
Predicting Task Execution Times by Deriving Enhanced
Cognitive Models from User Interface Development Models

Michael Quade1

michael.quade@dai-labor.de
Marc Halbrügge2

marc.halbruegge@telekom.de
Klaus-Peter Engelbrecht2

klaus-
peter.engelbrecht@telekom.de

Sahin Albayrak1

sahin.albayrak@dai-labor.de
Sebastian Möller2

sebastian.moeller@telekom.de
1DAI-Labor 2Quality and Usability Lab

Technische Universität Berlin Technische Universität Berlin
Ernst-Reuter-Platz 7, 10587, Berlin Ernst-Reuter-Platz 7, 10587, Berlin

ABSTRACT

Adaptive user interfaces (UI) offer the opportunity to adapt
to changes in the context, but this also poses the challenge
of evaluating the usability of many different versions of
the resulting UI. Consequently, usability evaluations tend to
become very complex and time-consuming. We describe
an approach that combines model-based usability evaluation
with development models of adaptive UIs. In particular, we
present how a cognitive user behavior model can be created
automatically from UI development models and thus save
time and costs when predicting task execution times. With
the help of two usability studies, we show that the resulting
predictions can be further improved by using information en-
coded in the UI development models.

Author Keywords

HCI; Model-Based Development; Automated Usability
Evaluation; User Behavior Model; Simulation

ACM Classification Keywords

H.5.2 Information Interfaces and Presentation (e.g. HCI):
User Interfaces

Quade M., Halbrügge, M., Engelbrecht, K.-P., Albayrak, S., and Möller, S. (2014). Predicting Task Execution Times by Deriving Enhanced Cognitive Models

from User Interface Development Models. In Proc. EICS 2014, p139-148, New York, ACM.
This is a pre-print author draft. The final publication is available at the ACM Digital Library via http://dx.doi.org/10.1145/2607023.2607033

INTRODUCTION

One of the major challenges of today’s user interface (UI)
development is to ensure the usability of UIs when adapt-
ing to context changes. A common goal is to develop plastic
UIs [4], which adapt to context changes while preserving cer-
tain usability properties within a predefined range. To do so,
proposed properties for plasticity, such as observability and
predictability [8], need to be expressed by a human designer
at development time in a quantifiable way and require to be
monitored and maintained during runtime of the application.

Another approach to achieve the goals of plastic UIs is con-
ducting usability evaluations at development time. Usually,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’14, June 17–20, 2014, Rome, Italy.
Copyright c© 2014 ACM 978-1-4503-2725-1/14/06...$15.00.
http://dx.doi.org/10.1145/2607023.2607033

the best way is carrying out tests with real users; e.g. by ap-
plying Think Aloud [18]. Additionally, experts can check the
application’s UI and interaction logic against predefined cri-
teria; e.g. by performing a Cognitive Walkthrough [21] or a
Heuristic Evaluation [18]. Carrying out any of these methods
is a time consuming and expensive task. This is particularly
true for UIs that adapt to users or contextual parameters be-
cause different users and context conditions need to be ana-
lyzed. Since this is impractical, applying automated usability
evaluation (AUE) methods is promising [9].

AUE methods that simulate user actions are based on mod-
els of the user and the system [9]. Thus, it is possible to
draw on a vast body of research dealing with model-based
evaluation [14]. In general, model-based evaluation speci-
fies a formal framework for applying established knowledge
about how users interact with computers in a design situation.
Therefore, it has similarities with expert evaluation methods.
However, due to the formal nature of the framework, it is prin-
cipally suitable for automation.

In this paper, we apply model-based evaluation at develop-
ment time in order to address the challenges of complex-
ity and time consumption for usability evaluations of adap-
tive UIs. In particular, we show how model-based evalua-
tion is performed automatically based on runtime UI mod-
els conforming to the CAMELEON reference framework [4].
The framework structures the development process for plas-
tic UIs during model-based UI development (MBUID). Most
notably, UI development models are categorized into task
models, modality-independent abstract UI models (AUI),
modality-specific concrete UI models (CUI), and platform-
specific final UI models (FUI). Even though most MBUID
approaches differ in detail, their generic structure and devel-
opment processes can be aligned to CAMELEON; e.g. ap-
proaches based on the UsiXML description language [15].

A main benefit is that by using these UI development models
in a model-based evaluation approach, different stages of the
prototypes and adaptation variants can be evaluated without
creating system models in the required evaluation method and
thus saving time and costs. Furthermore, we show that such
UI development models contain valuable information about
the UI which is used to render more precise evaluation results
without further intervention of usability experts.

1

The remainder of this paper is structured as follows. Below,
we give an overview of related work and lead over to the de-
scription of our approach. After that, we introduce a pilot
usability study and derive our findings in order to enhance
our approach. We then evaluate this enhanced approach with
a second usability study and discuss the results before we
present a general discussion and final conclusions.

RELATED WORK

In this section, current work in the domain of MBUID is pre-
sented and we refer to how usability evaluations are intro-
duced to the process. After that, we present benefits from
model-based evaluation methods and automated tools.

Model-based UI Development and Usability Evaluations

A generic overview of potential combinations and the place-
ment of usability evaluation methods within MBUID is pre-
sented in [1]. In general, the access to the application’s
task model allows calculating all potential task sequences and
therefore enables using the task models for usability evalua-
tion purposes as described e.g. in [19]. Specifically, by simu-
lating different task performances, it becomes possible to de-
tect potential pitfalls regarding the structure of the interaction
process and to compare different variants.

The approach proposed in [7] uses MatLab to describe the
system model and UsiXML to describe the UI in order to
check early prototypes against a set of usability related rules
and to predict human performance using a cognitive architec-
ture. While first results have been promising, the approach
does not cover an integration of UsiXML with the system
model and the cognitive architecture and therefore does not
cover automation for providing the evaluation models.

The TERESA authoring tool [17] supports the user-centric
development of interactive applications based on UI models
that are derived from task models using the ConcurTaskTree
(CTT) notation [19]. TERESA allows for an early evaluation
of the interaction flow by simulating the task tree and thus
enables detecting possible dead ends or unreachable states.

