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Predicting Taxi-Passenger Demand

using Streaming Data
Luis Moreira-Matias, João Gama, Michel Ferreira, João Mendes-Moreira, Luis Damas

Abstract—Informed driving is becoming a key feature to
increase the sustainability of taxi companies. The sensors installed
in each vehicle are providing new opportunities to automatically
discover knowledge, which in return deliver information for real-
time decision making. Intelligent transportation systems for taxi
dispatching and time-saving route finding are already exploring
this sensing data. In this paper, we introduce a novel methodology
to predict the spatial distribution of taxi-passenger in a short-
term time horizon using streaming data. We have done so by
firstly aggregating the information into a histogram time series.
Then, we combined three time series forecasting techniques to
output our prediction. Experimental tests were done using the
online data transmitted by 441 vehicles of a fleet running in
the city of Porto, Portugal. Our results demonstrated that the
proposed framework can provide an effective insight into the
spatiotemporal distribution of taxi-passenger demand in a 30
minutes horizon.

Index Terms—taxi-passenger demand, mobility intelligence,
GPS data, data streams,time series forecasting, auto-regressive
integrated moving average (ARIMA), time-varying Poisson mod-
els, ensemble learning.

I. INTRODUCTION

A
DVANCES in sensor and wireless communications such

as GPS (Global Positioning System), GSM (Global Sys-

tem for Mobile Communications) and WiFi have provided

a new way to communicate with running vehicles whilst

collecting relevant information about their status and location.

The majority of taxi vehicles are now equipped with these kind

of technologies, producing a new source of rich spatiotemporal

information. Intelligent transportation systems for efficient
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taxi dispatching [1], time-saving route finding [2], [3], fuel-

saving routing [4] and taxi-sharing [5] are already successfully

exploring these kind of data and/or interfaces.

The rising cost of fuel has been decreasing the profit of

both taxi companies and drivers. It causes an unbalanced

relationship between passenger demand and the number of

running taxis, thus decreasing the profits made by companies

and also the passenger satisfaction levels [6]. S. Wong pre-

sented a relevant mathematical model to express this need for

equilibrium in distinct contexts [7]. An equilibrium fault may

lead to one of two scenarios: (Scenario 1) excess of vacant

vehicles and excessive competition; (Scenario 2) larger waiting

times for passengers and lower taxi reliability. However, a

question remains open: Can we guarantee that the taxi spatial

distribution over time will always meet the demand? Even

when the number of running taxis already does?

The taxi driver mobility intelligence is an important factor

to maximize both profit and reliability within every possible

scenario. Knowledge about where the services (i.e. the

transport of a passenger from a pick-up to a drop-off location)

will actually emerge can be an advantage for the driver -

especially when there is no economic viability of adopting

random cruising strategies to find their next passenger. The

GPS historical data is one of the main variables of this topic

because it can reveal underlying running mobility patterns.

Multiple works in the literature have already explored this

type of data successfully with distinct applications such as

smart driving [3], modeling the spatiotemporal structure of

taxi services [8]–[10], building passenger-finding strategies

[11], [12] or even predicting taxi location through a passenger-

perspective [13] (in a Scenario 2 urban area). Despite their

useful insights, the majority of the techniques reported are

tested using offline test-beds, discarding some of the main

advantages of this type of signal. In other words, they do not

provide any live information about passenger location or the

best route to pick-up one in this specific date/time while the

GPS data is mainly a live data stream (i.e. a time ordered

sequence of instances produced in real-time [14]).

In our work, we focus on the real-time choice problem

about which is the best taxi stand to go to after a passenger

drop-off (i.e. the stand where we will pick-up another passen-

ger quicker). An intelligent approach regarding this problem

will improve the network reliability for both companies and

clients: a clever distribution of vehicles throughout stands

will decrease the average waiting time to pick-up a passenger

while the distance traveled will be more profitable. Passengers

will also experience a lower waiting time to get a taxi

(automatically dispatched or directly picked-up at a stand).
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On the other hand, this can present a true advantage for a

fleet when facing other competitors.

The stand-choice problem is based on four key variables:

the expected revenue for a service over time, the distance/cost

relation with each stand, the number of taxis already waiting at

each stand and the passenger demand for each stand over time.

The taxi vehicular network can be a ubiquitous sensor of taxi-

passenger demand from where we can continuously mine the

reported variables. However, the work described here will just

focus on the passenger demand spatiotemporal complexity.

