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The critical stress for initiation of dynamic recrystallization (DRX) can be identified from the inflection point
on the strain hardening rate (6=do/de) versus flow stress (o) curve. This kind of curve can be described by
an equation that fits the experimental 6—¢ data from zero to the peak stress. Such a curve must have an in-
flection point and the simplest relation that has such properties is a third order equation.

Hot compression tests were carried out on a 304H stainless steel over the temperature range
900-1 100°C and strain rate range 0.01-1s"" to a strain of 1. An appropriate third order equation was fitted
to the strain hardening data. The results show that the critical stress at initiation o,=—B/3A where A and B
are coefficients of the third order equation. It is evident that this value depends on the deformation condi-
tions. The stress—strain curve was then normalized with respect to the peak stress, leading to a normalized
value of the critical stress (u,) equal to u,=o/o,=—B'/3A". Here A" and B’ are coefficients of the normal-
ized third order equation. This value is constant and independent of the deformation conditions.
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1. Introduction

Dynamic recrystallization (DRX) is a powerful tool for
controlling microstructural evolution and mechanical prop-
erties during industrial processing."™ When this type of
softening process is operating, both nucleation as well as
growth take place while the strain is being applied.'?

It is well known that during hot deformation (with a rela-
tively high strain rate) the dislocation density increases
while dynamic recovery (DRC) tries to diminish the den-
sity. If the rate of dislocation density increase is greater
than can be accommodated by DRC, then dynamic recrys-
tallization (DRX) is initiated at a certain point. This applies
particularly to low and medium stacking fault energy for
fcc metals.

Calculation of the critical condition for the initiation of
DRX is of considerable interest for the modeling of indus-
trial processes.® It depends on the chemical composition
of the material, the grain size prior to deformation, and the
deformation conditions (T and €).”'” Several researchers
have proposed mathematical relations to predict the initia-
tion of DRX. For example, M. R. Barnett, G. L. Kelly and
P. D. Hodgson'" have identified the critical strain for initia-
tion of DRX using the kinetics of static recrystallization
(SRX) modified to allow SRX to begin before the end of
deformation. This approach defines the critical stress for
the initiation of SRX (DRX) during deformation. On the
basis of a dislocation density work hardening model, G.
Gottstein, M. Frommert, M. Goerdeeler, and N. Schafer'?
have also predicted the critical strain for initiation of DRX

(£0).

The onset of DRX can also be identified phenomenologi-
cally from the inflection point in the strain hardening rate
(8) versus flow curve (o). E. L. Poliak and J. J. Jonas®™
have shown that this corresponds to the appearance of an
additional thermodynamic degree of freedom in the system.
This signifies that an additional softening mechanism be-
gins to operate (in addition to dynamic recovery). The addi-
tional mechanism can be phase transformation, twinning, or
precipitate coarsening, but has been identified as dynamic
recrystallization in the present case. The critical stress iden-
tifies the moment when dynamic recrystallization begins to
make a contribution to decreasing the flow stress.

The only difference between this method and the latter
method is that we used a third order polynomial equation to
fit the strain hardening rate versus flow stress curve. This
method has the important practical advantage that it is
much easier to use than the previous one, because no fitting
of a higher order polynomial is involved.

It was found that the 6—0 curve can be represented by a
third order equation up to the peak stress. Under such con-
ditions, the critical stress for the initiation of DRX is given
by the simple relationship o,=—B/34, where A and B are
two of the four coefficients of the third order equation (see
Eq. (1) below).

The values of o, obtained in this way depend on the
experimental conditions. If instead the normalized
stress—strain curve is employed (u=0/0, vs. w=¢/¢,), the
normalized stress for the onset of DRX is given by
u,=0,/0,=—B'/34", where A" and B' are two of the four
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Table 1. Chemical composition (wt%) of the 304 H stainless
steel.

