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Abstract

We expand upon a general framework for studying the bifurcation diagrams of localized spatially oscillatory

structures. Building on work by Beck et al., the present work provides an analytical explanation for the

numerical results of Houghton and Knobloch on symmetry breaking in systems with one spatial dimension,

and makes predictions on the effects of symmetry breaking in more general settings, including planar systems.

In particular, we predict analytically, and subsequently confirm numerically, the formation of isolas upon

particular symmetry breaking perturbations. While our numerical results involve continuation of planar

stripe and spot solutions in the Swift–Hohenberg model system, we emphasize the general applicability of

the analytical results.

1 Introduction

Localized structures, in which a spatially oscillatory pattern on a finite spatial range connects to a trivial

homogeneous solution outside this range, have been observed in numerous physical systems [1, 4, 5, 11, 20]; see

also [2, 13] for additional references. The bifurcation diagrams of such patterns often exhibit snaking behavior,

in which a branch of symmetric solutions winds back and forth between two limits of an appropriate parameter,

allowing for patterns of arbitrary spatial extent [6, 10, 14, 21, 22, 25]. Asymmetric solution branches connecting

symmetric snaking branches were discovered numerically in [7, 8], using the Swift–Hohenberg model system in

one dimension. The origin of the symmetric and asymmetric solution branches was explained under general

hypotheses in [3], and near a certain codimension-two point in [9, 17].

While the appearance of snaking is now generally well understood, it remains of interest to understand the behav-

ior of solutions under different assumptions, including the structure of bifurcation diagrams under perturbations

to the governing equation. One characteristic common to many snaking systems is spatial reversibility, and we

assume throughout that our systems possess this property; we note that the behavior of systems without such

reversibility was recently explored in [23] as well as [16]. In addition, many physical systems of interest contain a

Z2 symmetry, corresponding, for example, to symmetry in the midplane of a fluid system. In the present work we

illustrate how a general approach to localized structures can be leveraged to predict and understand the effects

of perturbations breaking this additional symmetry. This question was recently explored numerically in [15] for

the one-dimensional Swift–Hohenberg model. Here we follow up on the results of [3] to show that the effects of

perturbative symmetry breaking terms on particular solution types and overall bifurcation structure are fully

predictable analytically. In addition to explaining previously published numerical findings, we use these methods

to predict new bifurcation structures, including the formation of isolas upon the introduction of appropriate

symmetry breaking terms. We then confirm these predictions numerically for a planar system.
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Figure 1: Left: Schematic of the bifurcation diagram for the unperturbed system (2.1) with ε = 0, with illustrative

solution profiles. The dashed dark blue snaking branch consists of two branches of even parity solutions, while

the dotted orange branch consists of two branches of odd parity solutions. Solid green cross-connecting branches

consist of four sets of asymmetric solutions. Right: Schematic of the bifurcation diagram for a perturbed system

as in (2.1) with ε 6= 0. Snaking branches for even symmetric patterns with central maximum and minimum are

shown in dark and light blue dashed, respectively. Asymmetric branches are in solid black and green. Dashed

vertical lines indicate the saddle node locations from the unperturbed system.

Though we use the Swift–Hohenberg equation to demonstrate our results numerically, we wish to emphasize

that the hypotheses we impose are not specific to the Swift–Hohenberg setting. In particular, as shown in [3],

we do not require the system to be conservative when posed as a spatial dynamical system, meaning that the

underlying PDE system need not be variational. Furthermore, while we have focused on symmetry-breaking

terms, this approach is applicable to any perturbative terms preserving spatial reversibility.

The paper is organized as follows: in Section 2, we review the numerical results of Houghton and Knobloch

[15] on symmetry breaking in the 1D Swift–Hohenberg model, which initiated the present work. In Section 3,

we link the framework introduced in [3] with a formal gluing approach of fronts and backs, first to indicate

the broad applicability of the approach taken in [3] and, second, to understand some of the major features

observed in systems admitting localized patterns. We note that this section is intended to provide intuition

and motivate the particular hypotheses employed in the following section, rather than to present precise results

for a particular system. In Section 4, we detail predictions on the evolution of bifurcation diagrams upon the

introduction of perturbative symmetry breaking terms. In Section 5 we provide numerical continuation studies

on planar stripe and spot patterns, studied previously in [2]; these numerical results confirm our analytical

predictions from Section 4, including the existence of isolas produced by the rearrangement of odd-symmetric

and asymmetric solution branches. We also explain and illustrate how the full bifurcation diagram for a wide

variety of perturbations can be obtained from the bifurcation diagram of an unperturbed system, without actually

carrying out the numerical continuation. Finally, in Section 6 we identify areas for future work.
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2 Existing numerical results

Current knowledge regarding the effects of symmetry breaking in spatially localized oscillatory solutions comes

from a recent paper [15] of Houghton and Knobloch, employing numerical continuation methods to the one-

dimensional cubic-quintic Swift–Hohenberg model. In particular, they examine1 the variational system

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5 + εu2 (2.1)

as well as the non-variational system

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5 + ε(∂xu)
2 (2.2)

for 0 < ε ≪ 1.

The one-dimensional unperturbed cubic-quintic Swift–Hohenberg equation with ε = 0 has been studied exten-

sively. This system is equivariant under the Z2 symmetry u 7→ −u. The left-hand side of Figure 1 provides a

schematic of its bifurcation diagram, along with sample solution profiles. We note that the snaking branch in

dashed dark blue consists of two solution branches lying on top of each other in the (µ, ‖u‖
2
2) plane, one con-

sisting of symmetric solutions with a central maximum and the other one of symmetric solutions with a central

minimum: these two solution profiles are transformed into each other by the symmetry u 7→ −u. Similarly, the

dotted orange snaking branch is actually two branches of odd parity solutions related again by the u 7→ −u

symmetry. Finally, each asymmetric ladder branch is a set of four solution branches, which coincide in the

(µ, ‖u‖
2
2) plane. Moving up along a snaking branch, localized structures grow by increasing the extent of the

spatially periodic region between the trivial homogeneous state.

Once ε becomes nonzero in either (2.1) or (2.2), the system no longer respects the symmetry u 7→ −u, and

the right-hand side of Figure 1 provides a schematic of the resulting bifurcation diagram for (2.1) with ε 6= 0.

Houghton and Knobloch observe that the even solutions persist along unbroken snaking branches: however, in

contrast to the ε = 0 case, the two snaking branches for the even symmetric solutions with, respectively, a central

maximum and a central minimum no longer lie on top of each other due to the broken Z2 symmetry. Meanwhile

the odd solutions are destroyed, and two types of asymmetric solution branches are formed, termed S and Z

branches in accordance with their shapes. The Z branches start and end on the same symmetric branch, whereas

the S branches connect the two symmetric solution branches to each other.

It is also observed that, after symmetry breaking, alternate saddle nodes on the left and right are offset to the

inside and outside of the original branches, so that the resulting bifurcation diagram possesses four snaking limits.

Finally, Houghton and Knobloch comment that the saddle nodes on the right undergo larger displacement as

compared to those on the left.

In the following, we provide both an intuitive framework and rigorous results to demonstrate how these numerical

findings can be anticipated analytically. Furthermore, we generalize these findings to planar systems, as well as

to governing equations which may be more appropriate for describing particular physical systems.

3 General framework

Our aim in this section is to relate the rigorous analysis and its underlying framework developed in [3] with

a formal approach that views the emergence of localized roll patterns via gluing together appropriate building

blocks consisting of fronts and backs. Outlining this connection should indicate the broad applicability of the

results in [3] without expanding on the technical account in that paper. The link between these two different

approaches will also enable us to predict the effects of symmetry-breaking perturbations more easily in the

forthcoming sections.