In this paper, we present a model to predict the number of

services that will emerge at a given taxi stand. Specifically,

it predicts the passenger demand over space (taxi stand) for

a short-time horizon of P-minutes. This model reuses the

information constantly transmitted/received by the telematics

installed in each taxi about the current period to predict what

will happen in the next one. Our goal is to predict at the instant

t how many services will emerge during the future period

[t, t + P ] at each existent taxi stand, reusing the real-time

service count of [t, t+P ] to do the same for the instant t+P
and so on (i.e. the framework runs continuously in a stream).

To do so, we adapted well-known time series forecasting

techniques such as the time varying Poisson model [15] and

ARIMA (AutoRegressive Integrated Moving Average) [16] to

our problem. There are some works in the literature related

to this problem, namely: 1) mining the best passenger-finding

strategies [11], [12] and 2) dividing the urban area into attrac-

tive clusters based on the historical passenger demand (i.e.:

city zones with distinct demand patterns) [8]–[10] predicting

the passenger demand at certain urban hotspots [17]–[19]. The

major contribution of this work facing this state-of-the-art is

to build predictions about the spatiotemporal distribution of

the taxi-passenger demand using streaming data. In fact, the

reported works present offline test-beds while our framework

was tested in an online environment.

As a case-study, we have selected a large-size taxi fleet

running in the city of Porto, Portugal. The city contains a

total of 63 taxi stands and two taxi companies running one

fleet each. We used the data transmitted by the biggest one -

which has 441 vehicles. In this network, each vehicle waits on

average 44 minutes to pick-up a passenger (Scenario 1 city).

Our study just uses as input/output the services received

directly at the stands or automatically dispatched to the parked

vehicles, ignoring the remaining ones. This was done because

the passenger demand at each taxi stand is the main feature

to aid the taxi drivers’ decision, since it represents 76% of

the total number of services (note that calls to the taxi central

are preferentially assigned to vehicles already parked at a taxi

stand).

The test-bed ran continuously over a total of 9 months

between August 2011 and April 2012. However, the model

just produced predictions (i.e. it was stream-tested) in the

last four. The results obtained demonstrated both efficiency

and success: our framework had an aggregated error of just

23.97% using a predictive time horizon of just 30 minutes.

The model used, in average, 38.12 seconds of processing time

during our real-time test-bed. Such output clearly demonstrates

that this model is an advance facing the existing state-of-art

on predicting the spatiotemporal distribution of taxi-passenger

demand in an urban area.

The remainder of the paper is structured as follows. Section

2 revises the existing literature regarding this topic. Section

3 formally presents our model. The fourth section describes

how we acquired and preprocessed the dataset used as well

as some statistics about it. The fifth section describes how

we tested the methodology in a concrete scenario: firstly, we

introduce the experimental setup and metrics used to evaluate

our model; then, the obtained results are detailed, followed by

some important remarks about them. Finally, conclusions are

drawn as well as our future work.

II. LITERATURE REVIEW

In the last decade, GPS-location systems have attracted

the attention of both researchers and companies due to the

new type of information available. Specifically, the ubiquitous

characteristics of this location-aware sensors (i.e. portable;

available everywhere) and of the information transmitted (i.e.

a stream) increases the challenge. Moreover, they are usually

tracking human behavior (individual or in group) and they can

be used collaboratively to reveal their mobility patterns. Trains

[20], Buses [21], [22] and Taxi Networks [17] are already suc-

cessfully exploring these traces. Gonzalez et. al [23] uncovered

the spatiotemporal regularity of human mobility, which were

demonstrated in other activities such as electricity load [24]

or freeway traffic flow [15], [25], [26].

Recently, multiple works have used the GPS historical data

to analyze the spatial structure of the passenger demand. Deng

et. al [8] mined this type of data to build and explore an origin-

destination matrix in the city of Shanghai, China. Liu et. al

[9] uses a 3D clustering technique to analyze the mobility

intelligence spatial-patterns for both top and ordinary drivers.

Yue et. al [10] discover the Level of Attractiveness (LOA) of

urban-spatiotemporal clusters.

The works focused on passenger/taxi-finding strategies com-

monly use data from Scenario 2 cities, where the demand

is largely superior to the supply. An innovative study was

presented by Bin et. al [17]. Their goal was to validate the

triplet Time-Location-Strategy as the key features to build

a good passenger finding strategy. They used a L1-Norm-

SVM as a feature selection tool to discover both efficient and

inefficient passenger finding strategies in a large city in China.

They made an empirical study on the impact of the selected

features and its conclusions were validated by the feature

selection tool. Lee et. al [12] constructed a framework to

describe the spatiotemporal structure of the passenger demand

on Jeju Island, South Korea. A customer-focused research

was developed by Phithakkitnukoon et. al [13]: they aimed

to predict where the vacant taxis will be over space and time

to aid the clients in their daily scheduling and planning.