The Multi Access Service Platform (MASP) [3] is a runtime
framework for adaptive UI models. The MASP is based on
executable models for multimodal UIs focusing on the do-
main of smart environments. MASP UIs are defined as sets of
models compatible with CAMELEON. A main feature of the
MASP is that the models are interconnected via mappings and
can be held at runtime in order to dynamically derive the final
UI; i.e. the models are executed at runtime. By this means,
modifications to the models are reflected in the UI and actions
on the UI lead to changes in the underlying models. During
creation and testing of the task models, the MASP Task Tree
Editor (MTTE) is used which is based on the CTT Editor [19].
The MTTE assists in defining the task hierarchy by structur-
ing tasks according to their (temporal) relationships. Further,
the MTTE can be used to simulate task flows by hand in order
to check if all scenarios are covered.

Model-based Usability Evaluation and AUE Tools

Traditionally, model-based evaluation has been focused on
execution time for routine tasks performed by skilled users.

As Kieras [14] points out, trying to explain purely cogni-
tive tasks is complex and usually requires to understand the
involved processes, whereas routine tasks mainly consist of
perceptual and motor activities, which can be modeled more
generally and are related to UI design. Task execution time is
a popular instrumental measure to quantify efficiency as one
criterion of usability. As argued by [14], the execution time
of routine tasks is closely related to the number of perceptual
and motor steps: a routine task involving less such steps can
be performed more quickly. At the same time, a UI allowing
to perform the same task with fewer steps will likely be sim-
pler and thus more usable [14]. To encounter concerns about
the models’ validity, guidelines for dealing with uncertainty
in the predictions have been defined, especially for the case
that one of several designs is to be pursued further [14].

The GOMS approach for analytical modeling uses models
of goals, operators, methods, and selection rules [5]. In a
GOMS model, goals are used to represent the direction of in-
teraction. In order to model how a human user would achieve
these goals, operators are being performed on a perceptual,
cognitive or motor-act level. Execution times are bound to
these operators in order to predict overall task execution times
for expert users. Furthermore, methods describe sequences
of operators in order to achieve sub-goals. Finally, selec-
tion rules are applied if more than one method can be used
to achieve a goal. An overview of methods from the GOMS
family with different application areas is given in [11].

The Keystroke-Level Model (KLM) is a simplified approach
of GOMS for modeling human performance with an interac-
tive application [5]. The focus of this analytical modeling
method is to predict the interaction time of expert users for
specific tasks. Larger tasks can be divided into smaller unit
tasks. These unit tasks can further be subdivided into an ac-
quisition phase and an execution phase. For the execution
phase of each unit task, an expert writes down the method
to perform the task and counts the keystrokes involved. By
adding up the allocated times for these actions, the overall
execution time can be predicted.

ACT-R [2] is a cognitive architecture which incorporates var-
ious theories about human information processing and has
been applied to the analysis of HCI. While ACT-R imple-
ments the limits of human information processing (such as
restricted working memory), it allows for parallel processing
in some cases, making ACT-R models very powerful but com-
plex compared to other approaches. Due to this complexity,
usually it is only applied by experts in research.

Based on the aforementioned approaches, CogTool [12] was
developed in order to simplify model-based evaluation and
make it accessible to developers with less psychological ex-
pertise. It is based on a compilation approach which produces
ACT-R models from KLM sequences. The KLM model is au-
tomatically generated from a user interaction demonstration
which the designer performs on a storyboard of the UI. This
storyboard consists of screenshots or mockups and needs to
be created for each evaluation. User actions are then trans-
lated to perceptual and motor operators like look-at and point.
Think operators that represent mental activity of the user are

2

automatically added at every decision point. The resulting
model is compiled together with information from the sto-
ryboard into an ACT-R model which is used to predict task
execution times. Initial work in applying CogTool to further
interaction devices is described in [13]. While the results are
promising, comparisons with real user tests also revealed that
changes to the underlying KLM model need to be made in
order to cope with specific domains [13].

To sum up, model-based evaluation can only make predic-
tions on the basis of what is known about the user. Since
some aspects of the users’ interaction behavior, and in partic-
ular their judgments about the system (e.g. user satisfaction),
cannot be anticipated by an analyst or a formal method, to-
day’s methods are not able to fully substitute evaluations with
real users and experts. Instead, model-based methods should
be used complementary to expert or user-based evaluations;
e.g. to make early decisions between design alternatives or
when user tests are too costly or too hard to apply.

PREDICTING TASK EXECUTION TIMES BY COMBINING

UI DEVELOPMENT MODELS AND AUE TOOLS

When applying AUE to the development of model-based
adaptive UIs, there are specific requirements that need to be
addressed [23]. Basically, this involves making information
about the application, the context of use, the user, and the task
accessible to the specific AUE approach. In previous work,
main benefits of combining MBUID with model-based eval-
uation were highlighted which lie in reducing the complexity
and costs for applying AUE [22].

A specific approach, which deploys UI development mod-
els of the previously introduced MASP framework [3] to a
model-based usability evaluation approach, has been intro-
duced in [22]. The work in this paper builds on top of that
basic approach and adds further integration of the UI devel-
opment models and thus more automation to the evaluation
process. However, we do not only address this extended au-
tomation but also demonstrate how specific requirements of
an AUE tool can be covered by information from the UI de-
velopment models in order to gain improved results.

Below, we give a short summary of the MASP framework
models in order to better present required extensions to the
architecture which are introduced in the following sections:

The Task Model defines the interaction flow between user
and application. Interaction tasks define direct actions by
the user and application tasks define application logic that
is executed without user actions.

The User Interface Models are specified independently
from modalities and devices on the level of the AUI model,
while modality-specific definitions of the CUI models
exist in parallel at runtime and are connected to the final
UI on the specific devices.

The Domain Model serves as a dynamic storage for domain
information. Relevant for rendering the UI is that this in-
formation is used to dynamically link domain data to UI
elements for input and output.