Cr Ni Mn Mo Cu C Si P S

17.65 |1 791 | 1.74 | 0.57 | 0.32 | 0.067 | 0.71 | 0.026 | 0.022

coefficients of the normalized third order equation (see Eq.
(7) below). According to this approach, the value of u, is
constant for all the deformation conditions that exhibit
DRX behavior in the 304 H stainless steel and is given by
u,=—B'/34'=0.875. The validity of these relationships
was examined for a 304 H stainless steel and good agree-
ment was obtained between the calculated and experimental
values of the critical stress.

2. Experimental Procedure

The chemical composition of the 304 H stainless steel
employed in this work is given in Table 1. This material
was supplied with the form of a hot rolled bar with a diam-
eter of 7.94mm. Cylindrical samples 7.9 mm in diameter
and 11.5mm in height were prepared with their axes
aligned along the rolling direction. One-hit hot compression
was carried out on a computer-controlled servo-hydraulic
MTS machine equipped with a radiant furnace. The MTS
hot compression machine was programmed to operate at
constant true strain rate by incremental calculation of the
current true strain.

The samples were deformed in an argon atmosphere after
the specimens were preheated at 1200°C for 15 min. They
were then cooled to the test temperature at 1°C/s and held
for 5 min prior to deformation for temperature homogeniza-
tion purposes. Tests were performed at 900, 950, 1000,
1050 and 1100°C and strain rates of 0.01, 0.1, 0.5 and
1s~!. All samples were deformed to strain of 1. In order to
minimize the coefficient of friction during hot compression
testing, mica plates covered with boron nitride powder were
used for lubrication.

3. Results and Discussion

3.1. Modeling the Stress—Strain Curve

In the approach of Poliak and Jonas ®”'¥ and N. D. Ryan
and H. J. McQueen,'® the initiation of DRX is associated
with the point of inflection in the curve of strain hardening
rate 0 vs. flow stress ¢. To plot this kind of curve, it is nec-
essary to find an equation that fits the experimental 6—0
data from zero until the peak stress. The simplest equation
that has an inflection point is:

0=A06>+B06*+CO+D......ocooeen.. (1)

where: 8=do/de and A, B, C, and D are constants for a
given set of deformation conditions.

Differentiation of this equation with respect to ¢ results
in:

do ,
—=340°+2Boc+C
do

The minimum point of this second order equation corre-
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Fig. 1. Representative 304 H stainless steel flow curves. (a) Vari-
ous temperatures at a strain rate of 0.5s”!, (b) various
strain rates at 1 050°C.

sponds to the critical stress, i.e.,

d*o -B
=0 = 6A0,+2B=0= o0,=— ....... )
do? 34
e Example

To examine the validity of this equation, a series of hot
compression tests were carried out on the 304 H stainless
steel. Some representative flow curves are presented in Fig.
1. These curves exhibit peaks and softening to a steady
state, which indicate DRX behavior. The flow stresses de-
pend on the deformation variables, that is the strain rate and
temperature. The peak stresses and strains increase as the
temperature decreases from 1100 to 900°C as shown in
Fig. 1(a) as well as with increasing strain rate from 0.01 to
157!, see Fig. 1(b). It has been shown that the increasing
strain rate makes the attainment of the peak stress more dif-
ficult.”

For each condition of deformation, the strain hardening
rate was plotted against flow stress and the third order equa-
tion that best fit the experimental 6—c data from zero to the
peak stress was found. For this purpose, fitting was done
using the Excel, by choosing the Add Trendline command
and then selecting the Third Order Polynomial option. As
an example a stress—strain curve determined at 1 100°C and
a strain rate of 0.1 s~ is presented in Fig. 2.

The experimental 6—c data as well as the third order
equation and curve that best fit these data are shown in Fig.
3. According to the method of Poliak and Jonas,® the next



ISIJ International, Vol. 46 (2006), No. 11

step required to identify the critical stress (0,) is to plot the
derivative of the third order equation versus flow stress, see
Fig. 4. All the third order equations obtained from this
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Fig. 2. Hot compression flow curve determined at 1 100°C and a

strain rate of 0.1s7".

study are presented in Table 2.