1We remark that Houghton and Knobloch use the bifurcation parameter r := −µ instead of µ: hence, their bifurcation diagrams

are flipped in comparison to ours; in our description of their results, we use µ as the parameter.
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3.1 Basic assumptions

First, we will provide an intuitive treatment of the realization of localized roll patterns from simpler building

blocks. In this spirit, rather than specifying a form for the PDE or ODE governing our system of interest, we

make the basic assumption that the system admits fronts, i.e., solutions evolving from a constant state to a

spatially oscillatory one. More precisely, if we write stationary solutions as u(x) ∈ R
n with x ∈ R, we assume

that there exist steady states uf (x) such that uf (x) → u0 as x → −∞ and uf (x) → v(x) as x → +∞, where

v(x) is periodic in x with nonzero minimal period. In fact, we can more generally consider systems admitting

solutions uf (x, y), where y ∈ Ω ⋐ R
d−1, which satisfy uf (x, y) → w(y) as x → −∞, where w(y) is any function

independent of x, as well as uf (x, y) → v(x, y) as x → +∞, where v(x, y) is periodic in x. In essence we

require only that the evolution in space occur along one dimension, perhaps after an appropriate coordinate

transformation. For simplicity in this section we write solutions as u(x), but in subsequent sections we will use

the more general formulation to predict some interesting effects of symmetry breaking, including the formation

of isolas in planar systems under appropriate conditions, and to verify these predictions numerically.

uf (x), a front ub(x) = uf (−x), a back

Figure 2: Illustration of a front and a back, related by x 7→ −x.

We will assume throughout that our system is reversible in the front evolution variable. With the above notation,

this means we have x 7→ −x symmetry, so that given any solution u(x), u(−x) is also a solution. In the case

that uf (x) is a front, ub(x) := uf (−x) is termed a back; see Figure 2. The periodic orbit v(x) approached by

fronts is assumed to be invariant under x 7→ −x.

Our primary interest will be in systems that have an additional Z2 symmetry κ, and in Section 4 we will describe

the results of breaking this symmetry in a perturbative manner. Consequently, in the following we will look

to understand the characteristics of systems with and without the Z2 symmetry κ. For concreteness, in this

section we will assume the symmetry is κ : u 7→ −u, and in this case further assume that the constant solution

approached as x → ±∞ is u0 = 0. We will finally assume that the limiting oscillatory solution v(x) is compatible

with the κ symmetry, which implies that −v(x) = v(x+π). Then, given a front solution uf (x), we will also have

the front solution uf2(x) := −uf (x), as well as the back solutions ub1(x) := uf (−x) and ub2(x) := −uf (−x).

3.2 Construction of localized solutions via gluing

We now wish to “glue” together front and back solutions to form a localized stationary solution uloc(x) which is

invariant under u(x) 7→ u(−x). Clearly this is only possible if we have a maximum or minimum at the center of

the localized oscillatory structure. Defining the phase ϕ at the center of the localized solution to be the distance

traveled past a maximum, and rescaling x if necessary so that the spatially oscillatory limiting solution v(x)

mentioned above has period 2π, this is equivalent to requiring that the phase at the center of the structure

satisfies ϕ = 0 or ϕ = π; see Figure 3.

In the case that we have the additional symmetry κ : u 7→ −u, we recall that the existence of a front solution

uf (x) implies the existence of the front solution uf2(x) := −uf (x) and the back solutions ub1(x) := uf (−x) and
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ϕ = 0 ϕ = π

π/2 3π/2

Figure 3: Possible phases ϕ = 0, π for a localized solution invariant under x 7→ −x. The closed circles indicate

the midpoint of the pattern, while the labels π
2
and 3π

2
indicate the value of ϕ at the open circles.

ub2(x) := −uf (−x). Thus we can form solutions invariant under u(x) 7→ −u(−x) by gluing a front uf (x) to a

back ub2 = −uf (−x) with phase ϕ = π
2 or ϕ = 3π

2 ; see Figure 4.

ϕ = 3π/2ϕ = π/2

Figure 4: Solutions invariant under u(x) 7→ −u(−x), with phases ϕ = π
2
, 3π

2
.

Moving forward, we will refer to solutions invariant under u(x) 7→ u(−x) as symmetric, or R-symmetric. In the

case that the system possesses the additional κ : u 7→ −u symmetry, we will also refer to solutions invariant

under u(x) 7→ −u(−x) as symmetric, or κR-symmetric. Any localized solution which is not invariant under

either of these operations will be called asymmetric.

3.3 Solution lengths and parameter dependence

To this point, we have not considered the role of parameters in our system. If we only had one “type” of front

present, which is to say all front solutions could be mapped to each other via a translation in x, then we would

only be able to get symmetric localized states in lengths of multiples of 2π (or, if u 7→ −u symmetry is present,

in multiples of π); see Figure 5. If, however, we can define a characteristic length of fronts such that the length

of the fronts present in our system varies continuously with a parameter, then our system will typically admit

localized symmetric solutions of arbitrary length via parameter variation.

We pause here to consider the notion of length. Although there is a natural and rigorous way to measure these

lengths in a dynamical systems setting, using Poincarè sections near the oscillatory solution, we will not aim

at fully rigorous definitions and instead suggest an approximate measurement using only the solution profiles.

Specifically, we will make use of two distinct lengths: first, the length of a localized structure is the extent of

the region where our localized solution lies near the oscillatory solution. We will generally denote this by 2L̄,

since we are usually interested in half this length. To measure the length of a localized oscillatory solution,

we can look at the difference between the largest x, called x1 in Figure 5, such that uloc(x) is within some

tolerance of the constant solution, and the smallest x, called x2 in Figure 5, such that it is again within this

tolerance. Alternatively, assuming u0 = 0, we can use the L2 norm of the whole localized solution. The former
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ϕ = 0 ϕ = π

ππ

L̄

2L̄ 2L̄+ 2π

x1 x2

δ

u0

L̄ L̄ L̄

Figure 5: The length of a localized structure, measured as the distance between the largest x, labeled x1, such that

|u(x) − u0| < δ for all x < x1, and the smallest x, labeled x2 such that |u(x) − u0| < δ for all x > x2, for some

fixed tolerance δ.

measurement is more natural for theoretical development, while the latter is more convenient for numerically

computed bifurcation diagrams, but fundamentally both capture the same information.

Second, the characteristic length of a front, which we denote by l and define modulo 2π, corresponds to the

length of the interface region between the constant and oscillatory solution measured to a peak, modulo 2π 2.

That is, we look at the difference between the largest x such that uloc(x) is within some tolerance of the constant

solution to the smallest x corresponding to a peak (i.e., u′(x) = 0, u′′(x) < 0) within some tolerance of the

amplitude of the limiting oscillatory solution v(x); see Figure 6. Again, assuming u0 = 0, we can also measure

this via the L2 norm of the portion of a front lying to the left of an oscillatory peak within some tolerance of the

maximum amplitude.

uf (x)

l

u0

x1 x2

δ1

δ2

Figure 6: The characteristic length of a front for some fixed tolerances δ1 and δ2, measured as the distance

between the largest x, labeled x1, such that |u(x) − u0| < δ1 for all x < x1, and the smallest x, labeled x2, such

that u′(x2) = 0, u′′(x2) < 0, and |u(x2) − v(x∗)| < δ2, where v(·) is the limiting oscillatory solution, and v(x∗)

has phase ϕ = 0.

