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Abstract

Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of
infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the
current potential distribution of the macroparasitic disease, lymphatic filariasis (LF), in Africa, and to estimate how future
changes in climate and population could affect its spread and burden across the continent. We used 508 community-
specific infection presence data collated from the published literature in conjunction with five predictive environmental/
climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche
maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections
made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF
under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the
west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa
compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern
Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the
probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand
both the range and risk of LF infection (and ultimately disease) in an endemic region. We estimate that populations at risk to
LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future
depending on the climate scenario used and thresholds applied to signify infection presence.
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Introduction

The role of risk mapping in describing the spatial patterns of

infection and guiding the planning of parasite control is now well-

established, and has been demonstrated for a range of major

parasitic diseases, including malaria [1,2], trypanosomiasis [3,4],

schistosomiasis [5,6], onchocerciasis [7], and lymphatic filariasis

[8,9,10]. It has also led to an increased understanding of the

climatic and environmental ecology of parasitic infections [8,11],

including improving appreciation of species thermal tolerances

and the impact of key environmental variables on ecological traits

that affect transmission, such as parasite development and survival

rates. More recently, focus in parasite distribution modeling has

expanded to evaluating the potential for the establishment and

spread of invasive vector species [12,13,14] and assessing parasite

or vector species responses to global climate change [15].

Lymphatic filariasis (LF) is a vector-borne infectious disease

endemic in the tropics, including sub-Saharan Africa, and is

thought to present the second largest public health burden of any

disease worldwide [16]. The disease is transmitted to humans by

infective mosquitoes that release parasitic filarial worms into the

blood stream when taking a blood meal. Many patients are

asymptomatic, but infection can lead to major debilitating

conditions, including lymphedema, which causes swelling of arms,

legs, breasts and genitalia, and hydrocele, which causes swelling of

the scrotum in males [16,17]. It has been estimated that

approximately 13% of infected people suffer from the first

condition while up to 21% of males living in endemic areas may

experience hydrocele. As a result, and following the conclusion by

an independent International Task Force for Disease Eradication

that lymphatic filariasis may be one of only six infectious diseases

that can be considered to be ‘‘eradicable’’ or ‘‘potentially

eradicable’’ [18], the World Health Assembly in 1997 adopted

Resolution WHA50.29 calling for the elimination of LF as a public

health problem globally.

Although attempts have been made in the past to map the

geographic distribution of LF in Africa, this has either been

based on simply displaying infected sites as points or as

ranges interpolated between such points on local-level maps

[19,20,21,22,23,24,25], geostatistical modelling of point preva-

PLoS ONE | www.plosone.org 1 February 2012 | Volume 7 | Issue 2 | e32202



lence data at regional levels [10,26] or mapping of aggregated

levels of infection at various within and between country or

regional levels [9,10,27]. The exception has been the work of

Lindsay and Thomas [8], who used published community LF

prevalence data in conjunction with climate layers and a logistic

regression model to predict the distribution and refine the first

estimates of the population at risk for LF across sub-Saharan

Africa [9].

These statistical modelling approaches have been important in

describing and delimiting geographic ranges of species distribu-

tions; however, recent studies have highlighted several limitations

of applying these models to mapping parasite distributions. First,

simple statistical models, such as logistic regression, are restricted

because they often fit linear functions between environmental

variables and presence/absence data, when it is most likely that

such associations are highly complex and non-linear [11,28].

Second, it is also difficult using these methods to address complex

interactions between such variables [29,30]. Finally, using absence

data in logistic regression modelling of LF distribution is

complicated by the unreliability of such data owning to the use

of variable blood volumes for diagnosing mf infection [31]. The

key problem here is that any ‘‘absence’’ record may either

represent a true absence of infection (implying non-suitability of

location) or arise as a limitation of parasite detectability, whereas if

infection is recorded as being present in a location, it is fairly

certain that it occurs there.

Here we adopt a machine learning approach that allows flexible

modelling of complex non-linear dependencies between infection

presence and predictor variables in multidimensional space. This

allows us to better understand the ecological niche and to

construct a more reliable map of the potential spatial distribution

of LF [30,32,33,34]. Such ecological niche models predict the

geographic range of a disease or species by: (1) extracting

associations between presence data and environmental covariates,

(2) using these relationships to characterise the environmental

requirements of the species, and (3) deploying this information to

predict suitable habitats over unsurveyed areas. This approach has

traditionally been used to predict the geographic range of species

[34,35], but more recently it has been used to model the

distribution of diseases [36,37,38].

There are currently a wide array of algorithms that can be used

to model species’ ecological niches using machine learning

approaches [39,40]. In this study, we evaluated Maxent, a

presence-only maximum entropy-based niche modelling technique

[41], to describe the ecological requirement and current potential

distribution of LF in Africa, and to determine for the first time how

future climate change may affect the distribution and burden of

this disease on the continent so that better prevention and control

efforts could be directed to mitigate against the effects of such

change.

Methods

LF Occurrence Data
Point data for LF occurrence or presence were collated from

community surveys published in the research literature dating

from 1940 to 2009, using the online and manual search

procedures described in Michael et al. [17]. Studies were selected

if the surveys described the number of people surveyed, the

number positive for microfilaraemia, and were conducted at a

specific community site. We found a total of 664 community-

specific datapoints of which 508 comprised presence data. These

were used in the present analysis (see details of selected studies in

Appendix S1 in Supporting Information). Geo-coordinates for

each chosen datapoint were either referenced from information

given in the literature or by using Google Earth (see Figure 1). We

were unable to find latitude and longitude details for 19 of these

data points, while geo-coordinates for approximately 21% of the

data locations used were only expressed to 2 decimal places.

