= = .  When we do so, equation 5.92 can 

be rewritten as 

           ( ) ( ){ } ( )2
,ˆ ˆ ˆ ˆ ˆ ˆ, exp 2 , ;MBK s s o s i sASF i x y H x y dxdyα β λ π α α β γ γ

∞ ∞

−∞ −∞

⎡ ⎤= − − +⎣ ⎦∫ ∫ . (5.94) 

Comparing equations 5.93 and 5.94, we can see that the two equations indeed 

differ only by a factor λ2.  From equation 3.27, the total power is given by 
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Using equation 5.81, we can therefore write equation 5.95 as 
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= ∫ ∫ . (5.96) 

Therefore, the volume of the ASF integrated over α,β must be equal to unity.   

Since the peak value of Hs in equation 5.93 is by definition unity, the Fourier 

transform of Hs must have unit volume, and thus the volume of the ASF given by 

equation 5.93 will be unity, satisfying equation 5.96.  By the same argument, the volume 

of the ASF given by equation 5.94 would be equal to λ2, and equation 5.96 would not be 

satisfied.  The modified Beckmann-Kirchhoff result is only wrong in that we have 

incorrectly defined it radiometrically.  What we had equated to radiance in chapter four, 

and to ASF previously in this section should actually be defined as ASF*λ2. 

Based on the above discussion, the modified Beckmann-Kirchhoff equations used 

to predict the diffusely scattered light for a surface with a Gaussian autocovariance 

function are given by 
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for smooth or moderately rough surfaces, and 
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for very rough surfaces, with g and vxy given by equations 5.78 and 5.79 respectively.   

We have shown in this section that the modified Beckmann-Kirchhoff theory and 

the generalized Harvey-Shack theory are identical.  Scattering predictions using 

equations 5.78 and 5.79 will be entirely consistent with numerical solutions using 

equation 5.93, provided that equations 5.78 and 5.79 are used in their proper domain of 

validity as discussed in chapter four.   
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CHAPTER 6: 

SUMMARY AND CONCLUSIONS 

In this dissertation, the Harvey-Shack linear-systems treatment of surface scatter 

theory has been generalized to account for large incident and scattering angles through 

the application of non-paraxial scalar diffraction theory.  The result of this generalization 

is a new definition of the surface transfer function which is in reality a two-parameter 

family of surface transfer functions, one for each incident and scattering angle.  This new 

surface scatter model is able to provide excellent agreement with the Rayleigh-Rice 

theory for smooth surfaces with large incident and scattering angles.  In addition, when 

compared to previously measured experimental data, this new model was shown to 

predict scattering from rough surfaces at large incident and scattering angles with greater 

accuracy than the classical Beckmann-Kirchhoff is able to provide.  While it can be 

computationally intensive for rough surfaces, this new model retains the intuitive nature 

of the original Harvey-Shack theory due to its linear-systems approach to the problem of 

surface scattering. 

6.1 Dissertation Summary 

In chapter one of this dissertation, the concept of surface scattering was 

introduced, and the motivations and goals for the dissertation were discussed.  Our two 

main motivations were the need to be able to predict surface scatter in optics applications 

and the inability of the currently widespread models (Rayleigh-Rice, 
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Beckmann-Kirchhoff, and Harvey-Shack) to do so in many situations because of their 

limited range of applicability.  The goal was to develop a surface scatter model that 

would incorporate the advantages of each of the three theories while extending the range 

of applicability to rougher surface and larger incident and scattering angles.  This goal 

has been accomplished. 

In chapter two, a historical background of both scalar diffraction theory and 

surface scattering theories was presented, with particular emphasis on previous work in 

the area of non-paraxial scalar theory, as well as fairly extensive detail of both the 

Beckmann-Kirchhoff and Harvey-Shack scattering theories.  This detail was necessary to 

provide the context and background for the new developments in the following chapters. 

In the first part of chapter three, a linear-systems formulation of non-paraxial 

scalar diffraction theory was developed.  By incorporating proper radiometric 

terminology and choosing an appropriate parameter space, it was shown that diffracted 

radiance is shift-invariant in direction cosine space and therefore the fundamental 

quantity predicted by scalar diffraction theory.  The proper application of Parseval’s 

theorem allows the theory to model the redistribution of energy from evanescent waves to 

propagating waves, ensuring conservation of energy. 

In the second part of chapter three, some common misconceptions due to paraxial 

Fourier treatments of sinusoidal phase gratings were discussed.  The new non-paraxial 

theory was then applied to these gratings and used to explain their wide-angle behavior.  