Having established these two types of length, and approximately how to measure them, we finally wish to include

dependence on a system parameter µ. In general, fronts will come locally in branches (smooth solution curves)

as the only steady-state bifurcations they typically undergo in 1-parameter systems are saddle node bifurcations

(possibly after ignoring bifurcations caused by symmetry breaking in the transverse y-direction.) If we assume

that fronts exist only for µ ∈ (µ1, µ2), then plotting (µ, l) along the branch of fronts, we obtain typical bifurcation

or existence diagrams as shown in Figure 7. On the cylinder (µ1, µ2) × S1 (recall the characteristic length l of

fronts is taken modulo 2π), the connected branch containing our front solution can have any one of these forms,

as well as others not shown in Figure 7.

2Note that we are assuming all fronts connect to oscillatory solutions with the same period, which we normalize without loss of

generality to 2π.
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Figure 7: Typical bifurcation and existence diagrams for fronts on (µ1, µ2) × S1, where l is the characteristic

length of fronts and µ is a system parameter.

Though the approach outlined below applies to all of these, we will assume for the sake of clarity that each l

corresponds to a unique µ, so that the branch on (µ1, µ2) × S1 can be written as µ = z(l) with l ∈ [0, 2π]/∼

for some function z, as illustrated in Figure 7(i). We can extend the function z to all of R by considering the

argument modulo 2π. We will generally write z(L) to indicate the extended version.

3.4 Bifurcation structure of localized solutions assuming only x 7→ −x symmetry

Now suppose we have a symmetric localized structure of length 2L̄ with maximum in the center, i.e., with phase

ϕ = 0. Such a structure may be formed from a front of characteristic length l = L̄ mod 2π and a back of

the same characteristic length, so that such a solution exists for µ = z(L̄). On the other hand, a symmetric

localized structure of length 2L̄ with minimum in the center (phase ϕ = π) is formed from a front of characteristic

length (L̄ − π) mod 2π and a back of characteristic length (L̄ + π) mod 2π, so that such a solution exists for

µ = z(L̄ + π); recall here that z is 2π-periodic so that z(L̄ + π) = z(L̄ − π). Consequently, in a bifurcation

diagram displaying the length (L2 norm) of a localized solution versus parameter µ, the curve µ = z(L̄) will

be the branch of symmetric localized solutions with maxima in the center, while the branch of solutions with

minima in the center will be given by µ = z(L̄ + π). The resulting bifurcation diagram of symmetric branches

for z as given in Figure 7(i) therefore consists of snaking branches which are intertwined in the sense of Figure 1.

Turning to asymmetric solutions, suppose we have a localized structure of length 2L̄, and again define the phase

ϕ at the midpoint to be the distance past the nearest maximum on the left. Such a structure is formed from a

front of characteristic length (L̄− ϕ) mod 2π and a back of characteristic length (L̄+ ϕ) mod 2π; see Figure 8.

ϕ

L̄ L̄

L̄− ϕ L̄+ ϕ

Figure 8: An asymmetric localized structure of length 2L̄, which can be viewed as the result of combining a front

of characteristic length L̄− ϕ with a back of characteristic length L̄+ ϕ, where ϕ is the phase at the midpoint of

the localized structure.

Thus we can have a localized structure of length 2L̄ and phase ϕ if and only if µ = z(L̄+ ϕ) and µ = z(L̄− ϕ),
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requiring in particular that z(L̄+ ϕ) = z(L̄− ϕ). In other words, a localized structure of length 2L̄ can exist at

a particular µ if and only if there exists a ϕ such that µ = z(L̄+ϕ) = z(L̄−ϕ). Of course, if we have a localized

structure u(x) of length 2L̄ for some µ, we will also have a localized structure u(−x) with length 2L̄ at this µ, so

that in a bifurcation diagram plotting solution length or norm vs. µ, every point along a branch of asymmetric

solutions will correspond to two separate asymmetric solutions related by x 7→ −x. This can also be understood

by noting that if u(x) has phase ϕ, u(−x) will have phase ϕ̃ = 2π − ϕ, so that by virtue of the 2π-periodicity of

z, µ = z(L̄+ ϕ̃) = z(L̄− ϕ̃) will be satisfied.

In summary, all solution branches can be found by determining the values of L and ϕ such that

Z(L,ϕ) := z(L+ ϕ)− z(L− ϕ) = 0. (3.1)

The corresponding values of µ for which these solutions exist are determined by the relation µ = z(L+ϕ), which

is of course equivalent to µ = z(L−ϕ) for all (L,ϕ) such that Z(L,ϕ) = 0. In particular, since z is 2π-periodic,

we will have symmetric localized solutions for any L with ϕ = 0 or ϕ = π, whereas asymmetric solutions will exist

for particular values of L and ϕ /∈ {0, π} satisfying Z(L,ϕ) = 0. The resulting bifurcation diagram of symmetric

and asymmetric branches, for z as given in Figure 7(i), is therefore as shown in Figure 1: to understand the

shape of the bifurcation branches, we needed only the existence of fronts, x 7→ −x symmetry, and a relationship

between the length of the interface region of fronts and a system parameter.

We now connect the function z and the bifurcation equation (3.1), obtained here via formal gluing arguments,

to the rigorous results established in [3]. In that paper, it was shown that symmetric and asymmetric branches

correspond to solutions of a system of the form

Z(L,ϕ) + O(e−KL) = 0 (3.2)

for some constant K > 0: in particular, for L large enough, regular zeros of (3.1) correspond to regular zeros

of (3.2), and vice versa. In particular, under hypotheses detailed in [3], R-symmetric solutions that spend time

2L near the periodic orbit exist for points (µ,L) with µ = µ∗(L,ϕ0) = z(L + ϕ0) + O(e−KL) for some K > 0

with ϕ0 ∈ {0, π}. Furthermore, all other single-pulse solutions that spend time 2L near the periodic orbit are

exponentially close in L to the set of points (µ,L) such that µ = z(L+ ϕ) = z(L− ϕ). Finally, it was shown in

[3] that the function z appearing in (3.2) has a natural interpretation in terms of the intersection of invariant

manifolds.

3.5 Bifurcation structure of localized solutions assuming x 7→ −x and u 7→ −u

symmetry

In the presence of a Z2 symmetry κ, the main distinction from the above is that the function z is now automatically

π-periodic: supposing our symmetry to be u 7→ −u, if a front u(x) of length l exists at some parameter value µ,

then a front −u(x) with characteristic length (l + π) mod 2π must also exist at this µ; see Figure 9.

Thus z(l) = z(l+π) for all l, i.e., z is π-periodic. As a consequence, the bifurcation branch of symmetric solutions

with maxima in the center will lie on top of those with minima in the center [z(L) = z(L + π).] Moreover, the

branches of κR-symmetric solutions with ϕ = π
2 or ϕ = 3π

2 described previously will lie on top of each other for

the same reason. Of course, the branches of the R- and κR-symmetric solutions will be offset from each other

by half a period, so that they have the appearance of being intertwined.

Asymmetric solutions of length 2L̄ will again exist whenever we can satisfy µ = z(L̄+ϕ) = z(L̄−ϕ), keeping in

mind that z is now π-periodic. Note that each point on a bifurcation branch of asymmetric solutions will now

correspond to four such solutions: the “original” u(x) plus u(−x), −u(x) and −u(−x). We note in passing that

all of these will satisfy µ = z(L̄+ϕ) = z(L̄−ϕ) for their particular ϕ, and that we will have exactly one solution

with phase ϕ in each of the regions (0, π
2 ), (

π
2 , π), (π,

3π
2 ), ( 3π2 , 2π).
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(l + π) mod 2π
l

uf2(x) = −uf (x)uf (x)

l π

Figure 9: Illustration that the function z will be π-periodic whenever the periodic orbit v(x) respects both x 7→ −x

and u 7→ −u symmetries. Left: A front uf (x) with characteristic length l, which we assume exists at some µ0.