Environmental Layers
We initially selected ten environmental and demographic

variables, believed to influence the transmission of LF in this

analysis [8]. Population density has not normally been employed

as a predictor in most previous studies of pathogen distribution

modelling; however, we view it as a key determinant of the

potential distribution of LF for two reasons: 1) it is a component of

the basic reproduction number for vector-borne diseases, such as

LF, which determines the extend of spread and prevalence of such

diseases, and 2) LF can only occur in inhabited places as the

humans are the only host reservoir of the LF parasite in Africa

[37,42,43,44].

The use of interpolated climate data or remote sensing data in

combination with advanced statistical techniques to map the

distribution of vector-borne diseases has accelerated greatly over

the last 25 years [45,46]. Interpolated climate data layers are created

by collecting large amounts of weather station data which are then

processed to produce continuous climate maps using various

smoothing algorithms. One of the most commonly used interpolated

global climate data resource is WorldClim (www.worldclim.org)

[47]. The WorldClim data are a set of climate data layers of the

whole world available at resolutions of around 1 km, 5 km, 9 km or

18 km. The variables available are monthly mean, minimum and

maximum temperature and monthly precipitation, and 19 derived

bioclimatic variables. The WorldClim layers representing current

climate conditions are smooth maps of averaged monthly climate

data obtained over the period 1950–2000 from thousands of weather

stations (47,554 locations for precipitation data, 24,542 for mean

temperature, and 14,835 for minimum and maximum temperature

– www.worldclim.org). The data have been interpolated down to a

30 arc-second high resolution grid (often referred to as ‘‘1 km2’’

resolution) using a second-order thin plate smoothing spline with

altitude, longitude and latitude as independent variables (Hijmans

et al. 2005). Uncertainty in the data can arise from inaccurate

weather station data or from the interpolation method – this second

effect will be magnified in areas with sparse weather station data. For

example, while precipitation data are fairly densely distributed in

Africa, temperature data is much sparser. There are also very few

data points in areas with low population density, particularly in the

Sahara and Central Africa (Hijmans et al. 2005). These heteroge-

neities mean that such data and modelling uncertainties must be

taken into consideration when assessing the accuracy of the

predictions from the Maxent model.

The worldclim dataset is useful for infection mapping as the

data are freely available on a small spatial scale. The data can be

used to create new data layers, for example minimum temperature

in the coldest month, or maximum temperature in the hottest

month, to represent the temperature extremes in a region that

could be important for vector and parasite dynamics [48,49]. One

major drawback is that the climate surfaces represent average

temperature or precipitation over a period of time, and hence

there is no indication of the annual variability which could have a

major impact on transmission dynamics.

Altitude data for this study were also obtained from www.

worldclim.org – these data were collected by http://www2.jpl.

nasa.gov/srtm/ and produced from data collected by a radar

system circulating the earth to create a high resolution map of the

globe. Similarly, NDVI data were downloaded from http://edit.

Ecological Niche and Filariasis Distribution
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csic.es/GISdownloads.html; these maps were originally obtained

from satellite images (NOAA-AVHRR) over the entire globe.

Twelve monthly NDVI maps are available, each of which

represents the mean monthly NDVI over an 18 year period from

1982 to 2000. We averaged these maps to produce an annual

mean NDVI map. Population density data was created using data

from, amongst others, the Socioeconomic Data and Applications

Center (SEDAC) at Columbia University (http://sedac.ciesin.

columbia.edu/gpw/). These data are created by interpolating

global census data to create smooth population maps which are

then scaled to match United Nations totals.

The data had slightly different spatial scales (worldclim data

,9 km2, NDVI ,12 km2 and population density ,5 km2), and so

were resampled using ArcGIS to give all the layers the same grid

size. This resulted in a scale of around 12 km2.

Ecological Niche Modelling
The ecological niche of a species can be defined as those

ecological conditions under which it can maintain populations

without immigration [50]. Ecological niches and associated

potential geographic ranges can be approximated using correlative

algorithms that by relating known point-occurrence data to digital

GIS data layers, summarize spatial variations in these layers in

multidimensional environmental space [51]. Here, we used the

maximum entropy method as implemented by the Maxent

software to derive the ecological niche for LF occurrence in

Africa. We initially compared the performance of Maxent with

another widely used modelling package GARP [52]. Maxent was

selected for further use in this study as it performed better in tests

of model predictive ability (Appendix S2).

Maxent is a general-purpose machine learning programme and

has been widely used to predict species distributions [33,41,53,54].

The maxent algorithm essentially builds ecological niche models

by quantifying the unknown probability distribution defining the

occurrence of a species across a study area without inferring any

unfounded information about the observed distribution. The

approach aims to find the probability distribution of maximum

entropy (that which is closest to uniform) subject to constraints

imposed by the observed spatial distributions of the species and

environmental conditions. Maxent thus outputs the maximum

entropy distribution that satisfies these constraints, thereby

providing the least biased description for a given dataset [41,55].

We implemented Maxent models using version 3.3.1 of the

software developed by S. Phillips and colleagues (http://www.cs.

princeton.edu/,schapire/maxent/). Selection of the convergence

threshold and regularization values was carried out following

default rules and the number of iterations was chosen such that all

models converged. The default logistic model was used to ensure

that predictions gave estimates between 0 and 1 of the probability

of infection presence per map pixel.