Ge et. al [27] provided a cost-efficient route recommenda-

tion model which was able to recommend sequences of pick-

up locations. Their goal was to learn from the historical data

transmitted from the most successful drivers to improve the

profit of the remaining ones. Yuan et. al presented in [28] a

very complete work containing methods about a) how to divide
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the urban area into pick-up zones using spatial clustering; b)

how a passenger can find a taxi; and c) which trajectory is

the best to pick-up the next passenger. Although their results

are promising, both approaches are focused on improving the

trajectory of a single driver, discarding the current network

status (i.e. the position of the remaining drivers).

Little works regarding the demand prediction problem exist.

Kaltenbrunner et. al [18] detected the geographic and temporal

mobility patterns over data acquired from a bicycle network

running in Barcelona. It also directly addresses the prediction

problem using an ARMA (AutoRegressive Moving Average)

model. Their goal was to forecast the number of bicycles at

a station to improve the stations spatial deployment. Chang

et. al [19] presented a novel insight on demand prediction:

they applied clustering to data extracted from large Asian

cities. They used some key features besides location/time such

as the weather. Their output was a hotness probability ratio

over spatial clusters (i.e. real agglomeration of roads/streets)

dependent on the driver location, discarding however the other

taxis position.

In fact, the ARIMA models are well-known time series fore-

casting models by its short-term prediction performance [17]–

[19], [26], [29]–[31] . The traffic flow short-term prediction is

approached by Min et. al [26]: they use both historical data

and spatial correlations between road segments to forecast the

speed and the volume of the traffic within a road network.

Despite the usefulness of their contribution, the spatial corre-

lations are difficult to maintain/update in a real-time test-bed

(their own is offline). The most similar work to our own is

presented by Li et. al [17]. They present a recommendation

system to improve the driver mobility intelligence. To do so,

they used data from a taxi network running in Hangzhou,

China (Scenario 2). Firstly, they calculated the city hotspots:

urban areas where pick-ups occur more frequently. Secondly,

they used ARIMA to forecast the pick-up quantity at these

hotspots over periods of 60 minutes. Thirdly, they presented

an improved ARIMA dependent both on time and daytype.

Finally, they proposed a recommendation system based on the

following variables: 1) the number of taxis already located

at each hotspot; 2) the distance from the driver location to

the hotspot in time and 3) the prediction about the number

of services to be demanded in each one of them. Despite

their good results, this approach has three weak points when

compared against our own: 1) it just uses the most immediate

historical data, discarding the mid and long-term memory

of the system; 2) their test-bed uses minimum aggregation

periods of 60 minutes over offline historical data (i.e. the next

value prediction task on a time series goes easier as long as

you increase its aggregation period) while we use short-term

periods of 30 minutes; 3) the paper does not clearly describes

how they update both the ARIMA model and the weights used

by it.

All reported works (including the two last ones) have a

common characteristic: they are tested using mainly historical

data and their results were calculated using an offline test-bed.

Our framework is a short-term prediction model which uses

short, mid and long-term historical data as input. It reuses

the real-time service count from each stand to calculate the

demand for the next period. It was tested using an online test-

bed along a real time period of nine months. The contribution

of this work is to produce short-term predictions about the

demand at a fixed point as a computational lightweight process

without discarding the long-term system memory (i.e. histor-

ical data). To the best of our knowledge, such approach has

no parallel in the literature. This model is formally presented

in the following section.

III. THE MODEL

This model is an extension of the one already presented

in [32]. Let S = {s1, s2, ..., sN} be the set of N taxi stands

of interest and D = {d1, d2, ..., dj} be a set of j possible

passenger destinations. Our problem is to choose the best taxi

stand at instant t according to our forecast about passenger

demand distribution over the time stands for the period [t, t+
P ]. However, the present work (and model) is just focused on

the prediction problem.

Consider Xk = {Xk,0, Xk,1, ..., Xk,t} to be a discrete time

series (aggregation period of P-minutes) for the number of

demanded services at a taxi stand k. Our goal is to build a

model which determines the set of service counts Xk,t+1 for

the instant t+1 and per each taxi stand k ∈ {1, N}. To do so,

we propose three distinct short-term prediction models and a

well-known data stream ensemble framework to use them all.

We formally describe those models along this section.

A. Time Varying Poisson Model

The following section presents a model firstly proposed in

[15]. The demand for taxi services exhibits, like other modes

of road transportation [21] , a periodicity in time on a daily

basis that reflects the patterns of the underlying human activity,

making the data appear non-homogeneous. Fig. 1 illustrates a

one month taxi service analysis extracted from our dataset that

illustrates this periodicity (the dataset is described in detail in

Section IV).