The relation between the critical stresses calculated using
Eq. (2) and the Zener—Hollomon parameter was also stud-
ied for the 304 H stainless steel. For this purpose, the acti-
vation energy for deformation was derived with the aid of
the following expansion of the Zener—Hollomon parameter:

— Qdef — . n
Z =¢€exp RT A(sinh(ao))" ... 4
0 In sinh(axo)
Oui=Rn| —————| i (5)

dIn(1/T)

Here Q. is the apparent activation energy for deformation
and R is the gas constant.'®'” The application of these
equations to the present data resulted in a mean value of
370 kJ/mol. This quantity is consistent with those measured

0=-527x102%6> + 1.94x0% - 9.07x10%c + 2.32x10*

600
Up to the peak
1100 °C, 0.1 s
400
w
2
)
=
d||=
200
0
55

6 (MPa)

Fig. 3. Strain hardening rate (6) versus flow stress up to a strain

of 1 for the experiment of Fig. 2.
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Fig. 4. Stress dependence of the derivative of strain hardening

rate (6) with respect to stress for the flow curve of Fig. 2.

Table 2. Coefficients for strain hardening rate () versus stress (o) equations, T=900—1 100°C and £=0.01-1s7".

Stri;isl_ll)r ate T (°C) 0/c relation

900 0 =-1.03x1020° + 4.64 6° — 7.06x10%G + 3.62x10*

950 0 =-221x1076" + 7.606" — 8.74x10%G + 3.37x10°"

0.01 1000 0 =-3.66x10%6° + 10.36° — 9.74x10% + 3.06x10*
1050 0 =-5.39x1076° + 10.80°- 7.24x10% + 1.63x10"

1100 0 =-1.38x10"6° + 22.46° — 1.22x10°G + 2.22x10°

900 0 =-3.60x10°6° +2.016° — 3.78x10%C + 2.45x10°

950 0 =-1.53x1076° + 6.036° — 8.01x10%G + 3.60x 10"

0.1 1000 0 =-3.02x1076° + 8.870°- 8.73x10°G +2.90x10"
1050 0 =-3.69x1076° + 11.76° — 1.24x10°G + 4.42x10°

1100 0 =-527x1076° + 11.96° - 9.07x10%G + 2.32x10°

900 0 = -4.00x1076° + 2.236° — 4.24x10% + 2.77x10"

950 0 =-5.30x10°6° + 2.656° — 4.48x10%G + 2.62x10"

0.5 1000 0 =-6.70x10°6° + 3.036° — 4.65x10%C + 2.47x10°
1050 0 =-1.53x10%0° + 5.546° — 6.75x10% + 2.79x10*

1100 0 =-22x1026" + 6.516° - 6.52x10%C + 2.21x10°

900 = .1.70x1076° + 1.046%- 2.20x10% + 1.67x10"

950 0 =-7.60x10°6° +3.516° - 5.52x10%C + 2.99x10*

1 1000 0 =-7.10x10°6° + 3.356° — 5.31x10% + 2.89x10*
1050 0 =-1.57x10%6° + 6.096° — 7.93x10° + 3.49x10*

1100 =.1.73x1026° + 5.740° — 6.42x10°G + 2.44x10"

1681
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Fig. 5. Dependence of the critical stress for the initiation of
DRX on Zener—Hollomon parameter. The measured val-
ues are compared with the trend line.

As can be seen from Fig. 5, there is a linear relationship
between o, and In Z:

0,=14.6I01Z—354......ccoomrern.... (6)

3.2. Modeling the Normalized Stress—Strain Curve

Once normalized stress (u=0/0,)-strain (w=¢/¢€,) plots
have been established, the flow stress at any strain,
strain rate and temperature can be calculated from this
single curve.” The normalized strain hardening rate
(6y=du/dw)-normalized stress (u) plots obtained from
such curves have inflection points that identify the point of
initiation of DRX in the range of temperature and strain
rate of interest. For a given steel, the inflection points in
0—u plots correspond approximately to identical u-values,
i.e.,, to approximately constant critical stress ratios
u,=0,/0,. Since the flow curves form a single u—w plot at
various values of Z, the onset of DRX corresponds to a sin-
gle point on this plot. Consequently the ratio of the critical
strain to the peak strain, £/€,=w,, is also approximately
constant for a given steel deformed within a given tempera-
ture and strain rate range.