Performance Measures
The performance of a model predicting the potential distribu-

tion of species presence is traditionally assessed by calculating the

Figure 1. Locations of study sites. Green points show sites where LF infection were found to be present and red sites show sites where it was
absent. Non-endemic countries are outlined in blue.
doi:10.1371/journal.pone.0032202.g001
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area under the curve (AUC) of the receiver operator characteristic

(ROC) [56]. This is a plot of the sensitivity (the proportion of

correctly predicted known presences, also known as absence of

omission error) vs. 1-specificity (the proportion of incorrectly

predicted known absences or the commission error) over the whole

range of threshold values between 0 and 1. The model AUC thus

calculated is compared to the null model which is an entirely

random predictive model with AUC = 0.5, and models with an

AUC above 0.75 are normally considered useful [57]. Using this

method, the commission and omission errors are therefore

weighted with equal importance for determining the performance

of the model. However, for a presence only ecological niche model

this method may be unsuitable for two key reasons [58,59]: 1) we

are less interested in the performance of the model over all the

whole of the ROC space, for example, where the omission or

commission error is very high, and 2) as we do not have absence

data, Maxent simulates pseudo absence data which are drawn at

random from the training region. Since these do not represent true

absences, mispredicting a known presence may be a more serious

failing of the model than mispredicting a possible absence because

while the presences are known, the absences are ‘guessed’. In

addition omission error has been shown to provide a better metric

than commission errors for assessing model fit [60].

For these reasons, we carried out the analysis of model

performance using the partial AUC procedure as described in

Peterson et al. [59]. The criticisms raised above are answered using

this method by: 1) using only presence data (not pseudo absence

data) and 2) introducing a user defined variable E which refers to

the maximum allowable level of omission error. The ROC curve is

now a plot of sensitivity versus the proportion of the study area

predicted as present. Only the region where the omission error is

less than E is considered. The partial AUC is then a ratio of the

AUC of the restricted ROC curve to the AUC of the restricted

null model line (see Figure 2 and Peterson et al. [59] for full details

of this method). The partial AUC was calculated using Simpsons

trapezium rule via routines implemented in R. We closely

examined two levels of omission error, E = 100 which is essentially

a traditional ROC plot as we are assessing the model over all levels

of omission error, and E = 10 where we assume that 10% of the

positive predictions are actually negative, ie., we are only

concerned with assessing models where omission error is less than

10%. Note that overlooking specificity could have significant

effects on model accuracy as well as the predicted prevalence of

infection (the overall proportion of locations where infection is

predicted to be present). This outcome, however, is unlikely to be a

major problem for the present study given that 76% of the surveys

in our overall dataset (see Methods) reported positive LF infection,

with analytical studies showing that at this moderately high level of

prevalence specificity issues may have low significance for binary

classification [58–63].

Model Implementation
The data were split into two groups: 75% was used to construct

the model and form the functional relationships between presence

and the environmental variables, and the remaining 25% was used

to test the predictive ability of the model. The training region was

chosen to be all the countries that are thought to be LF endemic,

and the resulting model was projected over the whole of Africa.

We assessed model performance by considering the partial AUC

values of the testing data. We estimated the error associated with

these values by performing a bootstrap algorithm, where we

sample with replacement from the testing data 200 times and

calculate the partial AUC for each sample.

Maxent has five feature classes (linear (L), quadratic (Q),

product (P), threshold (T) and hinge (H)) that can be used to model

the functional response of presence probability to changes in the

environmental variables [41,54]. We experimented with using

different combinations of features to produce the best performing

model. Some of the explanatory layers are also likely to be more

predictive than others. We thus aimed to find a set of variables that

are predictively powerful and independent as possible. We

employed two techniques to determine the most important

variables: 1) by considering the percentage contribution that each

variable made to the total test gain; and 2) by determining which

Figure 2. Comparison of traditional versus partial receiver operating characteristic (ROC) curves for the Maxent A model. A)
Traditional ROC curve. The horizontal dash line indicates the region of interest for the partial AUC plot – where the omission error is less than E (in this
case E = 10). B) The partial AUC plot. The dashed line indicates the null model.
doi:10.1371/journal.pone.0032202.g002
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variables caused the biggest lost in AUC when the data was

resampled using a jackknife procedure where one variable was

excluded at a time.

In addition, a quadratic discriminant analysis (QDA) was

carried out in R to explore how interactions between the identified

climate variables determine areas of LF presence or absence.

Discriminant analysis essentially seeks to assign data into a series of

discrete groups or classes based on the characteristics (X) of each

data point, such that the probability of correct classification is

maximised. QDA extends simple Linear Discriminant Analysis by

allowing the intraclass covariance matrices to differ between

classes, so that discrimination is based on quadratic rather than

linear functions of X. In our case, we used QDA to classify

presence and absence data correctly based on the climatic

conditions of each point.

Estimating populations at risk
We estimated the number of individuals at risk by overlaying a

LF binary risk map on a population map and calculating the

population in the ‘positive’ at-risk cells. The SEDAC 2010

population layer for Africa was used for calculating the current

at-risk population (http://sedac.ciesin.columbia.edu/gpw/global.

jsp). Note that climate data for 2010 was unavailable, and we were

therefore forced to use the data averaged between 1950 and 2000

for making these estimations. We constructed the LF binary layer

by converting the continuous risk maps produced by Maxent into

areas that are suitable and unsuitable by defining thresholds below

which the probability of LF occurrence is considered to be zero

and above which the probability is considered to be one.

Traditionally these classification thresholds are determined by

selecting the value that a) maximises the sum of sensitivity and

specificity [61], b) where commission error = omission error [62]

or c) is equal to the lowest predicted probability at a training

presence site [41,63]. However, methods a) and b), as noted above,

assume equal importance of omission and commission errors, and

method c) is not suitable when we have an accepted level of

omission error. When E = 100 we adopt the lowest training

presence threshold approach, and when E = 10 we use a slightly

modified version of c) suggested by A.T. Peterson (personal

communication), where we take the threshold to be the value of

the predicted probability from the Eth quantile of the values at

training data sites (ie. when E = 10 we use the 10th percentile

training presence value).

Future LF Predictions
The future potential distribution of LF was estimated by using

the current Maxent model to make projections over projected

climate and population density for 2050. The future climate data

were downloaded from www.worldclim.org. These layers were

constructed using data from general circulation models (GCMs).