Right: The front uf2(x) := −uf (x) will also exist for this µ0, and will have characteristic length l + π.

Thus, as in the case where we had only x 7→ −x symmetry, we again see that the zero-level set of the function

Z(L,ϕ) := z(L + ϕ) − z(L − ϕ) describes all bifurcation branches of localized oscillatory structures. The R-

symmetric solution branches are those with ϕ = 0 and ϕ = π, while the κR branches correspond to ϕ = π
2 and

ϕ = 3π
2 . Both these solution types exist for all values of L. Finally, asymmetric solutions exist only for those

values of L and ϕ /∈ {0, π
2 , π,

3π
2 } such that Z(L,ϕ) = 0. See Figure 1 for the bifurcation diagram when z has

the shape outlined in Figure 7(i).

Similar to the case without symmetry, these results have been derived rigorously in [3]: if a Z2 symmetry κ is

present, the function z will be π rather than 2π-periodic, and two additional snaking branches with κR symmetry

will exist for µ = µ∗(L,ϕ0) = z(L+ ϕ0) + O(e−KL) for some K > 0 with ϕ0 ∈ {π
2 ,

3π
2 }.

4 Main results and predictions

Our goal now is to start with a system that respects the Z2 symmetry κ for all µ, and to describe what happens

under forced symmetry breaking. To illustrate our approach, we start with the case where z(L) possesses one

maximum and one minimum for each period π, where the π-periodicity is enforced by the presence of a Z2

symmetry κ. We will be interested in perturbative terms breaking the κ symmetry when a second parameter ε

is switched on, i.e., when ε 6= 0.

In Figure 10(a) we provide two equivalent renderings of the solution branches of localized structures in a system

possessing κ symmetry and with z(L) having a single maximum per period. We illustrate the branches of even

and odd symmetric structures (R- and κR-symmetric, respectively) as well as the asymmetric solution branches.

The left panel shows the phase ϕ along the x-axis, and the half-pulse length L along the y-axis, while the center

panel shows the solutions in the (µ,L) plane via the function µ = z(L+ ϕ) for solutions (L,ϕ) of

Z(L,ϕ) := z(L+ ϕ)− z(L− ϕ) = 0.

This is analogous to our usual bifurcation diagram, with length L being equivalent to the L2 norm. The formu-

lation in the left panel will provide a natural way to understand the effects of symmetry breaking perturbations,

while the center panel provides the link to familiar bifurcation diagrams. We see that, before perturbation, the

R-symmetric solutions at ϕ = 0 and ϕ = π coincide in the (µ,L) plane, as do the κR-symmetric solutions at

ϕ = π
2 and ϕ = 3π

2 (latter not shown). We also note that, due to the π-periodicity of z, all information is actually

contained in a single quadrant of the left panel, but we show the larger diagram here for easier comparison with

the diagram after symmetry breaking.
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(b)

Figure 10: We show different renderings of the bifurcation diagram for a system characterized by z possessing

exactly one maximum and one minimum per period. Left: The solution set of the bifurcation equations z(L−ϕ) =

z(L + ϕ) is shown in the (ϕ,L)-plane. Center: The bifurcation diagram in the (µ,L)-plane, using the relation

µ = z(L + ϕ). R-symmetric solution branches with ϕ = 0, π are shown in dashed blue, κR-symmetric with

ϕ = π
2
, 3π

2
in dotted orange, and asymmetric in solid green. Light dotted lines indicate correspondence of a and

a+ π with minima. Right: Reformulation of the left panel as a Hamiltonian system; see the text for full details.

We now drop the assumption that z has only one maximum per period. We argued formally in Section 3 that it

suffices to solve

Z(L,ϕ) := z(L+ ϕ)− z(L− ϕ) = 0 (4.1)

for (L,ϕ) in order to find symmetric and asymmetric solution branches. Indeed, it was shown in [3] that the

bifurcation equations for symmetric and asymmetric solutions are given by (4.1) with an additional error term

of order O(e−KL) for some K > 0: in particular, regular zeros of (4.1) persist as solutions to the full bifurcation

equations for all sufficiently large L. The analysis in [3] applies to reversible PDEs with or without variational

structure on cylinders provided the spatial dynamical system associated with the steady-state equation falls

under the class considered in [19].

Our goal here is to study the effect of perturbative terms breaking the κ symmetry. It will be useful to consider

the system presented in the left panel of Figure 10(a) as a dynamical system in its own right, a technique

employed in [3]. We let S̄1 := [0, π]/ ∼, set Q := S̄1 × [0, π
2 ], and define

Λ := {(L,ϕ) ∈ Q : Z(L,ϕ) = 0}, Λbif := {(L,ϕ) ∈ ∂Q : z′(L+ ϕ) = 0}.

We introduce the planar Hamiltonian vector field
(

Ls

ϕs

)

= F (L,ϕ) :=

(

0 1

−1 0

)

∇Z(L,ϕ) (4.2)

whose zero energy level is precisely equal to the set Λ. We note that

∇Z(L,ϕ) =

(

1 −1

1 1

)(

z′(L+ ϕ)

z′(L− ϕ)

)

.
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Hence we have ∇Z(L,ϕ) = 0 if and only if z′(L+ ϕ) = z′(L− ϕ) = 0. Assuming nondegeneracy of the maxima

and minima of z, i.e., assuming z(L1) = z(L2) and z′(L1) = z′(L2) = 0 imply L1 = L2 mod π, we conclude that

∇Z(L,ϕ) = 0 for (L,ϕ) ∈ Λ if and only if ϕ ∈ {0, π
2 }. Thus all equilibria of (4.2) in Λ lie in Λbif . Furthermore,

assuming z′(L) = 0 implies z′′(L) 6= 0, all equilibria in Λ are hyperbolic saddles, since at these points we have

DF (L,ϕ0) = 2

(

z′′(L+ ϕ0) 0

0 −z′′(L+ ϕ0)

)

, ϕ0 ∈
{

0,
π

2

}

.

So by Poincarè-Bendixon, Λ\Λbif must be a 1D manifold consisting of the heteroclinic orbits that start and end

at Λbif , and finitely many periodic orbits. Thus each element (L∗, 0) and (L∗,
π
2 ) of Λbif is a generic pitchfork

bifurcation point, which gives rise to a unique global branch of solutions of (4.1) in Q. These branches do not

cross, and they begin and end in Λbif . In Figure 10(b) we reproduce the left panel of Figure 10(a) with arrows

indicating the flow of (4.2) within the zero energy level set Λ of the Hamiltonian system just described, as well

as plus and minus signs indicating the sign of the energy Z(L,ϕ).

We are now ready to consider a perturbation which breaks the κ symmetry, but preserves the other characteristics

of our system, meaning in particular that the reversibility is unaffected so that we retain the 2π-periodicity of z.

Such a symmetry breaking perturbation will, however, typically break the π-periodicity of z and therefore break

up the κR-symmetric branch. On the level of the vector field interpretation, this manifests itself as the fact that

the saddle equilibria persist, but generically move outside the zero-level set of Z.