The Context Model holds sensor and device data in order to
reflect on the environment, user, and interaction devices.

Enhanced Model-based Architecture for Predicting Task

Execution Times

As introduced in [22], for our combined approach we chose
to apply CogTool as an AUE tool for predicting task execu-
tion times. The main reason for this decision is that CogTool
is widely used and the underlying ACT-R concepts are suffi-
ciently validated. In order to apply an evaluation with Cog-
Tool, representations of all visited UI elements from each UI
screen that is on a demonstrated interaction path are required.
For this reason, the task model of the application does not
suffice alone. This is due to the fact that the evaluation with
CogTool relies heavily on the interaction logic of the appli-
cation in combination with UI surface information, such as
type, label, size, and position of UI elements (see [23]). Con-
sequently, the approach needs to provide means for deriving
this UI information and – as equally important – a simula-
tion component to extract required interaction paths. For this
purpose a module was implemented that transforms UI infor-
mation from the AUI and FUI models of the current UI screen
and provides this to a user model for simulating interaction.
The resulting interaction traces are then compiled to ACT-R
using CogTool and can be analyzed further. Figure 1 gives an
overview of the processes and participating models which are
described in the remainder of this section.

Converting UI Information and Performing Interaction

In a first step, all UI elements from a given UI screen and
their relevant attributes for an evaluation using CogTool are
identified. The intermediate model UI Element Information
from Figure 1 is used to provide this information from each
UI element. During this process, we make use of the task
models that are being executed in the MASP. We build a sub-
set of the enabled tasks by filtering only tasks that are actu-
ally presented on the screen - the presentation task set (PTS).
Each task of the PTS also links to an AUI element that has a
FUI representation on the current UI screen. Consequently,
all required FUI elements are then collected by following the
mappings from AUI elements to FUI representations in the
runtime platform (see upper left of Figure 1).

For the case studies of this paper, a concept was applied which
uses expressions in the AUI models in order to map AUI ele-
ments with their corresponding HTML elements (on the FUI
level). These mappings from AUI to FUI were implemented
using descriptive paths to the location of the specific HTML
element in predefined templates. By following these map-
pings, the required interconnection from task and AUI mod-
els to FUI elements is accessed during runtime. Hence, this
concept provides up-to-date information of the UI screen as
it is at any given point of time on any available interaction
device and for any adaptation variant of the UI. The required
attributes are then transformed to the aforementioned UI Ele-
ment Information (arrows 1a and 1b in Figure 1).

During simulation the User Model is initialized with User
Task Knowledge which consists of a list of labels that need to
be interacted with in order to reach a specified goal state. This

3

Modality-Specific

Runtime Platform

 Application Development Time Models

Concrete UI

Input Model

Concrete UI

Output Model
Task Model

CogTool

Evaluation Models

Design

(Frames)

Final UI

Interaction

Trace

(Transitions)

(1a) (1b)

(2a)

(3) (4a)

(4b)

User Model

User Task Knowledge

Label
Label

UI ElementUI ElementUI Element Information

 label

 size

 position

 FUI type

 AUI type

(2b)

Interaction

Simulation

Abstract UI

Model

Figure 1. Integrated architecture with interconnections between UI development and runtime models (white) and intermediate models required for

simulation (light gray) and evaluation (dark gray). Bold lines indicate processes and thin lines depict mappings and exchange between the models.

process is controlled by the Interaction Simulation compo-
nent which accesses the User Task Knowledge and compares
it to the labels from the UI Element Information of the current
UI screen (arrows 2a and 2b in Figure 1). The definition of
this knowledge matches the approach of CogTool to evaluate
expert interaction tasks that are pre-defined by the developer
and is used for the evaluation of the user studies in the fol-
lowing sections. A more detailed description how the labels
are compared and alternative ways to retrieve required infor-
mation for the User Task Knowledge are presented in [22].

When the current User Task Knowledge matches the label of
a UI Element Information, an interaction on that specific ele-
ment is simulated. This interaction is then performed on the
corresponding AUI element which activates the next task set
of the application (arrow 3 in Figure 1). By this means, the
follow-up UI screen is triggered, which is evaluated accord-
ingly until the goal-state is achieved; i.e. all labels from the
User Task Knowledge are matched.

In the last step, each set of UI Element Information from
the current UI screen and the simulated interaction are trans-
formed to specific CogTool models - Frames that are inter-
linked by Transitions (arrows 4a and 4b in Figure 1). By this
means an interaction trace is created and evaluated automati-
cally in order to predict the task execution time. Additionally,
the whole interaction process can also be validated using in-
ternal analysis methods and views of CogTool.

Below, we describe a pilot usability study that was conducted
with a prototypical application of the MASP in order to gain
first results from real user interactions that we used as a basis
for enhancing and evaluating the described approach later on.

COGNITIVE USER MODEL

In order to test whether automatically generated cognitive
user models can inform the usability engineering process, we
conducted a usability study with a MASP based cooking as-
sistant (CA, see Figure 2). The CA consists of several UI

screens and allows searching for recipes depending on at-
tributes like calorie intake and type of dish. After having
selected a recipe, the user can check the needed ingredients
against the contents of the storage cabinet and – if applica-
ble – generate a shopping list. The actual preparation of the
selected recipe is performed using a step by step guide.

AUI: OutputOnly

AUI: OutputOnly

AUI: Choice

AUI: Choice

AUI: Choice

AUI: Command

AUI: Command

AUI: Complex

Figure 2. Screenshot of the English version of the cooking assistant with

annotated AUI elements and their types.