The IPCC report [64] considers around 25 GCMs and several

emissions scenarios. The temperature projections amongst all the

climate models are fairly consistent, however, there is much more

uncertainty regarding precipitation. In this study, we consider just

two of these GCMs - the Hadley Centre global climate model

HADCM3 and the Canadian Centre for Climate Modelling and

Analysis model CCCMA under two IPCC climate scenarios – A2a

and B2a [65]. A2a is a more extreme scenario, assuming massive

disparities between regions in high population growth and energy

use, whereas B2a aims to capture a less disparate world with efforts

focused towards social equity; this scenario also assumes lower

population and economic growth than A2a. To account for

differences in population growth between the two climate

scenarios we multiplied the 2000 population data by country

specific UN medium variant population growth rate predictions

for the B2a scenario and by the high variant growth rate

predictions for the A2a scenario (http://esa.un.org/unpp/).

Note that WorldClim provides projected future climate data (for

years 2020, 2050 and 2080) at four spatial resolutions; 30 seconds

(,1 km2 spatial resolution), 2.5 minutes, 5 minutes, and 10 min-

utes (,344 km2 resolution). These data have been produced with

a simple downscaling technique from the coarser resolution

predictions of climate models. In this procedure, projected changes

in a climate variable, specifically the absolute or relative

differences between outputs of a GCM simulation for the baseline

years (typically 1960–1990 for future climate studies) and the

simulated target years (eg. 2050), are first developed. Then, these

changes are interpolated to grid cells with 30 arc-second

resolution, with the assumption made that the change in climate

is relatively stable over space (ie. has high spatial autocorrelation).

Finally, these high resolution changes are applied/calibrated

against interpolated observed climate data of the current period

(WorldClim data set) to get high resolution projected climate data

of the target year.

Results

Model Selection
Maxent models can be run with any combination of five

feauture classes or real-valued functions, f1,…fn on environmental

variables, X (viz. linear, quadratic, product, threshold and hinge.

We initially ran a series of models using different combinations of

these feature classes (L,Q,P,T,H) and selected three candidate

models with the highest testing partial AUC values to investigate

further. Model A employed the quadratic and threshold features,

model B used the linear and threshold features, and model C used

all the feature classes.

The relative importance and contribution of the original ten

environmental, altitude and population density variables to the

initially selected three niche models of LF occurrence, assessed by

considering the percentage contribution that each variable made

to the total test gain and by using a jackknife procedure to

determine which of these variables caused the biggest lost in model

AUC when each was excluded one at a time, resulted in the

selection of the following five variables: population density, mean

maximum temperature, mean temperature in the coldest month,

mean annual precipitation and altitude. Together they accounted

for more than 88% of the total test gain. Specifically, these were

selected by firstly excluding the variables which performed poorly

using both methods: NDVI, annual mean temperature, mean

temperature in the warmest month, and secondly, by identifying

the most correlated variables (mean temperature in the coldest

month and mean minimum temperature (0.92), and precipitation

in the wettest month and mean annual precipitation (0.95)), and

selecting the best performing variable from each pair. These were

mean temperature in the coldest month as it contributed more

than twice as much to the test gain and performed similarly using

the jackknife test, and mean annual precipitation as it added

slightly more to the test gain and caused a bigger loss in AUC

when excluded using the jackknife test.

The three selected models were rerun with the new set of five

explanatory layers and model performance was assessed using

two different levels of acceptable omission error. This showed

that model A, which uses quadratic and threshold features

(Table 1), has a slightly higher combined testing partial AUC and

the highest entropy. Figure 2 compares the partial AUC plot

(E = 10) for model A (Figure 2b) against the whole AUC plot

(E = 100) (Figure 2a) with 1- omission error depicted on the y-axis

Ecological Niche and Filariasis Distribution
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and the proportion of area predicted positive on the x-axis for

both plots.

The relative contributions of the explanatory variables to the

different Maxent models (assessed using the jackknife procedure) is

shown in Table 1. The results indicate that population density

contributed the most (up to 57%) to each of the tested models,

followed by altitude (around 26%) as the next most significant

factor. For model A, the three climatic layers contributed in total

to around 17% of the overall prediction of LF occurrence. All our

final models performed significantly better than the null model (all

partial AUC’s .1.42), re-emphasizing the high predictability that

can result from ecological niche modelling using the Maxent

programme [41,66].

Model Predictions
The distribution of LF occurrence in Africa predicted by the

best performing Maxent model (A) is shown in Figure 3. The map

shows that LF in Africa occurs over a large area extending from

the west to the east primarily across the middle region of the

continent. The results also depict a high degree of heterogeneity in

the probability of LF occurrence on the continent. There appears

to be a large zone exhibiting a high probability of LF occurrence

in the Western Africa region, whereas in Central and Eastern

Africa and in Madagascar, large areas of medium probability are

interspersed with smaller areas of high probability, especially along

the coasts. Importantly, all LF-free countries (as shown in Figure 1)

are shown to have fairly low probabilities of infection. Most of the

training data are located in west and east Africa and there are very

few datapoints covering central Africa. Little is known about the

state of LF in many of these countries, meaning we have no way to

validate the model in these regions. For this reason, we need to be

cautious when interpreting the results from these countries

compared to more densely sampled countries.

Individual response curves (marginal responses obtained by

keeping all other variables at their average sample value) of the

relationships between each environmental variable and the

probability of disease occurrence as estimated by model A are

portrayed in Figure 4. The results clearly exhibit complex but

quadratic relationships between each of the best five environmen-

tal/population drivers and probability of LF occurrence. In

general, however, there is an overall negative response observed

between altitude and LF occurrence and nonlinear positive

responses observed for the rest of the variables. There also

appears to be evidence for threshold effects in each of the

estimated relationships (most clearly observed for the association

between mean temperature in coldest month and probability of LF

infection (Figure 4e)), wherein the probability of LF occurrence

begins to increase only after about 10uC).