Consider the probability to emerge n taxi assignments in

a determined time period - P (n) - following a Poisson

Distribution. We can define it using the following equation

P (n;λ) =
e−λλn

n!
(1)

where λ represents the rate (averaged number of the demand

on taxi services) in a fixed time interval. However, in this

specific problem, the rate λ is not constant but time-variant.

So, we adapt it as a function of time, i.e. λ(t), transforming

the Poisson distribution into a non homogeneous one. Let λ0
be the average (i.e. expected) rate of the Poisson process over

a full week. Consider λ(t) to be defined as follows

λ(t) = λ0δd(t)ηd(t),h(t) (2)

where δd(t) is the relative change for the weekday d(t) (e.g.:

Saturdays have lower day rates than Tuesdays); ηd(t),h(t) is the

relative change for the period h(t) in the day d(t) (e.g. the peak

hours); d(t) represents the weekday 1=Sunday, 2=Monday, ...;

and h(t) the period in which time t falls (e.g. the time 00:31

is contained in period 2 if we consider 30-minutes periods).
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Fig. 1. One month data analysis (total and per shift).

Consider λ(t) to be a discrete function (e.g.: an histogram

time series of event counts aggregated in periods of P min-

utes). The equation (2) requires the validity of both equations

7
∑

i=1

δi = 7 (3)

I
∑

i=1

ηd,i = I, ∀d (4)

where I is the number of time intervals in a day. As result, we

have a discrete time series per stand representing the expected

demand during an entire week: λ(t)k. Each value of this series

is an average of all the demands previously measured in the

same daytype and period (i.e. the expected service demand for

a Monday from 8:00 to 8:30 is the average of the demand on

all past Mondays from the 8:00 to 8:30).

B. Weighted Time Varying Poisson Model

The model previously presented can be faced as a time-

dependent average which produces predictions based on the

long-term historical data. However, it is not guaranteed that

every taxi stand will have a highly regular passenger demand:

actually, the demand in many stands can often be seasonal.

The sunny beaches are a good example of the seasonality

demand : the taxi demand around them will be higher over

summer weekends rather than over other seasons throughout

the year.

To face this specific issue, we propose a weighted average

model based on the one presented before: our goal is to

increase the relevance of the demand pattern observed in the

previous week by comparing it with the patterns observed sev-

eral weeks ago (e.g. what happened on the previous Tuesday

is more relevant than what happened two or three Tuesdays

ago). The weight set ω is calculated using a well-known time

series approach to these type of problems: the Exponential

Smoothing [33].

We can define ω as follows

ω = α ∗ {1, (1− α), (1− α)2, ..., (1− α)γ−1}, γ ∈ N (5)

where γ is the number of historical periods considered and

0 < α < 1 is the smoothing factor (i.e. γ and α are user-

defined parameters). Then, based on the previous definition of

λ(t)k, we can define the resulting weighted average µ(t)k as

follows

µ(t)k =

γ
∑

i=1

Xt−(θ∗i) ∗ ωi

Ω
,Ω =

γ
∑

i=1

ωi (6)

where θ represents the number of time periods contained in a

week.

C. AutoRegressive Integrated Moving Average Model

The two previous models assume the existence of a regular

(seasonal or not) periodicity in the taxi service passenger

demand (i.e. the demand at one taxi stand on a regular Tuesday

during a certain period will be highly similar to the demand

verified during the same period on other Tuesdays). However,

the demand can present distinct periodicities for different

stands. The ubiquitous features of this network force us to

rapidly decide if and how the model is evolving and to adapt

to these changes instantly.

The AutoRegressive Integrated Moving Average Model

(ARIMA) [16] is a well-known methodology to both model

and forecast univariate time series data such as traffic flow

data [26], electricity price [29] and other short-term prediction

problems like our own. The ARIMA main advantages when

compared to other algorithms are two: 1) it is versatile to

represent very different types of time series: the autoregressive

(AR) ones, the moving average ones (MA) and a combination

of those two (ARMA); 2) on the other hand, it combines the

most recent samples from the series to produce a forecast and

to update itself to changes in the model. A brief presentation

of one of the simplest ARIMA models (for non-seasonal

stationary time series) is enunciated below following the

existing description in [30] (however, our framework can also

detect both seasonal and non-stationary ones). For a more

detailed discussion, the reader should consult a comprehensive

time series forecasting text such as Chapters 4 and 5 in [31].