Lemma 4.1 Suppose z(L) is π-periodic, satisfying (a) z(L1) = z(L2) and z′(L1) = z′(L2) only if L1 = L2 mod π

and (b) z′(L) = 0 implies z′′(L) 6= 0. Let (L0, ϕ0) be a hyperbolic equilibrium of (4.2) satisfying (4.1). Assume

z̃(L, ε) := z(L)+εz1(L)+O(ε2), with z̃(L, ε), and therefore z1(L), 2π-periodic in L. Further define Z̃(L,ϕ, ε) :=

z̃(L+ ϕ, ε)− z̃(L− ϕ, ε), and consider

(

Ls

ϕs

)

= F̃ (L,ϕ, ε) :=

(

0 1

−1 0

)

∇Z̃(L,ϕ, ε). (4.3)

Then there exists an ε0 > 0 such that the following hold:

(i) If ϕ0 ∈ {0, π}, then for all |ε| < ε0 there exists a unique L̃0(ε) close to L0 such that (L̃0(ε), ϕ0, ε) is a

hyperbolic equilibrium of (4.3), and Z̃(L̃0(ε), ϕ0, ε) = 0. Furthermore, the function ε 7→ L̃0(ε) is smooth.

(ii) If ϕ0 ∈ {π
2 ,

3π
2 }, then for all |ε| < ε0 there exists a unique (L̃0, ϕ̃0)(ε) close to (L0, ϕ0) such that

((L̃0, ϕ̃0)(ε), ε) is a hyperbolic equilibrium of (4.3). Furthermore, the function ε 7→ (L̃0, ϕ̃0)(ε) is smooth,

and if z1(L0 + ϕ0) 6= z1(L0 − ϕ0), then Z̃((L̃0, ϕ̃0)(ε), ε) 6= 0.

Proof. Given F̃ as defined in (4.3), we can write F̃ explicitly as

F̃ (L,ϕ, ε) =

(

z̃(L+ ϕ, ε) + z̃(L− ϕ, ε)

−z̃(L+ ϕ, ε) + z̃(L− ϕ, ε)

)

=

(

z′(L+ ϕ) + εz′1(L+ ϕ) + z′(L− ϕ) + εz′1(L− ϕ) + O(ε2)

−z′(L+ ϕ)− εz′1(L+ ϕ) + z′(L− ϕ) + εz′1(L− ϕ) + O(ε2)

)

.

Whether we are in case (i) where ϕ0 ∈ {0, π}, or case (ii) where ϕ0 ∈ {π
2 ,

3π
2 }, the π-periodicity of z implies

z′′(L0 + ϕ0) = z′′(L0 − ϕ0) so that

DF̃ (L0, ϕ0, 0) =

(

2z′′(L+ ϕ0) 0 z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

0 −2z′′(L0 + ϕ0) −z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

)

. (4.4)

Since we have assumed z′′(L0 + ϕ0) 6= 0, this implies that there exists a ε0 > 0 such that for all |ε| < ε0, there

exists a unique (L̃0, ϕ̃0)(ε) close to (L0, ϕ0) such that ((L̃0, ϕ̃0)(ε), ε) is a hyperbolic equilibrium of (4.3), and

the map ε 7→ (L̃0, ϕ̃0)(ε) is smooth.
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In particular, we can solve for (L̃0, ϕ̃0)(ε) as:

F̃ (L,ϕ, ε) = F̃ (L0, ϕ0, 0) +DF̃ (L0, ϕ0, 0)







L− L0

ϕ− ϕ0

ε






+O(ε2) =

(

0

0

)

so
(

2z′′(L0 + ϕ0)(L− L0) + (z′1(L0 + ϕ0) + z′1(L0 − ϕ0))ε

−2z′′(L0 + ϕ0)(ϕ− ϕ0) + (−z′1(L0 + ϕ0) + z′1(L0 − ϕ0))ε

)

+O(ε2) =

(

0

0

)

yielding

L− L0 = ε

(

−z′1(L0 + ϕ0)− z′1(L0 − ϕ0)

2z′′(L0 + ϕ0))

)

+O(ε2)

ϕ− ϕ0 = ε

(

−z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

2z′′(L0 + ϕ0))

)

+O(ε2)

or

(L̃0, ϕ̃0)(ε) = (L0, ϕ0) +
ε

2z′′(L0 + ϕ0)
(−z′1(L0 + ϕ0)− z′1(L0 − ϕ0),−z′1(L0 + ϕ0) + z′1(L0 − ϕ0)) + O(ε2).

In case (i) where ϕ0 ∈ {0, π}, the 2π-periodicity of z1(L) yields

(L̃0, ϕ̃0)(ε) = (L0, ϕ0) +
ε

2z′′(L0 + ϕ0)
(−2z′1(L0 + ϕ0), 0) + O(ε2).

In fact, for ϕ0 ∈ {0, π}, the 2π-periodicity of z̃(L, ε) in L implies that

F̃ (L,ϕ0, ε) = 2

(

z̃′(L+ ϕ0)

0

)

.

So the unique (L̃0, ϕ̃0)(ε) near (L0, ϕ0) satisfying F̃ ((L̃0, ϕ̃0)(ε), ε) = 0 must be of the form (L̃0(ε), ϕ0) where

L̃0(ε) satisfies z
′(L̃0(ε) + ϕ0) + εz′1(L̃0(ε) + ϕ0) = 0.

This then implies

Z̃(L̃0(ε), ϕ0, ε) = z(L̃0(ε) + ϕ0) + εz1(L̃0(ε) + ϕ0)− z(L̃0(ε)− ϕ0) + εz1(L̃0(ε)− ϕ0) = 0

as z̃ is 2π-periodic. Thus we have shown (i).

In case (ii) where ϕ0 ∈ {π
2 ,

3π
2 } we have

Z̃((L̃0, ϕ̃0)(ε), ε) = z

(

L0 + ϕ0 −
εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)

+ εz1

(

L0 + ϕ0 −
εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)

− z

(

L0 − ϕ0 −
εz′1(L0 − ϕ0)

z′′(L0 + ϕ0)

)

− εz1

(

L0 − ϕ0 −
εz′1(L0 − ϕ0)

z′′(L0 + ϕ0)

)

+O(ε2). (4.5)

We expand

z

(

L0 + ϕ0 −
εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)

= z(L0 + ϕ0) + 2z′(L0 + ϕ0)

(

−εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)

+O(ε2)

and similarly for z
(

L0 − ϕ0 −
εz′

1
(L0−ϕ0)

z′′(L0+ϕ0)

)

.

We also recall that z′(L0 + ϕ0) = z′(L0 − ϕ0) = 0, and z(L0 + ϕ0)− z(L0 − ϕ0) = 0. Thus we rewrite (4.5) as

Z̃((L̃0, ϕ̃0)(ε), ε) = εz1(L0 + ϕ0)− εz1(L0 − ϕ0) + O(ε2)

so that Z̃((L̃0, ϕ̃0)(ε), ε) 6= 0 as long as z1(L0 + ϕ0) 6= z1(L0 − ϕ0). This completes the proof of (ii).

The key point of the above is that saddle equilibria corresponding to pitchfork bifurcations from the κR-

symmetric branches generically do not remain in the zero-level set of Z once the κ symmetry is broken, so

that the κR-symmetric branches are themselves broken in a manner consistent with the Hamiltonian vector field

formulation described above.
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L

Figure 11: Bifurcation diagram for a system as in Figure 10(a) after κ symmetry breaking. On the left is the

interpretation of the branches as zero energy solutions of a Hamiltonian system, as in Figure 10(b); in the center

is the same diagram without the vector field interpretation; and on the right the branches are shown in the

(µ = z(L+ϕ), L) plane. The R-symmetric branches, now appearing as two branches in the right-hand figure are

shown in dashed dark and light blue for ϕ = 0 and π, respectively. The remains of the κR symmetric branch,

which now form sections of asymmetric branches, are shown in dotted orange. The portions of the asymmetric

solution branches that were already asymmetric branches in the unperturbed case are shown in solid green and

solid black to facilitate comparison of the diagrams.