To visualise the LF ecological niche in Africa, the Maxent

predictions were further related to environmental conditions at

both presence sites and areas where the disease is known not to

exist (Figure 5). The two-dimensional plots in the figure show that

differences in the identified ecological conditions may strongly

influence the probability of LF infection presence and absence.

These results indicate that LF occurs mainly in the hot and wet

regions of Africa, with non-endemic areas all having an annual

rainfall level below around 100 mm. The mean maximum

temperature and mean temperature in the coldest month both

need to be relatively high for the disease to occur, with no

presence sites occurring when the temperature in the coldest

month is 3.7 degrees and the mean maximum temperature in

22.4 degrees.

Results from the quadratic discriminant analysis of the

contribution of key environmental variables to LF occurrence

are shown in Figure 6. These highlight not only that different

regions of each variable space can determine where LF is likely to

occur and not occur, but also the dependency of such classification

on variable interaction. Thus, the levels of rainfall and

temperature required for the disease to occur are dependent on

each other, whereby in warmer regions, less rainfall is needed to

sustain parasite transmission. However, a key finding is that the

minimum threshold for mean temperature in the coldest month is

around 11 degrees with apparently little variation in this value

with increasing mean maximum temperature (Figure 6c).

Table 1. Summary results from the three Maxent models tested in the present analyses.

Model (Features) E = 10 E = 100 Entropy Environmental Variables (% contribution) Features

A (Q+T) 8.2938 Population density 57.3 Q,T

1.4656 1.7622 Altitude 26 Q,T

1.3331, 1.5927 1.6934, 1.8336 Mean temp in coldest month 6.7 Q,T

Mean annual precipitation 5.2 Q,T

Mean max temp 4.8 Q,T

B (L+T) 8.2921 Population density 57.3 L,T

1.4562 1.7646 Altitude 25.9 L,T

1.3315, 1.6057 1.6762, 1.8322 Mean temp in coldest month 6.8 L,T

Mean annual precipitation 5.3 L,T

Mean max temp 4.8 L,T

C (All) 8.2577 Population density 57 All

1.4227 1.7455 Altitude 25.4 Q,P,T,H

1.3278, 1.5600 1.6461, 1.8249 Mean temp in coldest month 6.8 L,P,T,H

Mean annual precipitation 5.9 L,P,T,H

Mean max temp 4.7 L,P,T,H

See text for explanations of terms. Model A with quadratic and threshold features was selected as it performed the best using the two E – the acceptable level of
omission error – thresholds used in this study.
doi:10.1371/journal.pone.0032202.t001
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Figure 3. Probability and infection binary maps of the current occurrence of LF in Africa as predicted by the final Maxent A model
containing the variables: mean annual precipitation, mean maximum temperature, and mean temperature in coldest month,
altitude and population density, and quadratic and threshold features. A) Probability map where probability of occurrence is depicted in
the form of percentages. B) LF binary map showing areas with and without infection presence for E = 100 (ie. using classification value from the least
training presence threshold) and E = 10.
doi:10.1371/journal.pone.0032202.g003

Figure 4. Graphs showing the marginal relationships between each environmental variable and the probability of LF occurrence.
Temperature values are expressed in 610uC, precipitation is in mm per month and altitude is in metres.
doi:10.1371/journal.pone.0032202.g004
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Future Climate Predictions
We used model A in conjunction with the four climate change

projections and their associated population growth estimates

outlined earlier to investigate how the potential distribution of

LF could change between now and 2050, assuming that no control

measures are implemented. Our model predictions shown in

Figure 7 indicate that LF occurrence could increase in large parts

of Africa with the highest increases expected in areas bordering the

current northern extent of the disease, particularly across regions

of Mauritania, Sudan, and Somalia. LF occurrence is also

predicted to increase in countries in the southern parts of the

continent. The probability of disease occurrence could, however,

decrease in other areas, mainly in the west near Ivory Coast and

Nigeria and also the Democratic Republic of Congo (Figure 7).

Overall, the mean change in probability of LF occurrence over the

whole continent was found to be 0.1, suggesting that LF

transmission is likely to increase in Africa as climate changes.

Estimating current and future populations at risk to LF
The populations at risk were estimated in this study by

converting the Maxent prediction from model A into a binary

map using two thresholds – the value of the least training presence

(LTP) prediction which was 1.9% and the value of the 10th

percentile of the training presence (10% TP) predictions, which

was 29.8%. For each threshold, each cell in the map with a value

above these values was deemed to as having LF present. The

threshold map for 2010 is shown in Figure 3b and for 2050 in

Figures 7c and 7d. The current (2010) population at risk to LF in

Figure 5. Visualizations of the modelled LF ecological niche in Africa. The grey points are the environmental conditions for every cell in
Africa, the red points represent the conditions in non-endemic sites while the conditions underlying presence sites are shown in blue. Temperature
values are expressed in 610uC, precipitation is in mm per month and altitude is in metres.
doi:10.1371/journal.pone.0032202.g005
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Africa is calculated to be 804 million using LTP threshold

(E = 100) and 542 million using the 10% TP (E = 10) threshold.

The 2050 estimates range from 1.86 billion to 1.46 billion using

the LTP threshold and from 1.65 billion to 1.30 billion using the

10% TP threshold (Table 2). On average, the A2a scenarios

predict a larger at-risk population, indicating that 13% more

people would potentially live in at-risk areas when compared with

the effects of the B2a scenario.

Discussion

We have used an ecological niche modelling approach based on

infection presence-only data to firstly reveal the spatial distribution

of LF in Africa, and the environmental determinants that underlie

this pattern, and secondly to investigate how climate change may

affect the future potential distribution and burden of this

important parasitic disease on that continent. The performance

of the Maxent models developed here were assessed using the

partial AUC measure, a modification of the usual AUC tool used

for evaluating the accuracy of ecological niche models. The

benefits of this method over a traditional AUC approach are that

it: 1) eliminates the used of pseudo absence data in accuracy

measurements, and 2) allows the user to define an acceptable level

of omission error.