Pilot Usability Study

The usability test presented here focused on the task of find-
ing a recipe and took place in May 2013. Ten subjects (40%
female; Mage=29, SDage=12) were recruited mainly off cam-
pus. The CA was presented on a 19” (48.3 cm) touch screen
with a 4:3 ratio mounted on a wall cupboard above the kitchen
sink (see Figure 3). We recorded the interactions of the sub-
jects with the user interface while they completed five simple
tasks, e.g. “Search for German main dishes and select lamb
chops”.1 All subjects had worked with the recipe finder and

1The full instructions are available for download at http://www.tu-
berlin.de/?id=135088

4

the touch screen in a previous part of the experiment so that
they could be considered adequately trained.2 Task instruc-
tions were given verbally, user actions were logged by the
MASP and additionally recorded on video to be able to iden-
tify system errors or misinterpreted user actions (see place-
ment of camera in Figure 3). The video recordings and sys-
tem logs were synchronized using ELAN [26], which was
also used to annotate user interaction errors, such as wrong
and unrecognized clicks, as well as system response times,
starts, and ends of individual trials.

Figure 3. Experimental setup with the cooking assistant on the mounted

touch screen for the pilot study conducted in May 2013.

Results

Average task execution times and number of errors per task
are presented in Table 1. The relatively high number of er-
rors is most probably caused by the six-year-old touch screen
used during the experiment which suffered from a substan-
dard input detection compared to current devices. As de-
scribed above, these errors were extracted from video and
log recordings. Errors are especially important to us, because
CogTool, which is part of our combined approach, aims at
predicting task completion times for expert users in error free
conditions. For the comparison between our data and a Cog-
Tool model to be meaningful, we have to discard all erroneous
trials beforehand. In case of the pilot study, this yields only
one to four observations per task – too few for statistical anal-
ysis.

time (s) errors

Task / Recipe Steps M SD M SD

1 Lamb Chops 5 10.7 2.3 1.7 1.3
2 Roast Apples 5 8.7 2.4 1.0 .8
3 Panna Cotta 6 11.4 6.3 .4 .5
4 [Group size] 4 3.8 1.5 .8 1.1
5 Chicken Breasts 14 32.6 8.0 3.9 1.3

Table 1. Task completion times and error rates from the pilot study.

2The experiment was embedded in a larger evaluation study. We
only report the relevant parts here.

In order to get as much information as possible from the ex-
periment, we rejected complete tasks as subject of the analy-
sis and went for times between pairs of clicks instead. If for
example a task consisted of five clicks, and an error happened
between click 2 and 3, we removed everything between 2
and 3, and used only the remaining three steps (1 to 2, 3 to 4,
and 4 to 5).

Next we developed a classification for the different types of
clicks. The class of a click should be related to the time
a user needs to perform it. The simplest and fastest one
should be repeated clicks on the same UI element. We will
call this type same button in the following. The other ex-
treme are clicks on buttons that are not part of the same UI
screen, i.e. a new page must be loaded before the second
click can be performed. We denote this as new screen. The
remaining clicks are performed on the same form, but on dif-
ferent buttons. The buttons of the cooking assistant’s user
interface are grouped semantically, e.g. there is a button
group called “Regional Dishes” with individual buttons for
“French”, “German”, “Italian”, and “Chinese” (see Figure 2).
We decided to differentiate between clicks within and across
those groups and finally obtained four types of click pairs, or-
dered by semantic and also physical proximity: same button
(repeated clicks); other button in the same group; other but-
ton in another group; other button on a later displayed new
screen.

In total we observed 447 single clicks during the experi-
ment, of which 78 (17%) had to be discarded due to hardware
(mainly touch screen) errors. The remaining clicks formed
218 valid pairs of clicks that could be divided into the four
categories above. The time interval between clicks is signif-
icantly different depending on type (linear mixed model [20]
with subject as random factor, F3,205 = 19.9, p < .01).

Visual examination of the data indicated the presence of ex-
treme outliers (up to 10 seconds between clicks), most proba-
bly caused by the inclusion of erroneous trials in the analysis.
We therefore based any further examination on robust statis-
tics like 20% trimmed means [25].

Automatically Generated Cognitive User Model

Main goal of the initial study presented above was to show
that automatically generated cognitive user models can pro-
vide useful information to system developers and designers.
As a baseline, we exported the task information contained
within the MASP UI models to CogTool as explained in the
previous section (see also Figure 1). CogTool bases its pre-
dictions on the Keystroke-Level Model, estimating the motor
time needed to perform a click by Fitts’ Law [6] and plac-
ing generic think operators (1.2 s) at every decision point (i.e.
between clicks). This basic approach yields already moder-
ate fits, but cannot really differentiate between all of the click
types (see CogTool “Ootb” out of the box predictions, � in
Figure 4). The goodness-of-fit statistics given in Table 2 in-
dicate significant room for improvement. CogTool out of the
box predictions are especially off the mark in the same group
and new screen conditions. In the following part, we exam-
ine these conditions in more detail. We provide theoretical
explanations for the mismatch between model and observed

5

data and derive a revised cognitive user model. At the same
time, we demonstrate how the cognitive user model benefits
from information contained within the development models.

●

●

●

●

CogTool think operator

0.5

1.0

1.5

2.0

same button same group other group new screen

ti
m

e
 (

s
) CogTool

KLM

Ootb

Figure 4. Average times between clicks on different elements on the user

interface for the pilot study. Circles denote 20% trimmed means, lines

bootstrapped 95% confidence intervals (10000 repetitions).

Hypothesis I: Units of Mental Processing

The first observation worth discussing is the difference be-
tween the same group and other group clicks (see Figure 4).
Buttons in the same semantic group are also physically closer
to each other; therefore it should need less time to move the
finger from one to another. But is this explanation sufficient?
Fitts’ Law provides well-researched predictions for the time
the user needs for finger pointing movements. In our case,
Fitts’ index of difficulty is close to 1 bit within a group and
raises up to 3 bit across groups. Even when using a compara-
tively high coefficient of 150 ms/bit, Fitts’ Law only predicts
a difference of 300 ms between same group and other group
clicks. This is much less than the 640 ms that we measured;
hence we have to reject Fitts’ Law as a single explanation.