In an autoregressive integrated moving average model, the

future value of a variable is assumed to be a linear function of

several past observations and random errors. We can formulate

the underlying process that generates the time series (taxi

service over time for a given stand k) as

Rk,t = κ0 + φ1Xk,t−1 + φ1Xk,t−2 + ...+ φpXk,t−p

+εk,t − κ1Xk,t−1 − κ1Xk,t−2 − ...− κqXk,t−q
(7)

where Rk,t and εk,t are the actual value and the random error

at time period t, respectively; φl(l = 1, 2, ..., p) and κm(m =
0, 1, 2, ..., q) are the model parameters/weights while p and q

are positive integers often referred to as the order of the model.

Both order and weights can be inferred from the historical time

series using both the autocorrelation and partial autocorrelation

functions as has been proposed by Box and Jenkins in [16]

They are useful to detect if the signal is periodic and, most

important, which the frequencies of these periodicities are.

A study conducted on time series from the demand of taxi

services in one of the busiest taxi stands is displayed in Fig.

2.



5

Fig. 2. Autocorrelation profile for data about the demand on taxi service (13
weeks) obtained from one of the busiest taxi stands in the city (periods of
60-minutes). The x-axis has the different period lags studied and the y-axis
has the correlation within the signal. Note the peaks for each 12h periods.

D. Sliding Window Ensemble Framework

We already proposed three distinct predictive models which

focused themselves to learn from the long, medium and short-

term historical data. But a question remains open: how can

we combine them all to improve our prediction? In the last

decade, regression and classification tasks on streams attracted

the community attention due to its drifting characteristics. The

ensembles of such models were specifically addressed due to

the challenge related with this type of data. One of the most

popular models is the weighted ensemble [34]. The model we

propose below is based on this one.

Consider M = {M1,M2, ...,Mz} to be a set of z mod-

els of interest to model a given time series and F =
{F1t, F2t, ..., Fzt} to be the set of forecasted values to the

next period on the interval t by those models. The ensemble

forecast Et is obtained as

Et =

z
∑

i=1

Fit

Υ
,Υ =

z
∑

i=1

(1− ρiH) (8)

where ρiH is the error of the model Mi in the periods

contained on the time window [t−H, t] (H is a user-defined

parameter to define the window size) while compared with the

real service count time series. As the information is arriving

in a continuous manner for the next periods t, t+ 1, t+ 2, ...
the window will also slide to determine how the models are

performing in the last H periods.

To calculate such error, we used the Symmetric Mean

Percentage Error (sMAPE), which is formally described in

section V of this paper.

IV. DATA ACQUISITION AND PREPROCESSING

As a case-study, we focused on the stream event data of

a taxi company operating in the city of Porto, Portugal. This

city is the center of a medium size urban area (consisting of

1.3 million habitants) where the passenger demand is inferior

to the number of running vacant taxis, resulting in a huge

competition between both companies and drivers - according

to a recent aerial survey of the road traffic of the city [35],

taxis represent 4% of the running vehicles during a non-rush

hour period. The existing regulations force the drivers to not

run randomly in search of passengers but to choose a specific

taxi stand out of the 63 existing ones in the city to wait for

the next service immediately after the last passenger drop-off.

A map of the stand spatial distribution is presented in the Fig.

3.

There are three main ways to pick-up a passenger: (1) a

passenger goes to a taxi stand and picks-up a taxi – the

regulations also force the passengers to pick-up the first taxi in

line (First In, First Out); (2) a passenger calls the taxi network

central and demands a taxi for a specific location/time – the

parked taxis have priority over the running vacant ones in the

central taxi dispatch system; (3) a passenger picks a vacant

taxi while it is going to a taxi stand, on any street.

In this section, we describe the studied company, the data

acquisition process and the preprocessing applied to it.

A. Data Acquisition

The data was continuously acquired using the telematics

installed in each one of the 441 running vehicles of the

company fleet. This taxi central usually runs in one out of three

8h shifts: midnight to 8am, 8am-4pm and 4pm to midnight.

Each data chunk arrives with the following six attributes: (1)

TYPE – relative to the type of event reported and has four

possible values: busy - the driver picked-up a passenger; assign

– the dispatch central assigned a service previously demanded;

free – the driver dropped-off a passenger and park - the driver

parked at a taxi stand. The attribute (2) STOP is an integer with

the ID of the related taxi stand. The attribute (3) TIMESTAMP

is the date/time in seconds of the event and the attribute (4)

TAXI is the driver code; the attributes (5) and (6) refers to

the LATITUDE and the LONGITUDE corresponding to the

acquired GPS position. This data was acquired over a non-stop

period of nine months. Our study just uses as input/output the

services obtained directly at the stands or those automatically

dispatched to the parked vehicles (more details in the section

below). We did so because the passenger demand at each taxi

stand is the main feature to aid the taxi drivers’ decision.