The advantages of using machine learning approaches, such as

the maximum entropy modelling algorithm implemented in the

Maxent programme, over simpler statistical tools, such as logistic

regression, for species distribution modelling have been thoroughly

reviewed previously [30,39,41]. Here, we highlight that two chief

benefits of applying such methods to parasitic infection mapping

arise from their flexibility in specifically accounting for: (1) the

complex non-linear associations of infection occurrence with

individual explanatory variables, and (2) the impact that

interactions occurring among these variables may have on

infection presence. This flexibility has provided new insights as

to how climate variables may functionally influence LF presence in

Africa.

Thus, for example, although the relationship between the

probability of LF presence and mean annual precipitation was the

least non-linear (Figure 4c), its impact on infection probability is

found to be low below a threshold of around 150 mm per year.

Biologically, this may be because a certain amount of water is

needed to provide suitable laying sites for LF vectors. However, it

has been suggested that vector survival can also be affected if there

is too much rainfall as egg laying sites can get washed away [67]. If

this is true, then our result might imply that such washouts will

occur only at precipitation levels above 350 mm. Similarly, the LF

occurrence - mean maximum temperature response curve

(Figure 4d), is found to increase until it peaks between 25uC and

32.5uC, after which it begins to decrease suggesting this

temperature range is the most suitable for LF transmission. This

result is consistent with experimental findings that both mosquito

survival [68] and the development of LF larvae within the

mosquito [49] peak around 22–34uC. Although different measures

of temperature were used, it is also consistent with the previous

findings of Lindsay and Thomas [8], who found that the

temperatures of sites in Africa with microfilaraemic individuals

lie within the range between 22 to 30uC. However, our results also

indicate that mean temperature in the coldest month (Fig. 4e)

could induce the most non-linear effect on LF presence, showing

that at temperatures ,5uC, the probability of disease presence is

almost zero but above this threshold to at least 22uC, a dramatic

positive impact on parasite occurrence may occur. These findings

suggest that fluctuations in temperature limits rather than mean

temperature may represent the key temperature-related biocli-

matic thresholds important for supporting LF transmission. In

contrast to the effect of climate variables, the relationship between

altitude and LF occurrence was found to be negative, although

again the association was distinctly non-linear (Figure 4a). Such

negative correlations between infection presence and altitude have

been recorded previously in field studies [70,71], and most likely

reflect the negative effect of falling temperature with increasing

altitude (ie. the lapse rate) on mosquito survival rate and the rate at

which the parasite develops within the vector [49,70].

Exploration of the Maxent modelling results has also allowed a

first depiction of how subtle interactions between key climatic

variables may govern the suitability of a geographic region for LF

transmission to occur. The key finding here is that levels of

precipitation and temperature in particular could interact strongly

to define the multivariate space required for the disease to occur,

with generally less rainfall needed in warmer regions to sustain

parasite transmission and vice versa (Figure 5 and 6). The

Figure 6. Results from the quadratic discriminant analysis used in this study to determine the importance of the climatic variables
included in the final Maxent A model in classifying positive and negative LF occurrence sites in Africa. The purple area of the graph
shows the area where infection is present, while the blue portion shows where it is absent. The green points represent correctly classified datapoints
and the dark red points show incorrectly classified data points. 91% of the points were classified correctly.
doi:10.1371/journal.pone.0032202.g006
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biological significance of this finding is that such interactive effects

could result in compensatory responses among vector and parasite

ecological traits (vector birth, survival and biting rates, and larval

development rate in the vector) that would not only dampen the

effects of variations in individual key climatic variables but also

allow the transmission of LF to occur over a much wider area than

would be the case if habitat suitability is defined solely by each

single variable. However, the results also show that an important

absolute limiting factor is that the minimum temperature threshold

for mean temperature in the coldest month needs to be around

5uC for transmission to occur.

A major finding of this study is that human population density

was by far the most significant variable that may influence LF

occurrence in Africa. This supports not only theoretical expecta-

tions that host population density (and the attendant mosquito

density) is a key driver of the transmission of vector-borne

Figure 7. 2050 predictions of the distribution of LF using HADCM3 A2a and medium population increase scenario (A), and
HADCM3 B2a and high population increase scenario (B). Model predictions for the CCCMA climate predictions are very similar to those shown
here. (C) shows the predicted at-risk areas in 2000 (grey) and in 2050 (stripped) for the a2a scenario using a threshold value of 29.8% given by setting
the acceptable omission error to E = 10. (D) shows the 2000 (grey) and 2050 (stripped) areas at risk from LF obtained with the a2a climate scenario
and using the LTP threshold, with an associated threshold value of 1.9% (see text).
doi:10.1371/journal.pone.0032202.g007
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infections [42], but is also biologically intuitive given that the adult

parasites live in the host and mosquito vectors have a preference

for human blood meals to oviposit and reproduce. This result

would suggest that climate variables per se may play a smaller role

in determining the ecological niche and hence the potential

distribution of LF. However, given that the best-fitting Maxent

model predicts low probabilities of infection occurrence in the

known non-endemic and high altitude regions of the continent

despite the presence of significant human populations in these

areas (most indubitably via effects on both vector and parasites), it

is clear that both population density and environmental variables

will need to be included together in any study attempting to model

the potential geographic distribution of this or any other parasitic

infection [37,43,44].

Table 2. Population at risk from LF in endemic countries in Africa estimated applying two different threshold values based on
different levels of acceptable omission error, E, to the final Maxent model A predictions.