4.1 Systems such that z has a single maximum per period

Returning to the case where z has only one maximum and minimum per period, in Figure 11 we illustrate one

possible result of κ symmetry breaking in such a system. In particular, using notation from the figure and

Lemma 4.1, we have illustrated the case where z1(A) > z1(A + π) and z1(a) > z1(a + π). This means that the

saddle equilibrium near (A+ π
2 ,

π
2 ) will now lie in the region where Z̃ < 0, since

z1

((

A+
π

2

)

+
π

2

)

= z1(A+ π) < z1(A) = z1

((

A+
π

2

)

−
π

2

)

.

Similarly, the equilibrium near (a− π
2 ,

π
2 ) will lie in the region where Z̃ > 0, since

z1

((

a−
π

2

)

+
π

2

)

= z1(a) > z1(a+ π) = z1(a− π) = z1

((

a−
π

2

)

−
π

2

)

.

Note that the 2π-periodicity of z1 implies that the sign of Z̃ for the saddle equilibria with L ∈ [0, π) fixes the

sign of Z̃ for the saddle equilibria with L ∈ [π, 2π); specifically, the sign will be opposite.

Technically there are four possible generic bifurcation diagrams, one for each of the four possible combinations

of the sign of Z̃ at saddle equilibria near (A + π
2 ,

π
2 ) and (a − π

2 ,
π
2 ). However, as is clear from the preceding

discussion, the sign combinations (+,+) and (−,−) are equivalent under translation by π in L, which amounts to

swapping our definition of the ϕ = 0 and ϕ = π branches. This equivalence also holds for the sign combinations

(+,−) and (−,+). Furthermore, these two sets of “same sign” and “opposite sign” bifurcation diagrams are
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Figure 12: Bifurcation structure of a system characterized by π-periodic z possessing two distinct maxima per

period. Again, we illustrate the solution branches in the (ϕ,L) plane, both with and without the vector field

interpretation, as well as in the (µ = z(L+ϕ), L) plane, where the actual bifurcation branches will be exponentially

close in L to the ones shown. As before, R-symmetric solution branches are shown in dashed blue, and κR-

symmetric in dotted orange. Particular asymmetric solution branches are shown in solid purple and green. For

clarity, not all asymmetric solution branches are shown in the right-most rendering; branches not shown on

the right are rendered in thin dotted gray in the center illustration. The light dashed horizontal lines show the

correspondence between the hyperbolic equilibria at A, a, B, b, etc. and the maxima and minima on the right.

in fact qualitatively equivalent as both result in a series of alternating cross-connecting and self-connecting

asymmetric branches, each with two saddle nodes. In terms of the familiar bifurcation diagram in the (µ,L)

plane, self-connecting branches will appear as ‘S’ shaped curves and cross-connecting as ‘Z’ shaped curves for

perturbations such that the sign of Z̃ is the same [(+,+) or (−,−)] for saddle equilibria with L ∈ [0, π) near

ϕ = π/2. The opposite is true for perturbations such that the sign of Z̃ is (+,−) or (−,+). As we will see below,

when z has two or more maxima, different symmetry breaking perturbations may result in distinct bifurcation

diagrams, which are not reducible via reflections or translations.

We note that these results are applicable to localized roll solutions of the one-dimensional Swift–Hohenberg

model

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5, x ∈ R (4.6)

with the addition of perturbative terms, regardless of whether these terms preserve the variational structure. In-

deed, we observe that these findings are entirely consistent with the numerical results of Houghton and Knobloch,

including the breaking up of the odd parity branches, broadening of the snaking region, and appearance of S

and Z asymmetric branches.

4.2 Systems such that z has at least two maxima per period

We now turn to the somewhat more complicated situation where z(L) possesses two maxima and minima per

period π; of course the periodicity implies that maxima and minima must occur in pairs.
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Figure 13: Bifurcation structure of the system illustrated in Figure 12, after the addition of a κ symmetry

breaking perturbative term causing the sign of Z to be the same at adjacent local extrema. Again for clarity, only

a selection of asymmetric solution branches are shown in the right-most figure. The coloring and line styles from

Figure 12 have been preserved to show the portions of each solution branch arising from the original branches in

the unperturbed case. Note that although all branch segments bifurcating from the κR-symmetric branch remain

dotted orange in the center figure, not all segments are shown on the right.

Figure 12 shows a rendering of the resulting bifurcation structure for such a z. Again the left and center panels

show the phase ϕ along the x-axis the pulse length L along the y-axis, while the right-hand figure shows the

analogous plot to a typical bifurcation diagram. Once more, prior to perturbation, the R-symmetric solutions at

0 and π coincide in the (µ = z(L+ϕ), L) plane, as do the κR-symmetric solutions at π
2 and 3π

2 . Again to enable

later comparisons, we show the right and center diagrams for (ϕ,L) ∈ [0, π]× [0, 2π] even though all information

is contained in the [0, π
2 ]× [0, π] quadrant.

We note that this form of z is observed for the planar stripe and spot patterns seen in the cubic-quintic Swift–

Hohenberg posed on a cylinder, i.e.,

ut = −(1 + ∂2
x + ∂2

y)
2u− µu+ νu3 − u5, (x, y) ∈ S1 × R (4.7)

where S1 = R/2LxZ for some Lx > 0, and that the branches in Figure 12 are indeed consistent with the full

bifurcation structure of the almost-planar stripe and spot patterns in the cubic-quintic Swift–Hohenberg model,

as reported in [2] and also verified in Section 5 below.

Upon introduction of a perturbative term breaking the κ symmetry, we again expect that the κR-symmetric

branches will break up, with the saddle equilibria generically moving outside the zero-level set of Z̃ due to the

loss of π-periodicity of z, i.e., due to the fact that generically z1(L0 + ϕ0) 6= z1(L0 − ϕ0). However, in contrast

to the single maximum system discussed above, here we find that we obtain qualitatively different bifurcation

diagrams depending on whether the new sign of Z̃ at adjacent saddle equilibria matches or differs.

In particular, there are now sixteen possible generic bifurcation diagrams, one for each of the possible combina-

tions for the sign of Z̃ at saddle equilibria near (B− π
2 ,

π
2 ), (b−

π
2 ,

π
2 ), (A+ π

2 ,
π
2 ) and (a+ π

2 ,
π
2 ), where the labels
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Figure 14: Symmetry breaking with the opposite relative movement of adjacent local extrema from that displayed

in Figure 13. Note that for clarity we no longer show a cross-connecting asymmetric solution, but focus instead

on one of the self-connecting asymmetric branch with 14 saddle nodes.

correspond to those used in Figure 12. Once again the 2π-periodicity of z1 implies that the saddle equilibria

with L ∈ [π, 2π) will have Z̃ of the opposite sign as the corresponding saddle equilibria with L ∈ [0, π).

Noting that B and b are local (rather than global) extrema of the function z, the biggest qualitative difference in

possible bifurcation diagrams is between those in which the saddle equilibria near (B− π
2 ,

π
2 ) and (b− π

2 ,
π
2 ) have

Z̃ with the same sign, versus those in which the sign of Z̃ is different. In the former case, the bifurcation diagram

for the perturbed system will possess isolas formed from the reorganization of asymmetric and κR-symmetric

branches, whereas in the latter the bifurcation diagram will have self-connecting asymmetric branches with many

saddle nodes, but no isolas.

This distinction holds regardless of the sign of Z̃ at the remaining saddle equilibria, i.e., those corresponding to

global maxima and minima. Differences in the sign of Z̃ for the saddle equilibria near (A+ π
2 ,

π
2 ) and (a+ π

2 ,
π
2 )

affect the number of saddle nodes in each asymmetric branch, but do not affect the formation of isolas. We note

that, by inspection of the Hamiltonian vector field formulation, the exact number of saddle nodes on any given

bifurcation branch can be determined by counting the number of tangencies to one of the vectors (±1,±1) in

the (ϕ,L) plane.