B. Preprocessing and Data Analysis

As preprocessing, a time series of taxi demand services

aggregated for a period of P-minutes was developed. There are

three types of accounted events: (1) the busy set directly at a

taxi stand; (2) the assign set directly to a taxi parked at a taxi

stand and (3) the busy set while a vacant taxi is cruising. We

consider both a type 1 and type 2 event as service demanded.

Fig. 3. Taxi Stand spatial distribution over the city of Porto, Portugal.
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However, for each type 2 event, the system receives a busy

event a few minutes later – as soon as the driver effectively

picked-up the passenger – this is ignored by our system. Type

3 events are ignored unless they occur in a radius of W meters

from a taxi stand (where W is a user defined parameter).

If it does, it is considered as being a type 1 event related

with the nearest taxi stand according the defined criteria. This

was done because many regulations prohibit the picking-up of

passengers in a predefined radius of a stop (in Porto a 50m

radius is in place). Some statistics about the studied period are

now presented. Fig. 4 has the sample distribution of the cruise

time of the services demanded. Table I details the number of

taxi services demanded per daily shift and day type. Table

II has information about all the services per taxi/driver and

per cruise time. The service column in Table II represents the

number of services picked-up by the taxi drivers, while the

second one represents the total cruise time of every services

done. Additionally, we could state that the central service

assignment is 24% of the total service (versus the 76% of

the one demanded directly in the street) while 77% of the

service is demanded directly to taxis parked in a taxi stand

(and 23% is assigned while they are cruising). The average

waiting time (to pick-up passengers) of a taxi parked at a taxi

stand is 42 minutes while the average time for a service is

only 11 minutes and 12 seconds. Such low ratio of busy/vacant

time reflects the current economic crisis in Portugal and the

inability of the regulators to reduce the number of taxis in the

city. It also highlights the importance of our recommendation

system, where the shortness of services could be mitigated by

getting services from the competitors.

The data in Tables I and II sustain that, despite the regularity

exhibited in the service (especially on the weekends), there are

big differences among the services performed per each driver
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Fig. 4. Frequency Distribution of Taxi Cruise Time.

TABLE I
TAXI SERVICES VOLUME (PER DAYTYPE/SHIFT)

Daytype Total Services Averaged Service Demand per Shift
Group Emerged 0am to 8am 8am to 4pm 4pm to 0am

Workdays 957265 935 2055 1422
Weekends 226504 947 2411 1909

All Daytypes 1380153 1029 2023 1503

TABLE II
TAXI SERVICES VOLUME(PER DRIVER/CRUISE TIME)

Services per Driver Total Cruise Time (minutes)

Maximum 6751 71750
Minimum 100 643
Mean 2679 33132
Std. Dev. 1162 13902

(i.e. a large variance in services number and profit) related with

their distinct levels of mobility intelligence. Fig. 4 focuses on

the length of the services: 75% of them last 15 minutes or less.

These statistics sustain the importance of a smart decision on

the stand-choice problem: an accurate sensor on the passenger

demand can be a major advantage in urban areas where a

highly competitive scenario – like our own - is in place.

V. EXPERIMENTAL RESULTS

In this section, we firstly describe the experimental setup

developed to test our model on the available data. Secondly, we

enumerate the metrics used to evaluate our methods. Finally,

we present and discuss the results achieved.

A. Experimental Setup

Our test-bed was based on prequential evaluation [36]: data

about the events occurring in the network was continuously

acquired. We used an H-sized sliding window to measure

the error of our model before each new prediction about the

service count on the next period (the metrics used to do so are

defined in the section V-B). Each new real count was used to

update our predicting model.

Each data chunk was transmitted and received through a

socket. The model was programmed using the R language [37].

The prediction effort was divided into three distinct processes

running on a multicore CPU (the time series for each stand

is independent from the remaining ones) which reduced the

computational time of each forecast. Fig. 5 illustrates the

described test-bed: the PPi...PPt(t = 3) are the independent

predicting processes – each one handle a predetermined group

of taxi stands. The pre-defined functions used and the values

set for the models parameters are detailed along this section.

An aggregation period of 30 minutes was set (i.e. a new

forecast is produced each 30 minutes; P=30) and a radius of

100m (W = 100 > 50 defined by the existing regulations).

This aggregation was set based on the average waiting time at

a taxi stand, i.e. a forecast horizon lower than 42 minutes.