Population increase Least training presence threshold 10th percentile training presence threshold

2010–2050

Country name medium high 2010 2050 a2a 2050 b2a 2010 2050 a2a 2050 b2a

Angola 2.23 2.51 15.77 m 42.34 m 37.29 m 4.27 m 18.86 m 17.56 m

Benin 2.39 2.69 7.42 m 20.86 m 18.54 m 7.38 m 20.8 m 18.53 m

Burkina Faso 2.51 2.81 15.71 m 45.07 m 40.22 m 15.26 m 45.06 m 40.22 m

Burundi 1.74 1.97 8.76 m 16.76 m 14.8 m 5.35 m 9.16 m 9.08 m

Cameroon 1.84 2.1 18.13 m 38.48 m 33.79 m 13.3 m 31.29 m 27.61 m

Central African Rep. 1.69 1.95 4.04 m 8.19 m 7.1 m 0.82 m 4.13 m 3.41 m

Chad 2.41 2.7 10.51 m 28.91 m 25.78 m 7.01 m 28.28 m 24.93 m

Congo 1.83 2.08 3.96 m 7.77 m 6.94 m 3.02 m 6.14 m 5.5 m

Djibouti 1.67 1.89 0.57 m 1.2 m 1.07 m 0.42 m 1.01 m 0.89 m

Egypt 1.53 1.77 74.71 m 136.27 m 118.09 m 74.11 m 135.39 m 117.34 m

Equatorial Guinea 2.09 2.36 0.53 m 1.23 m 1.09 m 0.37 m 1.23 m 1.09 m

Ethiopia 2.05 2.31 78.08 m 173.5 m 156.7 m 6 m 29.9 m 25.7 m

Gabon 1.65 1.9 1.19 m 2.57 m 2.23 m 0.68 m 1.37 m 1.21 m

Gambia, The 2.15 2.44 1.36 m 3.24 m 2.88 m 1.36 m 3.24 m 2.88 m

Ghana 1.86 2.1 23.67 m 47.64 m 43.27 m 23.67 m 47.33 m 43.07 m

Guinea 2.32 2.62 9.83 m 25.57 m 22.68 m 4.96 m 22.61 m 18.36 m

Guinea-Bissau 2.16 2.42 1.43 m 2.91 m 2.65 m 1.41 m 2.88 m 2.63 m

Ivory Coast 2.01 2.29 18.3 m 41.48 m 36.99 m 17.39 m 40.37 m 36.2 m

Kenya 2.09 2.39 36.23 m 93.34 m 81.86 m 12.21 m 37.78 m 36 m

Liberia 2.16 2.45 4.52 m 9.35 m 8.41 m 4.33 m 9.28 m 8.34 m

Madagascar 2.12 2.42 20.44 m 48.95 m 42.91 m 13.47 m 41.57 m 38.25 m

Malawi 2.33 2.64 13.95 m 39.34 m 34.7 m 12.68 m 38.96 m 34.25 m

Mali 2.12 2.39 15.02 m 34.32 m 30.5 m 11.52 m 33.45 m 29.29 m

Mozambique 1.89 2.16 20.7 m 47.2 m 41.65 m 16.71 m 45.08 m 39.86 m

Niger 3.66 4.04 14.91 m 62.34 m 56.3 m 10.57 m 60.1 m 52.75 m

Nigeria 1.83 2.06 143.97 m 288.68 m 257.45 m 139.88 m 286.8 m 255.36 m

Rwanda 2.15 2.42 9.44 m 23.8 m 21.16 m 3.7 m 11.74 m 11.67 m

Senegal 2.03 2.3 9.75 m 20.71 m 19.03 m 9.16 m 20.71 m 19.02 m

Sierra Leone 2.13 2.42 5.9 m 13.12 m 11.67 m 5.71 m 13.03 m 11.65 m

Sudan 1.76 2 37.47 m 75.98 m 66.58 m 20.24 m 65.67 m 53.55 m

Tanzania 2.43 2.75 41.79 m 120.35 m 106.21 m 24.05 m 98.13 m 88.77 m

Togo 1.95 2.22 5.57 m 12.39 m 10.93 m 5.57 m 12.36 m 10.93 m

Uganda 2.7 3.04 32.52 m 97.25 m 86.75 m 25.32 m 83.56 m 76.17 m

Dem. Rep. of Congo 2.17 2.45 70.73 m 165.66 m 147.09 m 33.99 m 113.17 m 97.77 m

Zambia 2.18 2.48 12.67 m 32.73 m 28.84 m 2.25 m 21.99 m 18.53 m

Zimbabwe 1.75 2.04 14.9 m 26.04 m 22.44 m 4.76 m 21.38 m 19.16 m

Total 804.42 m 1,855.52 m 1,646.58 m 542.88 m 1,463.8 m 1,297.54 m

2010 populations at risk are calculated by projecting the derived Maxent model against 2000 climate data (but using 2010 population data (see text)) while the 2050
populations at risk are derived using the predicted 2050 environmental/population density data. All figures are expressed in 000’s. Also given are the UN predicted
increases in population, shown in terms of the factor s by which national populations are expected to increase.
doi:10.1371/journal.pone.0032202.t002
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The Maxent model for LF occurrence across Africa generated a

risk map giving a probability of infection presence in each location

between 0 and 1, with a probability close to 1 indicating sites with

the highest risk and possibly levels of infection. Thus, the map

shown in Figure 2 provides not only information regarding the

potential spatial extend of LF endemicity across Africa but also

crudely data on variations in the intensity of transmission that can

be expected in different parts of the continent. Based on the

variation in relative risk shown in the figure, the highest LF

transmission therefore appears to occur in the Western Africa

region, whereas infection levels in large parts of Central and

Eastern Africa and in Madagascar are predicted to be consider-

ably more heterogeneous, with moderate levels interspersed with

smaller areas of high infection occurring along the coasts. Despite

the fact that the present Maxent results are based only on presence

data, this conclusion is surprisingly well supported by the actual

national LF prevalence values estimated for the endemic countries

of Africa given in Michael et al. [17] and Michael and Bundy [9].