In addition, the absolute time between clicks within the same
group in the pilot study was approximately 900 ms. If the
premise of a generic 1.2 s think operator before every click
holds, this would not be possible. We concluded that the basic
CogTool model does not sufficiently match our data and de-
cided to augment the model using additional rules and heuris-
tics from the literature [10] and structural information of the
user interface from the MASP user interface models [22].

The original formulation of the Keystroke-Level Model
formed the basis for the revised cognitive model. Card,
Moran, and Newell present several rules for the placement
of think operators. In principle, those rules are already in-
corporated in CogTool, but some cannot be applied automat-
ically, i.e. without human interpretation of the user interface
in question. The rule that is most important for the given ex-
periment is rule 2, which says that if several actions belong to
a cognitive unit, only one think is to be placed in front of the
first one. This rule definitely applies to the same button con-
dition, where one button is clicked a fixed number of times in
a row. A more interesting case is the same group condition
which indicates consecutive clicks within a group of buttons
belonging to the same concept, e.g. changing the type of dish

from “appetizer” to “dessert”. In terms of cognition, this task
can be solved using a single chunk of memory that represents
the target type of dish (“dessert”), and thus no think operator
is to be assigned to the same group condition. This also fits
well with the empirical mean being noticeably smaller than
the 1.2 s think time.

A main benefit of the described approach is that such cog-
nitive units can be automatically extracted from the UI de-
velopment models. As described above, we make use of the
mappings between the runtime FUI elements and the AUI
model. An example is presented in Figure 2, which depicts a
screenshot of the recipe finder dialogue with additionally an-
notated types of the corresponding AUI element. While the
overall container has the abstract type Complex, it consists of
several further AUI elements which directly relate to a spe-
cific task, namely OutputOnly for presenting text or graphics,
Command to trigger application actions and Choice for pre-
senting elements from which to choose. FUI elements of the
same semantic group, such as the nationalities of the dishes,
are modeled using the same AUI element, which is of the
type Choice. Thus, they are also grouped by their semantics
on the level of the AUI model. Consequently, the specific
AUI element of each FUI element is queried during conver-
sion to CogTool. In case several FUI elements share the same
AUI element (besides Complex container elements), they are
considered to be a cognitive unit and the generation of the
CogTool model is altered by removing think steps prior to
consecutive interactions on FUI elements from the same AUI
element.

Hypothesis II: System Response Times

Another property of the Keystroke-Level Model that we can
take advantage from is the inclusion of system response
times. Navigation from one UI screen to another took ap-
proximately 500 ms on the hardware setup used in the pi-
lot study, which is comparable to the difference between the
other group and new screen click types. Following the orig-
inal KLM rules, system response times that occur in parallel
to think operators are only taken into account to the extent
that they exceed the think time, i.e. a frozen system does
block mouse and keyboard input, but does not block the men-
tal preparation of the user [5, p. 263]. CogTool applies this
rule out of the box, and as the 500 ms screen loading time is
shorter than the 1.2 s think operator, CogTool does not predict
the difference between the other group and the new screen
conditions (see Figure 4).

We decided to deviate from the original rules here. When
Card et al. formulated the Keystroke-Level Model, their users
were solving tasks like typing commands into line-oriented
text editors from the pre-graphical-user-interface era. Using
the system response time for the memory retrieval of the next
command to be executed makes perfectly sense in this sce-
nario. Our graphical interface and selection of tasks are suf-
ficiently different to call for a gentle refinement of the KLM.
The biggest change is that the main bulk of user actions is
no longer (blindly) typing on a physical keyboard, but finger-
tapping on dynamic visual elements on the screen. While
memory retrieval still plays an important role in this scenario,

6

searching the screen for the next button to press should be at
least equally so. And as visual search is not possible when the
graphical objects to be searched are not yet presented to the
user, this kind of preparation for the next physical action is
being delayed by a system response if this is accompanied by
the screen being blank. We therefore decided to add the blank
time to our cognitive model in the new screen condition.

Comparable measures have been taken by other researchers
before, e.g. while applying the KLM to handheld devices
[16]. There, system response times that are not shadowable
by think operators were introduced by adding bogus widgets
to the system mockups. As it is our goal to get rid of mock-
ups and use real applications instead, we did not follow this
direction.

Due to the fact that system response times may vary between
different platforms and devices, these need to be measured or
estimated once. However, here MBUID approaches that rely
on executable models benefit from the fact that the evaluation
of the models is actually directly combined with testing the
real application. This specifically allows measuring and in-
cluding system response times into the conversion process of
the interaction traces. After each simulated user interaction it
is checked whether the presentation task set has changed. If
so, it can be assumed that a new UI screen was rendered. In
this case the system response time is automatically added in
sequence with a think operator because users cannot perceive
information from the following UI screen until its rendering
is finished. If the presentation task did not change, the system
response time is added conforming to the CogTool implemen-
tation and might be shadowed by a parallel think operator. To
sum up, task and AUI model are used to check on changes in
the UI and to alter the cognitive user model.

Hypothesis III: Monitoring

What remains is the 360 ms difference between the same but-
ton and same group click types. Clicking the same button
repeatedly does not incorporate movements of the forearm,
moving the finger to another button of the same group does.
Therefore we expect a difference between the two types. The
movement time can be predicted using Fitts’ Law, but again,
this does not give sufficiently big estimates. We propose a
monitoring hypothesis to fill this gap: Given the bad reliabil-
ity of the touch screen, we assume that our subjects monitored
whether their physical tap on the screen yielded a correct sys-
tem response (i.e. a visible change of the displayed button).
The time that this additional monitoring step needs consists
of the time the systems needs to display a change and the
time the user needs to notice this change. This system time is
about 300 ms for our device. CogTool can be used to predict
the time the user needs to encode and notice the change.

During conversion to CogTool the system response time (see
Hypothesis II) and an additional look-at operator are added
automatically in order to model a user monitoring if the de-
sired action is reflected in the GUI. For this purpose, the FUI
type of the UI element is queried and, in case it is an interac-
tion on a UI element that can be toggled; e.g. radio buttons
and checkboxes, the cognitive model is altered accordingly.