The ARIMA model (p, d, q values and seasonality) was

firstly set (and updated each 24h) by learning/detecting the un-

derlying model (i.e. autocorrelation and partial autocorrelation
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Fig. 5. Illustration about our streaming test-bed.

analysis) running on the historical time series curve of each

stand during the last two weeks (i.e. period t− 2θ, t). To do so,

we used an automatic time series function in the [forecast] R

package [38] - auto-arima – with the default parameters. The

weights/parameters for each model are specifically fit for each

period/prediction using the function arima from the built-in

R package [stats]. The time-varying Poisson averaged models

(both weighted and non-weighted) were also updated every 24

hours. A sliding window of 4 hours (H = 8) was considered

in the ensemble.

A sensitivity analysis was conducted on parameter α based

on a simplified version of Sequential Monte Carlo method

(the reader can consult the survey in [39] to know more about

this topic). Our goal was to calibrate our model by finding

the optimal subregion on the input space α ∈ [0, 1] which

maximizes our predictive performance. To do so, we generated

100 distinct samples as admissible values for α and we tested

them using an older and smaller dataset containing data very

similar to the one tested on our experiments (i.e. the same

feature space). As result, we determined the ideal value as

α = 0.4. This value demonstrated to be robust - changes on

it do not have a significant impact on the model output since

they remain stable on the following input space: 0.4 ± 0.1.

Therefore, we considered α = 0.4 in our experiments. The γ

value was set respecting the following definition

γ = max(N) : ωγ ≥ 0.01 (9)

which represents the limit for the weight ωi>γ ∼ 0. According

to this, α = 0.4 =⇒ γ = 8.

Table III resumes the information about the learning periods

used by each algorithm.

B. Evaluation Metrics

We used the data obtained from the last four months to

evaluate our framework (where 506873 services emerged). A

well-known error measurement was employed to evaluate our

output: the Symmetric Mean Percentage Error (sMAPE) [40].

We formally define it below.

Consider R = {Rk,1, Rk,2, ..., Rk,t} to be a discrete time

series (aggregation period of P -minutes) with the number of

services predicted for a taxi stand of interest k in the period

{1, t} and X = {Xk,1, Xk,2, ..., Xk,t} the number of services

actually emerged in the same conditions. The (sMAPEk)

TABLE III
DESCRIPTION OF THE LEARNING PERIODS

Algorithm Sliding Window Nr. of Periods Considered

Poisson Mean All Data {1, t} N/A: it is calculated incrementally
W. Poisson Mean Last two weeks γ = 8

ARIMA Last two weeks 2 ∗ θ
Ensemble Last four hours H = 8

(i.e.: the error measured on the time series of services predicted

to the stand k) can be defined as

sMAPEk =
1

t

t
∑

i=1

|Rk,i −Xk,i|

̺k,i
(10)

̺k,i =

{

Rk,i +Xk,i if (Rk,i > 0 ∨Xk,i > 0)
1 if (Rk,i = 0 ∧Xk,i = 0)

(11)

where t is the number of time periods considered. However,

this metric can be too intolerant with small magnitude errors

(e.g. if two services are predicted on a given period for a

taxi stand of interest but no one actually emerges, the error

measured during that period would be 1). To produce more

accurate statistics about series containing very small numbers,

we can add a Laplace estimator [41] to (10). In this case,

we will do it by adding a constant c to the denominator (i.e.:

originally, it was added to the numerator to estimate a success

rate [41]). Therefore, we can re-define sMAPEk as follows

sMAPEk =
1

t

t
∑

i=1

|Rk,i −Xk,i|

Rk,i +Xk,i + c
(12)

where c is a user-defined constant. To simplify the theorem

application, we will consider its most common use: c = 1
[41].

This metric is focused just on one time series for a given taxi

stand k. However, the results presented below use an averaged

error measure based on all stands series – AG. Consider β to

be an error metric of interest. AGβ,t is an aggregated metric

given by a weighted average of the error measured in all stands

in the period 1, t. It is formally presented in the following

equations:

AGβ,t =

N
∑

k=1

βt,k ∗ ψk

Ψ
(13)

ψk =

t
∑

i=1

Xk,i,Ψ =

N
∑

k=1

ψk (14)

where ψk is the total of services emerged at the taxi stand k;

βt,k is the error measured by β at the stand k and Ψ is the

total of services emerged at all stands so far.

C. Results

The results are presented over four distinct perspectives:

1) averaged error of the proposed methods; 2) a comparative

analysis of the ensemble performance versus the remaining

models; 3) a direct analysis of some output examples and 4)

a small report about the computational time needed to predict

the next period.
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Firstly, the error measured for each model is presented

in Table IV. The results are firstly presented per shift and

then globally. The results were aggregated using the AGβ

previously defined.

Secondly, Fig. 6 presents a comparison between our En-

semble and the other predictive models on a typical workday.

These values were calculated using the same 4-hours sliding

window of the ensemble (the error of the instant t is the error

measured at the period [t−H, t], H = 8).