In Figure 13, we illustrate the form the bifurcation diagram should take under a perturbation such that z1 at

adjacent local extrema B and b satisfies z1(B) > z1(B + π) and z1(b) > z1(b + π). This means that the saddle

equilibrium near (B − π
2 ,

π
2 ) will now lie in the region where Z̃ > 0, since

z1

((

B −
π

2

)

+
π

2

)

= z1(B) > z1(B + π) = z1(B − π) = z1

((

B −
π

2

)

−
π

2

)

.

The equilibrium near (b− π
2 ,

π
2 ) will also lie in the region where Z̃ > 0, since

z1

((

b−
π

2

)

+
π

2

)

= z1(b) > z1(b+ π) = z1(b− π) = z1

((

b−
π

2

)

−
π

2

)

.
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Again we observe that whether z1(B) > z1(B + π) and z1(b) > z1(b + π) or the opposite inequalities hold is

immaterial as long as they are both in the same direction. Identifying these two cases amounts to reversing our

conventions for defining ϕ = 0 and ϕ = π. In Section 5, we demonstrate the formation of isolas numerically for

the Swift–Hohenberg model, with symmetry-breaking perturbation εu2.

In contrast, in the case where the perturbation causes one local extremum to move up and the other to move down

relative to those at distance π, we do not expect isolas, but rather anticipate a complicated asymmetric branch

possessing 14 saddle nodes, as shown in Figure 14. In particular, we illustrate the case where z1(B) < z1(B+π)

and z1(b) > z1(b + π), along with z1(A) > z1(A + π) and z1(a) < z1(a + π). As seen in Section 5, this type of

behavior is observed in the Swift–Hohenberg model with the perturbative term εu4.

This sort of analysis can be continued for z possessing more than two maxima per period. We reiterate that in

order for symmetry breaking to produce isolas, a minimum of two maxima (and minima) are required prior to

the introduction of symmetry breaking terms.

5 Numerical results and confirmation of predictions

5.1 Numerical verification of Section 4 predictions

We begin by confirming that the planar stripe and spot pattern of

ut = −(1 + ∂2
x + ∂2

y)
2u− µu+ νu3 − u5, (x, y) ∈ S1 × R (5.1)

where S1 = R/2LxZ for some Lx > 0, has the bifurcation structure diagrammed in Figure 12 of Section 4 above;

we refer to [2] for the original computation.

All numerical simulations were completed in Matlab, using a modified version of Epcont, a predecessor of

Coco [12], as in [2]. The modifications made to Epcont include employing the Newton trust-region solver

Fsolve, and projecting out the approximate translation directions in each predictor step. We use spectral

differentiation matrices in the periodic x-direction, and finite differences in the y-direction. In particular, all

figures shown in this section were calculated via numerical continuation with nx = 8 Fourier modes and ny = 800

equidistant points on the domain (0, π)× (−50, 50) with Neumann boundary conditions.

Figures 15(a) and 15(b) show the bifurcation diagram for the stripe and spot pattern of (5.1), along with

selected solution profiles. In (a) we show an asymmetric solution along with two R-symmetric solutions existing

for the same µ, and similarly in (b) we show an asymmetric solution and two κR-symmetric solutions, where

κ : u(x) 7→ −u(Lx−x). We note that both sets of solutions profiles are consistent with the gluing interpretation.

We next demonstrate a perturbation leading to the bifurcation structure predicted in Section 4, and diagrammed

in Figure 13. Using the perturbative term εu2, i.e.,

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εu2 (5.2)

we find that we do indeed observe the predicted isolas bifurcating where we expect them, as shown in Figure 16.

We can also calculate the distance from κR symmetry for each solution lying along the branch; doing this for

the isola, we note that the middle portion is indeed almost perfectly κR symmetric, as expected; see Figure 18.

For completeness, in Figure 19 we also include the results of numerical continuation on the planar stripe and

spot patterns with perturbative term εu4, i.e.,

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εu4 (5.3)

We see that this type of perturbation causes adjacent saddle equilibria to move in opposite directions, or equiva-

lently that one local extremum moves up while the other to moves down relative to the local extrema at distance

π. Consequently this bifurcation diagram corresponds to the schematic displayed in Figure 14.
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(a) Bifurcation diagram for planar stripes and spots, with numbers indicating the locations of two R-symmetric solutions, and the

intermediate cross-connecting asymmetric solution shown at right; see [2].
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(b) Bifurcation diagram for planar stripes and spots, with numbers indicating the locations of the two κR-symmetric and the inter-

mediate self-connecting asymmetric solution shown at right; see [2].

Figure 15: Bifurcation diagram for planar stripes and spots in (5.1), along with locations of solution profiles shown

at right. R-symmetric branch shown in dashed blue, κR-symmetric branch in dotted orange, and representative

asymmetric branches in solid gray. The colorbar is the same for all solution profiles, and recalling that solutions

are periodic in the x-direction, we show 6 periods for each solution.
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Figure 16: Left: Partial bifurcation diagram for (5.2) with ε = −0.01, showing an isola in solid purple, along

with one of two R-symmetric branches with ε = −0.01 in dashed blue, and a cross-connecting asymmetric branch

in solid green. Vertical lines indicate the correspondence between the extrema (saddle nodes) of the R-symmetric

branch and the saddle nodes of the asymmetric branches, including the isola. The cross-connecting asymmetric

branch extends beyond the R-symmetric branch as it terminates at the other R-symmetric branch with phase

ϕ = π (not shown.) Right: Reproduction of the predicted bifurcation diagram from Figure 13, with vertical lines

showing alignments of saddle nodes, as in the numerically computed bifurcation diagram.
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Figure 17: For comparison purposes, the isola for (5.2) with ε = −0.01 is again shown in solid purple, along with

the original (ε = 0) κR-symmetric branch in dotted orange, and the original (ε = 0) self-connecting asymmetric

branch in dashed gray.
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Figure 18: Left: Another view of the isola found above, demonstrating that the symmetries are consistent with

construction by combining a portion of the κR symmetric solution branch with an asymmetric solution branch.

The distance from κR-symmetry is computed as the L2 norm of the difference between a given solution profile

and the profile obtained by flipping across the y-axis, shifting by π in the x-direction, and multiplying by −1.

Due to the approximate translation invariance of the solutions, this difference is minimized over translations in

y. Right: A view of the cross-connecting branch found above, also consistent with construction via combination

of κR-symmetric and asymmetric branches.
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Figure 19: Left: Partial bifurcation diagram for (5.3) with ε = −0.01, showing one of two R-symmetric branches

with ε = −0.01 in dashed blue, and a self-connecting asymmetric branch in solid green. Vertical lines indicate the

correspondence between the saddle nodes of the R-symmetric branch and of the self-connecting branch. Right:

Reproduction of the predicted bifurcation diagram from Figure 14, with vertical lines showing alignments of saddle

nodes, as in the numerically computed bifurcation diagram.
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5.2 Computation of splitting distance and comparison with continuation results

In their numerical study of symmetry-breaking in the one-dimensional cubic-quintic Swift–Hohenberg model,

Houghton and Knobloch noted that the splitting distance is unequal on the left and right side of the snaking

diagram; that is, the symmetry breaking term causes the set of saddle nodes to shift more to both the inside

and outside on one side than on the other side.