Model Fit

Predictions of CogTool out of the box (�, labeled “Ootb”)
and our augmented CogTool model (N, labeled “KLM”) are
displayed in Figure 4. For both models, we computed several
goodness-of-fit statistics, namely the coefficient of determi-
nation (R2), the root mean squared error (RMSE), the max-
imum likely scaled difference (MLSD, [24]) and the maxi-
mum relative error (max diff). We based the comparisons on
20% trimmed means and bootstrapped confidence intervals.
The results are reported in Table 2.

Model R2 RMSE MLSD max diff

CogTool Ootb .597 0.39 s 4.6 75.9%
CogTool KLM .995 0.13 s 1.4 25.3%

Table 2. Goodness-of-fit of the two cognitive models for the pilot study.

Statistics are based on 20% trimmed means of the time intervals between

the clicks of the users.

CogTool promises prediction “within 20% of the actual per-
formance” out of the box [12]. We could not achieve this in
the pilot study, the results are nevertheless promising. Espe-
cially the CogTool KLM model obtained a R2 close to the
maximum possible value of 1. The MLSD of 1.4 indicates
that the measured differences between the model and the em-
pirical trimmed means are very close to the amount of un-
certainty in the data. The model therefore cannot be refined
much more without taking the risk of overfitting.

Discussion

We showed that semi-automated predictions of task execu-
tion times based on UI development models are possible. On
top of that, we identified properties of the MASP UI models
behind our interface that we could use for further improve-
ments of the cognitive user model. The goodness-of-fit that
we achieved without parameter tuning is very promising. The
use of few and very selective tasks and the small number of
subjects put the validity of the cognitive user model into ques-
tion, though. Thus, further analyses based on independent
empirical test data are necessary.

Using CogTool for click by click analyses instead of predict-
ing task execution times could be criticized as atypical appli-
cation or even unfair towards CogTool. The 1.2 s think oper-
ator time used in CogTool is estimated from empirical data,
and as Card et al. state, these operators for mental activity
vary strongly within and across subjects. This means that the
horizontal line labeled “CogTool think operator” in Figure 4
should not be considered a strong cut-off, but rather demarks
a somewhat blurry transition area. When applying KLM to
full tasks, the variance within think times should partially av-
erage out, i.e. a model with moderate fit on click level can still
achieve good fit on task level. As the empirical basis of the
pilot study is too weak for this kind of analysis, we decided
to perform a second experiment.

EVALUATION

In order to test the validity of the cognitive model that we de-
veloped on the basis of the empirical data of the pilot study,
we conducted a validation study with new subjects and addi-
tional user tasks. The study took place in November 2013,

7

12 subjects were recruited mainly from within the research
groups of the authors (17% female; Mage=28.8, SDage=2.4).
In order to achieve a higher coverage of the cooking as-
sistant’s functionality, each subject completed 34 individual
tasks. The presentation of the user interface was moved from
the wall-mounted touch screen to a personal computer with
integrated 27” (68.6 cm) touch screen with a 16:10 ratio. This
was done both to reduce error rates compared to the first ex-
periment and to test whether the model generalizes well to
new devices due to adaptation of the UI caused by a different
aspect ratio and size of screen. The latter question is of high
importance for automated usability evaluation of plastic UIs
that are developed without knowing on which devices they
will later be used [22].

Besides the changes in subject group, physical device, and
task selection, we closely followed the experimental design
of the previous study. User actions were again logged by the
MASP and recorded on video. In the same way, system re-
sponse times, start times and end times of the individual tasks
were annotated using ELAN [26].

Results

We recorded a total of 180 minutes of video footage, about
six times the amount of the pilot study. For being able to
compare the results with the previous experiment, we con-
ducted an analysis on the click-to-click level first. We ob-
served a total of 1930 pairs of clicks that can be divided into
the classification given above. Means and confidence inter-
vals for these are given in Figure 5. The differences found
in the pilot study are qualitatively replicated in the second
study. We observed an overall increase in speed, though.
The average time between clicks decreased from 1.41 s to
1.04 s between the experiments (linear mixed model [20], ad-
ditional factors: click type as fixed and subject as random
effect, F1,20 = 55.5, p < .01).

●

●

●

●

CogTool think operator

0.5

1.0

1.5

2.0

same button same group other group new screen

ti
m

e
 (

s
) CogTool

KLM

Ootb

Figure 5. Average times between clicks on different elements on the user

interface for the validation study. Circles denote 20% trimmed means,

lines bootstrapped 95% confidence intervals (10000 repetitions).

For examining the generalizability of our cognitive model,
we used the unchanged models from the previous study and
computed predictions for the tasks of the new one. Goodness-
of-fit statistics are given in Table 3. While the correlations es-

pecially between the KLM model and the data are still near to
perfect, RMSE and relative difference degraded substantially.

CogTool Ootb R2 RMSE MLSD max diff

pairs of clicks .425 0.61 s 20.0 173.9%
complete tasks .735 3.32 s 8.4 104.0%
CogTool KLM R2 RMSE MLSD max diff

pairs of clicks .927 0.47 s 13.8 66.0%
complete tasks .965 2.77 s 8.4 70.9%

Table 3. Goodness-of-fit of the two cognitive user models for the val-

idation study. Statistics are based on 20% trimmed means and boot-

strapped confidence intervals (10000 repetitions).

Due to the higher number of subjects, tasks, and fewer errors,
we could extend our analysis to the execution times of com-
plete tasks instead of single clicks. Task completion times are
a much more natural measurement than clicks and are also
the level of analysis originally used by the Keystroke-Level
Model and hence CogTool. We grouped the 34 tasks into
seven categories by the total number of steps per task and by
how many of these were same group and new screen type of
clicks as those were the critical conditions in the first study.
Average completion times and model predictions per category
are given in Figure 6, goodness-of-fit statistics in Table 3.