Thirdly, three distinct weekly analysis of the discrepan-

cies between the demand predicted and the services actually

emerged are displayed in Fig. 7. Our model forecasted the

spatiotemporal taxi-passenger demand for every 30-minute

period using (on average) 38.12 sec. of processing time (i.e.

1.906 sec. per time series/stand) as result of the computational

parallel approach presented before. This method reduced the

computational time by 70% (i.e. in the first three weeks,

we tested our model using just one iterative process – one

program, one CPU core – and it lasted, on average, 99.77

seconds). The ARIMA model update was also fast: 48.12

seconds (mean value). These results are discussed next.

D. Discussion

The overall performance is very good: the maximum value

of the error was 28.23%. The sliding window ensemble is

always the best model in every shift and period considered:

the error measured was always lower than 26%. The models

just present slight discrepancies within the daily shifts.

Our ensemble methodology is robust when compared with

the remaining models: in Fig. 6 it is possible to identify a

point where the ensemble maintained its performance while

two other methods had a huge drop, highlighting the inherited

learning of the ensemble approach. Fig. 7 presents two distinct

scenarios to compare the demand forecasted with the real one:

in A), the demand corresponds to an irregular taxi stand where

services do not have an usual pattern to emerge (even if the

demand is low); in B) the chart corresponds to a completely

regular stand behavior. The two examples illustrate that our

ensemble can actually correctly forecast the demand in distinct

scenarios, periods and time horizons.

In our scenario, the target variable is the number of services

to arise along a taxi stand network during a pre-defined period

of time. It was chosen due to the stand relevance in this

scenario (where 76% of the total number of services is directly

demanded on them). However, this is not the reality in many

big cities around the world due to their (de)regulation [6]. Most

TABLE IV
ERROR MEASURED ON THE MODELS USING sMAPE

Periods

Model
00h−08h 08h−16h 16h−00h 24h

Poisson Mean 27.54% 24.00% 24.87% 25.09%
W. Poisson Mean 26.48% 24.34% 25.18% 24.84%
ARIMA 28.23% 24.70% 24.93% 27.00%
Ensemble 25.85% 23.12% 23.89% 23.97%

of the literature about this topic divide their scenarios/urban

areas into spatial clusters - as exemplified in Fig. 8 - to

predict and/or characterize the pick-up quantity distribution

on a short-term time horizon [8]–[10], [17], [19], [27], [28].

Our mathematical model does not depend on how the services

historical data is spatially aggregated (i.e. by stand or by

spatial cluster) but only on the aggregation period of P -

minutes (which is user-defined). Therefore, it also represents

a straightforward contribution to previous work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel application of time series

forecasting techniques to improve the taxi driver mobility

intelligence. We did so by transforming both GPS and event

signals emitted by 441 taxis from a company operating in

Porto, Portugal (where the passenger demand is lower than

the number of vacant taxis) into time series of interest to use

firstly (1) as learning base to our model and secondly (2) as a

streaming test framework. As a result, our model was able to

predict the taxi-passenger demand at each one of the 63 taxi

stands at 30-minute period intervals.

Our model demonstrated a more than satisfactory perfor-

mance, correctly predicting the 506873 tested services with

an aggregated error measure lower than 26%. We believe that

this model is a true novelty and a major contribution to

the area through its adapting characteristics:

• It mines both the periodicity and seasonality of the

passenger demand, updating itself regularly;

• It simultaneously uses long-term, mid-term and short

term historical data as a learning base;

• It takes advantage of the ubiquitous characteristics of a

taxi network, assembling the experience and the knowl-

edge of all vehicles/drivers while they usually use just

their own;

This approach meets no parallel in the literature also by its

test-bed: the models were tested in a streaming environment,

while the state-of-art presents mainly offline experimental

setups.

This model will be used as a feature for a recommendation

system (to be done) which will produce smart live recommen-

dations to the taxi driver about which taxi stand he should head

Fig. 6. Ensemble evaluation on a typical Saturday.
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Fig. 7. Weekly comparison between the services forecasted and the services emerged on two distinct scenarios / taxi stands and weeks.

Fig. 8. Example of a possible spatial clustering of the city of Porto, Portugal.

to after a drop-off. This decision support framework will also

address other features such as the distance or the live traffic

conditions, among others. We believe that the deployment of

such a system in a taxi fleet will contribute to increase its

competitivity facing other taxi fleets in a Scenario 1 network

(e.g. like the studied one, where the average waiting time to

pick-up a passenger at a taxi stand is three times higher than

the average service duration) by improving the distribution of

the vacant vehicles throughout the stands.
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