Finally, the non-paraxial theory was used to predict TE diffraction efficiencies for a 

perfectly conducting sinusoidal phase grating.  These results were then compared to the 

efficiencies predicted by paraxial scalar theories and a rigorous vector treatment.  It was 



 

 
 

213

shown that the non-paraxial theory is a great improvement over the paraxial scalar 

treatments in the range of λ/d values for which scalar theory is generally thought to be 

invalid.  There was some disagreement between the paraxial and non-paraxial scalar 

theories in the “paraxial regime”, however, and further rigorous numerical simulations or 

experimental measurements are needed to investigate this. 

In chapter four, the insight and understanding of non-paraxial scalar diffraction 

obtained in the previous chapter was utilized to make an empirical modification to the 

classical Beckmann-Kirchhoff scattering theory for surfaces with Gaussian 

autocovariance functions.  This modified Beckmann-Kirchhoff model was shown to 

agree with the Rayleigh-Rice theory for smooth surfaces with large incident and 

scattering angles, while at the same time agreeing with experimental rough surface 

measurements at large incident and scattering angles.  In both cases, the modified 

Beckmann-Kirchhoff theory was shown to be a vast improvement over the classical 

Beckmann-Kirchhoff theory.  A study on the appropriate use of each of the closed-form 

solutions of the modified theory with regard to the amount of roughness was also 

performed.  An equation for the number of terms that need to be used for moderately 

rough surfaces was found, and the choice of a proper “break point” between the smooth 

regime and the moderately rough regime, as well as between the moderately rough 

regime and the very rough regime, was discussed. 

In the first part of chapter five, a study of the modified Harvey-Shack theory was 

performed.  This variation of the Harvey-Shack theory was originally derived for grazing 

incidence telescope applications, and was here adapted to non-grazing incidence.  The 

modified Harvey-Shack theory was shown to agree with the Rayleigh-Rice theory for 
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arbitrary incident angles only when the spread of the scattering function around the 

specular direction is small.  This was not a great surprise, as this was the condition under 

which it was derived.  However, this was this first time such a study has been performed.  

The modified Harvey-Shack theory was shown to be a vast improvement over the 

original Harvey-Shack theory, however, as the original theory is only valid for small 

(paraxial) angles of incidence and small scattering angles. 

In the second part of chapter five, the Harvey-Shack theory was generalized to 

account for large incident and scattering angles.  This was shown to lead to a new 

two-parameter family of surface transfer functions, one for each incident and scattering 

angle.  This new model agrees well with the Rayleigh-Rice theory for smooth surfaces 

with large incident and scattering angles, and also provides good agreement with 

experimental data from rough surfaces at large incident and scattering angles.  A smooth-

surface approximation to and a quasi-vectorizing of the generalized Harvey-Shack 

scattering theory also provides an improved BRDF model for solving the inverse 

scattering problem to obtain surface characteristics from measured BRDF data.  Finally it 

was shown that the modified Beckmann-Kirchhoff model and the generalized Harvey-

Shack theory are in fact identical. 

6.2 Areas For Future Work 

There are three areas that are easily identifiable as directions in which to proceed 

from the work presented in this dissertation. 
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The first involves the sinusoidal phase grating.  It was pointed out that there is 

some disagreement between the paraxial and non-paraxial scalar treatments in what is 

known as the “paraxial regime”.  It is obvious from the efficiency plots for various values 

of h/d that the paraxial theory will not always be valid in what is labeled the “paraxial 

regime”, since as h/d is increased, more and more energy is spread out to higher 

diffracted orders.  It is therefore not clear if the disagreement for lower h/d values is due 

to our method of redistributing the energy from evanescent orders to propagating orders.  

This merits further investigation, either through comparisons with calculations from a 

rigorous vector treatment, or through comparisons with experimental measurements.  In 

addition, our results are only valid for TE polarization.  A quasi-vectorizing of the 

non-paraxial model may be possible, but this also requires further investigation. 

The second area involves the numerical computation of scattering using the 

generalized Harvey-Shack theory.  Since a different Fourier transform is required for 

every scattering angle of interest, the computation time can be substantial.  This was 

alleviated to some extent by assuming isotropic roughness and implementing a numerical 

Hankel transform routine.  Further research into increasing the computational efficiency, 

either through analytical approximations or more efficient numerical methods, would be 

useful and perhaps extend the range of applications to which the model can be applied. 

Finally, an extensive experimental study of scattering from various rough surfaces 

over a range of incident angles, scattering angles, wavelengths, and polarizations with 

which to compare the generalized Harvey-Shack theory would be extremely useful in 

further quantifying its range of validity. 
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