●

●

●

●

●

●

●

5.0

7.5

10.0

12.5

3 / 0 4 / 1 5 / 1 5 / 2 6 / 2 5 / 0 7 / 1

total clicks / same group clicks

ti
m

e
 (

s
)

CogTool

KLM

Ootb

number of screens

●

●

single screen

three screens

Figure 6. Average task completion times for the validation study. Circles

denote 20% trimmed means, lines bootstrapped 95% confidence inter-

vals (10000 repetitions).

Discussion

The results of the validation study are qualitatively similar to
the first study, but we also found big quantitative differences.
The overall gain in click speed between the experiments could
be accounted to differences in subject selection, device used,
length of the experiment and so on. As all of these variables
are confounded; we can neither confirm nor reject any of them
as influence factors.

What is more important is the degree of generalization of our
cognitive model to the changed situation. The goodness-of-fit
of the model to the new data is an important indication of the
usefulness of our approach to automated usability evaluation
in general. We will get back to this line of thought in the
general discussion below and only discuss the evidence here.

Of the fit statistics that we applied, RMSE and maximum
relative difference are most sensitive to overall shifts in the

8

data, whereas the determination coefficient R2 neglects these
and identifies changed relations between (classes of) observa-
tions. R2 being very high in our case means that especially the
KLM model describes the differences between the identified
types of clicks very well. RMSE, scaled difference (MLSD)
and relative difference on the other hand clearly show that our
predictions miss the actual task completion times.

One promising result is that the modified KLM model still
yields substantially higher fits than CogTool out of the box in
the second study (see Table 3). This provides backing for the
validity of the hypotheses that we derived from the results of
the first study. The goodness-of-fit computed on task com-
pletion times being comparable to the one computed on click
level also hints at the robustness of our approach.

Finally the most general question: Does the relatively bad
fit put the KLM that formed the theoretical basis of our user
model into question? Looking at Figure 5 shows that nearly
all clicks moved below that 1.2 s think operator time in the
validation study. This could be taken as evidence for the gen-
eral inappropriateness of such an operator. While being cor-
rect in itself, this argumentation misses the heuristic nature of
the KLM. As Card et al. pointed out, users differ a lot in how
they mentally encode a task, and higher levels of user exper-
tise can be modeled by placing fewer think operators for the
same task [5, p. 265]. Taken together with the highly selec-
tive group of participants in the second study, this can explain
the apparent disappearance of mental preparation times.

GENERAL DISCUSSION

With the help of information from UI development models
and an AUE tool (CogTool) we have created a cognitive user
model that yields very good fits to data from a usability study
conducted in parallel. We validated the model with data from
a second experiment where the task domain was kept con-
stant, but user group and physical device were varied, thereby
testing generalization to new contexts of use. While the cog-
nitive model was able to predict time differences between the
new tasks of the second experiment very well, we also ob-
served an overall shift in task completion time that was not
anticipated by the model. We can conclude that the model
provides a good basis to compare different UI adaptation vari-
ants, or to predict the efficiency of a UI for frequently vs.
rarely used functions. Especially in the domain of smart home
environments, specific recurring functions are used quite of-
ten and profit from an efficient interaction. In addition, the
validation study shows that adding information from UI de-
velopment models significantly improves the goodness-of-fit
of the cognitive user model.

Compared to further model-based evaluation approaches that
focus on evaluations of task models (e.g. [19]), our integrated
approach also uses AUI and FUI information and thus al-
lows creating richer cognitive models. Especially, exact but-
ton positions (and their labels for matching purposes) can be
used for optimized predictions using Fitts’ Law [6] without
requiring data from real user tests. It needs to be remarked
that compared to approaches that focus on exhaustive task
model evaluations, the degree of simulation is currently lim-
ited to predefined interactions. So, our approach presents a

complementary evaluation with a focus on detailed execution
time predictions. But specifically this focus provides bene-
fits when evaluating plastic UIs because task execution times
are a quantifiable criterion of usability. When adapting the
UI to a different context, the automatically predicted execu-
tion time, whether annotated during development or predicted
during runtime, can e.g. serve as a hard constraint to exclude
adaptations or to prefer a specific variant over others.

Specifically for the domain of model-based evaluation, our
approach presents a benefit that is highly important. Mod-
eling the system usually requires a significant part of the
modeling effort [14]. Thus, connecting the user model to
the real system and still using information from the develop-
ment models simplifies model-based evaluation greatly. Fi-
nally, we showed that an additional benefit lies in a better
placement of think operators which, otherwise, would require
case-specific expert knowledge.

Possible areas of application arise, when taking a look at cur-
rent challenges in MBUID. On the one hand, our approach
provides a tool that can predict efficiency across different
contexts of use and thus can be included in developing and
maintaining plastic UIs. On the other hand, usability regres-
sion testing can be included into the development cycle af-
ter each iteration step, starting with early prototypes. The
described approach could also be used to add automation to
existing solutions [1]. Finally, the applied methods to gain
information from UI templates in combination with dynamic
CSS and JavaScript even allows automated extraction of UI
information in the current trend of responsive design.

CONCLUSIONS

In this paper we have presented an approach for automatic
generation of cognitive user models in order to predict task
execution times during model-based UI development. The
process strongly benefits from information available in the
UI development models which we used to create better cogni-
tive models without requiring further intervention by usability
experts. The described approach does not require extensive
knowledge in the usability domain in order to be introduced
to evaluation cycles during the development process. Typi-
cal areas of application arise when there is a need to compare
different design decisions or alternative adaptations such as
when creating plastic user interfaces. Even if usability ex-
perts are available, they can base their work on the automati-
cally created CogTool models, sparing them from the labori-
ous creation of UI mockups and storyboards.

Acknowledgement: We gratefully acknowledge financial
support from the German Research Foundation (DFG) for
the project “Automatische Usability-Evaluierung modell-
basierter Interaktionssysteme für Ambient Assisted Living”
(AL-561/13-1).

REFERENCES

1. Abrahão, S., Iborra, E., and Vanderdonckt, J. Usability
evaluation of user interfaces generated with a
model-driven architecture tool. In Maturing Usability,
Human-Computer Interaction Series, Springer London
(2008), 3–32.