This represents an important technical insight as it suggests that

modelling of presence-only data may provide a good approxima-

tion to actual levels of parasite transmission intensity in an area

[8], possibly due to climate-derived variations in the abundance of

the relevant transmitting vector species. This is supported by the

remarkable similarity of the African ecological niche maps for

Anopheles funestus and A. gambiae, the two principal anopheline

vectors of LF in Africa, developed by Moffett and colleagues

[37,72], with the LF risk map shown in Figure 2.

Estimations of the at-risk population for LF in Africa have

varied significantly between previous studies, with recently

reported figures appearing to increase over time possibly due to

the effects of both increasing population and surveillance. Thus, in

1992, it was estimated that some 113 million individuals lived in

endemic areas [73], which increased to 212 million [74] and 396

million by 2009 [75]. These estimates, which are normally made

by identifying infection positive districts and calculating the

number of people in each of these districts, not only take little

account of the spatial variation that exists at the local level

[22,26,76] but are also highly dependent upon the existence of

field surveys covering all relevant endemic areas. By contrast,

machine learning-based ecological niche models using presence-

only data approximate the realised distribution of a disease [54],

and via the derivation of a continuous potential distribution map

may offer a more accurate method to determine the true extent of

infection and hence actual populations at risk. The additional

prospect of being able to use different cut-off disease presence

thresholds with this method means that we can also explore the

implications of error in the data for quantifying risk and disease

burdens. Thus, using a low presence threshold equal to the least

training presence, we estimate that 804 m people in Africa may be

living in at risk areas, whereas assuming a more stringent 10%

omission error, we estimate that some 542 m people may be at

risk. Given that the average prevalence of LF (infection and

disease) in African endemic countries has been estimated to be

around 11% [8,17], our estimate of the populations at risk also

thus suggests that we can expect between 60 and 89 million cases

of LF in 2010 on that continent compared to the 51 million and 47

million estimated by Michael and Bundy [9] and Lindsay and

Thomas [8] respectively for the years 1990 and 2000.

The future potential distribution and burden of LF in Africa as a

result of predicted changes in climate and population growth were

produced by using the best-fit Maxent model derived for 2000 and

projecting the functional relationships therein onto the two 2050

climate scenarios, i.e. we consider that niche dynamics are static

and that climate change will not affect either the form of the biotic

relationships governing the vector and the parasite population

dynamics or any adaptation by these populations to the new

environment [32,77,78]. We examined the impact of two 2050

climate scenarios from two different global climate models. The

more extreme scenario, A2a, predicted on average 13% more

people living in at-risk areas than the B2a scenario. Predictions of

the 2050 population at risk range from 1.30 to 1.86 billion (Table 2);

although a large component of this increase is a result of population

growth, changes in climate are also shown to increase the area of

Africa that is suitable for LF transmission. In particular, large

regions below the Sahara desert and in Zambia, Zimbabwe and

Angola are predicted to have increased probability of LF

(Figure 7c,d), suggesting that the ecological niche of infection could

increase and extend both northwards and southwards. When

interpreting these results attention must be paid to the uncertainty

and error associated with the future climate data – both from the

GCMs and the downscaling procedures adopted, and the fact that

we are only considering two GCMs and two emissions scenarios.

These results obviously do not take into account increases in disease

control activities on the continent of Africa, which has accelerated

greatly since the Global Alliance to Eliminate Lymphatic Filariasis

was created in 2000. It also does not take account of the increase in

vector control on that continent, primarily targeted at malaria,

which will have an impact on LF infection via reductions in vector

biting rates and lifespans [79]. Indeed, our predictions of the likely

future increase in LF burden argues strongly for strengthening and

expanding these interventions even further as an important

mitigation strategy to counter the predicted spread and intensifying

of this debilitating disease in Africa as population density increases

and climate changes.

Although our study has yielded several important and novel

insights into the determinants and structuring of the ecological niche

and the present and future spatial occurrence of LF in Africa, there

are several limitations that need to be borne in mind when

interpreting the present results. First, even though ecological niche

modelling approaches based on occurrence data alone, such as the

Maxent algorithm used in this study, are optimized for predicting

the realised or actual (rather than the fundamental) distribution of a

species [41,54], predictions of presence will still be dependent on the

sample locations of the available data with any deficiency in sample

coverage of all suitable areas able to bias the results. Second, the

crude scale of the environmental layers used to construct the

Maxent model means that the validity of predictions on small focal

spatial scales is questionable. Third, we have no error estimates

associated with our predictions – in reality we would expect a

heterogeneous error map of model predictions in Africa caused by

different levels of error associated with the climate data and model

fit, and from the biased distribution of presence data. However, it is

hoped that our predictions are fairly robust on the district or country

wide scales that are typically used in policy decisions regarding

disease control and eradication strategies, especially in countries

with more accurate climate data and more LF survey data. We have

also used 50-year averaged climate layers to approximate a

phenomenon that might have changed in the past decade or so to

characterise ‘‘current’’ climate in our analyses.

The above caveats indicate that our application is likely to be at

the lower limit of the usefulness of the available data. Although it

might be possible to use remote-sensed data to overcome a part of

this limitation [45], forward projection of such data to future

climates is clearly not possible. Combining correlative spatial

modelling approaches with mechanistic models linking climate/

environmental and population variables to parasite transmission

processes in conjunction with regional climate models, may, on the

other hand, provide a more useful solution to improving the detail of
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spatial predictions [69]. The practical modelling frameworks and

tools required for successfully achieving this synthesis is, however,

still largely indeterminate. We suggest that resolving these

conceptual and methodological issues represents the next major

challenge in species, including parasite, distribution modelling.
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