To understand this observation, and to explain a similar phenomenon which occurs in the two-dimensional case

– see Figures 16 and 19, in which the displacement of the outer saddle nodes on the left is much less than on

the right – we can look at the derivative of the perturbed Swift–Hohenberg equation (2.1) or (5.2) with respect

to ε. Starting with the one-dimensional case, we define

F (u, µ, ε) := −(1 + ∂2
x)

2u− µu+ bu3 − u5 + εg(u)

where g(u) is our perturbative term, e.g., u2 or u2
x. We can then parameterize a solution branch for the

unperturbed system as (u(s), µ(s)), where s is, for instance, arc length along the branch, so that

F (u(s), µ(s), 0) = 0

for all s. We denote the tangent vector to this solution branch by

(v, ν) :=
d

ds
(u, µ)(s).

For ε nonzero, the persisting R-symmetric branch will be given by

F (u(s, ε), µ(s, ε), ε) = 0,

and differentiating this with respect to ε we obtain

Fuuε + Fµµε + Fε = 0.

Defining L = −(1 + ∂2
x)

2 − µ+ 3bu2 − 5u4 for a particular solution (u, µ), this yields the system

{

Lu′ − uµ′ + g(u) = 0

〈u′, v〉+ µ′ν = 0
(5.4)

whose solution is (u′, µ′) = d
dε
(u, µ). Thus the offset along the solution branch will be given by µ′ε+O(ε2). We

can find µ′ anywhere along the solution branch by solving the linear system (5.4). Alternatively, we note that,

at a saddle node, we have ν = 0 so that Lv = 0; since L is self-adjoint in L2, applying 〈v, ·〉 to the first equation

in (5.4) yields

〈v, µ′u〉+ 〈v, g(u)〉 = 0

or

µ′ =
〈v, g(u)〉

〈v, u〉
.

Thus we need only to calculate the solution (u, µ) and its associated eigenfunction v to compute the offset at a

saddle node. While the method of directly solving the linear system is somewhat more robust numerically, the

latter method provides helpful insight, particularly in the one-dimensional case.

We emphasize that, whichever method we use, this calculation allows us to determine the sign of Z̃ as defined in

Section 4, which in turn determines which class of bifurcation diagram the perturbed system will exhibit; that

is, we can describe the full bifurcation diagram without the need for any computations on the perturbed system.

In Figure 20 we show four successive saddle nodes for the one-dimensional cubic-quintic Swift–Hohenberg equa-

tion prior to perturbation. We see that the solution u(x) at successive left-hand saddle nodes is related by
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Figure 20: Four successive saddle nodes, i.e., one full 2π-period along the snaking R-symmetric branch, for

the one-dimensional Swift–Hohenberg equation without perturbation. Solution u(x) in solid blue, saddle node

eigenfunction v(x) in solid orange, g(u) = u2 in dashed green and g(u) = u4 in dotted purple.
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Figure 21: The same four successive saddle nodes as in Figure 20, but now showing the pointwise product of the

eigenfunction v(x) with u(x), u2(x), and u4(x). The function (uv)(x) is shown in solid blue, (u2v)(x) in dashed

green and (u4v)(x) in dotted purple.
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g(u) = u2 g(u) = u4

µ at saddle node observed offset calculated offset observed offset calculated offset

0.7084 -0.4472 -0.4322 -0.2996 -0.2833

0.6156 -0.0426 -0.0470 0.1667 0.1612

0.7218 -0.4713 -0.4668 -0.3581 -0.3585

0.6294 0.1231 0.1235 -0.2331 -0.2237

0.7084 0.4361 0.4269 0.2669 0.2883

0.6156 0.0611 0.0514 -0.1508 -0.1590

0.7218 0.4833 0.4669 0.3581 0.3575

0.6294 -0.1352 -0.1228 0.2083 0.2241

Table 1: Observed and calculated offsets over 8 saddle nodes, i.e., a full 2π period of the function z, for the

planar stripe and spot pattern of (5.1), with additional perturbative term εg(u) as indicated.

u 7→ −u symmetry, and similarly on the right. We also graph the saddle node eigenfunction v(x) and the per-

turbative terms u2(x) and u4(x). Recalling that the offset will be determined by the ratio of the inner product

〈v, g(u)〉 to 〈v, u〉, in Figure 21 we show the pointwise products of v(x) with u(x), u2(x), and u4(x). We observe

that at the left saddle node, the peaks of (u2v)(x) and (u4v)(x) are approximately the same size, leading to a

small value for 〈v, g(u)〉, which results in a smaller offset. On the other hand, for the saddle nodes on the right,

u2 and u4 both exhibit a dominant peak, so that 〈v, g(u)〉 is of similar order to 〈v, u〉, resulting in a larger offset.

The difference between the signs of the offsets for g(u) = u2 and g(u) = u4 is somewhat more subtle, though as

we’ve noted already, in the one-dimensional case all offsets lead to qualitatively similar bifurcation diagrams.

For the two-dimensional case, we show in Table 1 the results of solving for µ′ using the linear method: the observed

offset is the difference between the original µ at the saddle node and that seen in the numerical continuation,

divided by the ε used in the continuation; the calculated offset is the value of µ′, computed by solving the linear

system at a saved solution (u, µ) near each saddle node in the original ε = 0 bifurcation diagram. The values

of ε used in the continuation were ε = −0.0108 for g(u) = u2, and ε = .01008 for g(u) = u4. We note that

finer meshes (e.g., 16 Fourier modes instead of 8) and more accurate calculation of the saddle node locations

lead to somewhat higher accuracy, but since there is already some difference in the absolute value of the offsets

at successive saddle nodes at distance π, e.g., between the second and sixth saddle nodes in Table 1, there are

nonlinear effects which would necessitate the inclusion of higher order derivatives in ε for a complete match.

Nonetheless, we see that the agreement is quite good.

6 Discussion

In the preceding, we have shown that given a snaking system possessing a Z2 symmetry, we can predict on

analytical grounds how the solutions and bifurcation structure will evolve in the presence of perturbative terms

breaking the symmetry. These predictions cover the full bifurcation diagram, including the movement of sym-

metric branches and the reorganization of the κR-symmetric and asymmetric branches. They also explain

the appearance and approximate symmetries of particular solutions lying along the new bifurcation branches.

Furthermore, we have shown that given an appropriate form of the original system, isolas should form upon

introduction of a particular perturbation. We then verified this numerically, and demonstrated that the isolas

are formed exactly as expected, and possess the predicted approximate symmetries.

In addition, we have reiterated the observation of Houghton and Knobloch on the splitting distance of the

symmetric branches, and provided an explanation based on the eigenfunctions in the one-dimensional case with

which their paper was concerned. In fact, we have provided a method to calculate the splitting distances to

23



leading order in any dimension, and have shown that this method agrees well with the results of numerical

continuation in the planar case. This method can be employed further to determine which perturbations lead to

which bifurcation scenarios, using measurements from only the unperturbed bifurcation structure. Finally, we

observe that this sort of analysis could be used to interpret or predict results of varying ν for various pattern

types, some of which were reported in [2].

Several areas remain for future exploration. Although it seems clear at this stage, it has not yet been shown

analytically that asymmetric solutions are constructed by gluing together symmetric solutions, even in the

one-dimensional case. Proving this rigorously will aid in addressing the stability of planar patterns; while

some computations have been done numerically, stability in the planar case has yet to be studied analytically.

Beyond this, localized hexagon patches (see, for example, [18]) and other fully localized structures in two or

higher dimensions remain challenging phenomena where even the bifurcation structures themselves remain poorly

understood. Furthermore, as highlighted recently in [24], there are strong connections between the description

of localized structures via Swift–Hohenberg-type models and the transition from a fluid to crystalline state;

understanding these relationships promises to be a fruitful area for ongoing work.
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