To identify the critical stress for different conditions of
deformation, the normalized stress—strain curve was used.
The best fit equation corresponding to these data again had
the form:

O=A"t’+B' 1>+ C'u+D'......ocooooe....... (7

In this case, the coefficients of the equation do not de-
pend on the deformation conditions. As mentioned in Sec.
3.1 above, the critical stress for the initiation of DRX can
be calculated as follows:

doy

=3AU+2BU+C o, (8)
du

And a second derivation of this equation results in:

d*o, —-B
=64u,+2B'=0 = u,=
du? 34

Using this relationship, the critical stress for any set of
deformation conditions can be calculated solely using o,
for this condition. This approach also helps to explain the
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Fig. 6. Normalized stress—strain curves obtained under different
conditions of deformation.
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Fig. 7. Normalized stress—strain curve pertaining to a deforma-

tion temperature of 1 100°C and a strain rate of 0.1s~".

constancy of the o /o, ratio.

e Example

Some normalized stress—strain curves of the present
304 H stainless steel deformed under different conditions
are illustrated in Fig. 6. As can be seen, there are small dis-
crepancies that arise from a weak dependence of the curves
on the value of Z. This source of error can be reduced by
deriving 3 normalized curves pertaining to three different
sets of deformation conditions and then averaging for u,
and also for the coefficients of Egs. (7) and (9).

One of the normalized stress—strain curves determined at
1100°C and a strain rate of 0.1s™' is presented in Fig. 7.
The corresponding normalized strain hardening rate versus
flow stress curve is illustrated in Fig. 8. The third order
equation that best fits these data is:

0= —115.217+302.20>—265.8u+78.82.........(10)

The derivative of the normalized strain rate hardening
versus normalized stress curve is depicted in Fig. 9. The
minimum point in this curve represents the critical stress
for the initiation of DRX. As mentioned above, the value of
u,, for the material studied in the present work can be deter-
mined from the second derivative of Eq. (10):



ISIJ International, Vol. 46 (2006), No. 11

Before the peak
1100 °C, 0.1 s

On=du/dw

-0.5 T T T

0.7 0.8 0.9
u=o/cp

—_

1.1

Fig. 8. Normalized strain hardening rate versus normalized

stress for the flow curve of Fig. 7.
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Fig. 9. Normalized stress dependence of the derivative of the
normalized strain hardening rate illustrated in Fig. 8.
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This value is expected to be constant under all conditions
of deformation where DRX is taking place. This hypothesis
can be assessed by plotting the measured values of o, ver-
sus those calculated from Eq. (11). Such a comparison is
presented in Fig. 10. As can be seen, there is reasonably
good agreement between these two sets of values.

The value of u, derived in Eq. (11) should be independ-
ent of the deformation conditions. The relative lack of de-
pendence of u, on Z is illustrated in Fig. 11.

It should be mentioned here that the 6—u curve can be
best fitted not only using 3rd but also 4th, 5th, and higher
order equations. The critical values of the normalized stress
(u,) obtained from the second derivatives of these equations
were 0.865 and 0.860 for the 4th and 5th order equations,
respectively. As the difference between the 3rd and 5th
order values is less than 2%, the simplifications arising
from using the 3rd order method probably justify this ap-
proach.

4. Conclusions

The principal conclusions that can be drawn from the
present work are the following:
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(1) When DRX is occurring, the strain hardening rate
versus stress curve can be represented by a third order
equation (until the peak stress).

(2) The critical stress for the initiation of DRX can be
calculated by setting the second derivative of such an equa-
tion to zero.

(3) The normalized critical stress for the initiation of
DRX (u,) calculated from the normalized strain hardening
rate versus normalized stress is approximately constant and
independent of the deformation conditions.

(4) The critical value u, for the 304 H stainless steel is
0.875.
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