9

2. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., and Qin, Y. An integrated theory of the
mind. Psychological review 111, 4 (2004), 1036–1060.

3. Blumendorf, M., Lehmann, G., and Albayrak, S.
Bridging models and systems at runtime to build
adaptive user interfaces. In Proceedings of the 2Nd ACM
SIGCHI Symposium on Engineering Interactive
Computing Systems, EICS ’10, ACM (New York, NY,
USA, 2010), 9–18.

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,
Bouillon, L., and Vanderdonckt, J. A unifying reference
framework for multi-target user interfaces. Interacting
with Computers 15, 3 (2003), 289–308.

5. Card, S. K., Moran, T. P., and Newell, A. The
Psychology of Human-Computer Interaction. Erlbaum
Associates, Hillsdale, New Jersey, 1983.

6. Fitts, P. M. The information capacity of the human
motor system in controlling the amplitude of movement.
Journal of Experimental Psychology 47, 6 (1954),
381–391.

7. González-Calleros, J. M., Osterloh, J. P., Feil, R., and
Lüdtke, A. Automated ui evaluation based on a
cognitive architecture and usixml. Science of Computer
Programming Journal In Press (05 2013).

8. Gram, C., and Cockton, G., Eds. Design principles for
interactive software. Chapman & Hall, Ltd., London,
UK, 1997.

9. Ivory, M. Y., and Hearst, M. A. The state of the art in
automating usability evaluation of user interfaces. ACM
Comput. Surv. 33, 4 (2001), 470–516.

10. John, B. E., and Jastrzembski, T. S. Exploration of costs
and benefits of predictive human performance modeling
for design. In Proceedings of the 10th International
Conference on Cognitive Modeling, Philadelphia, PA
(2010), 115–120.

11. John, B. E., and Kieras, D. E. The goms family of user
interface analysis techniques: Comparison and contrast.
ACM Trans. Comput.-Hum. Interact. 3, 4 (1996),
320–351.

12. John, B. E., and Salvucci, D. D. Multipurpose
prototypes for assessing user interfaces in pervasive
computing systems. Pervasive Computing, IEEE 4, 4
(2005), 27–34.

13. John, B. E., and Suzuki, S. Toward cognitive modeling
for predicting usability. In Human-Computer
Interaction. New Trends, J. Jacko, Ed., vol. 5610 of
Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2009, 267–276.

14. Kieras, D. Model-based evaluation. In The
human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications,
A. Sears and J. A. Jacko, Eds. Lawrence Erlbaum
Assoctiates, Mahwaw, NJ, 2007.

15. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon,
L., and López-Jaquero, V. Usixml: A language
supporting multi-path development of user interfaces. In
Engineering Human Computer Interaction and
Interactive Systems, R. Bastide, P. Palanque, and J. Roth,
Eds., vol. 3425 of Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Heidelberg, 2005, 200–220.

16. Luo, L., and John, B. E. Predicting task execution time
on handheld devices using the keystroke-level model. In
Extended Abstracts Proceedings of the 2005 Conference
on Human Factors in Computing Systems, G. C. van der
Veer and C. Gale, Eds., ACM (Portland, OR, 2005),
1605–1608.

17. Mori, G., Paternò, F., and Santoro, C. Design and
development of multidevice user interfaces through
multiple logical descriptions. IEEE Trans. Softw. Eng.
30, 8 (2004), 507–520.

18. Nielsen, J. Usability Engineering. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

19. Paternò, F. Model-based tools for pervasive usability.
Interacting with Computers 17, 3 (2005), 291–315.

20. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R
Core Team. nlme: Linear and Nonlinear Mixed Effects
Models, 2013. R package version 3.1-113.

21. Polson, P. G., Lewis, C., Rieman, J., and Wharton, C.
Cognitive walkthroughs: a method for theory-based
evaluation of user interfaces. International Journal of
Man-Machine Studies 36, 5 (1992), 741 – 773.

22. Quade, M., Lehmann, G., Engelbrecht, K.-P., Roscher,
D., and Albayrak, S. Automated usability evaluation of
model-based adaptive user interfaces for users with
special and specific needs by simulating user interaction.
In User Modeling and Adaptation for Daily Routines,
E. Martı́n, P. A. Haya, and R. M. Carro, Eds.,
HumanComputer Interaction Series. Springer, London,
2013, 219–247.

23. Quade, M., Rieger, A., and Albayrak, S. Requirements
for applying simulation-based automated usability
evaluation to model-based adaptive user interfaces for
smart environments. In Distributed, Ambient, and
Pervasive Interactions, N. Streitz and C. Stephanidis,
Eds., vol. 8028 of Lecture Notes in Computer Science.
Springer, Berlin, 2013, 235–244.

24. Stewart, T. C., and West, R. L. Testing for equivalence: a
methodology for computational cognitive modelling.
Journal of Artificial General Intelligence 2, 2 (2010),
69–87.

25. Wilcox, R. R. Comparing medians: An overview plus
new results on dealing with heavy-tailed distributions.
The Journal of experimental education 73, 3 (2005),
249–263.

26. Wittenburg, P., Brugman, H., Russel, A., Klassmann, A.,
and Sloetjes, H. ELAN: a professional framework for
multimodality research. In Proceedings of LREC,
vol. 2006 (2006).

10

	Introduction
	Related Work
	Model-based UI Development and Usability Evaluations
	Model-based Usability Evaluation and AUE Tools

	Predicting Task Execution Times by Combining UI Development Models and AUE Tools
	Enhanced Model-based Architecture for Predicting Task Execution Times
	Converting UI Information and Performing Interaction

	Cognitive User Model
	Pilot Usability Study
	Results
	Automatically Generated Cognitive User Model
	Hypothesis I: Units of Mental Processing
	Hypothesis II: System Response Times
	Hypothesis III: Monitoring

	Model Fit
	Discussion

	Evaluation
	Results
	Discussion

	General Discussion
	Conclusions
	REFERENCES

