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Abstract

Predicting the dislocation nucleation rate as a function of temperature and stress is crucial for

understanding the plastic deformation of nanoscale crystalline materials. However, the limited time

scale of molecular dynamics simulations makes it very difficult to predict dislocation nucleation

rate at experimentally relevant conditions. Recently, we developed an approach to predict dis-

location nucleation rate based on the Becker-Döring theory of nucleation and umbrella sampling

simulations. The results reveal very large activation entropies, originated from the anharmonic

effects, which can alter the nucleation rate by many orders of magnitude. Here we discuss the

thermodynamics and algorithms underlying these calculations in greater detail. In particular, we

prove that the activation Helmholtz free energy equals the activation Gibbs free energy in the

thermodynamic limit, and explain the large difference in the activation entropies in the constant

stress and constant strain ensembles. We also discuss the origin of the large activation entropies

for dislocation nucleation, along with previous theoretical estimates of the activation entropy.
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I. INTRODUCTION

Dislocation nucleation is essential to the understanding of ductility and plastic deforma-

tion of crystalline materials with sub-micrometer dimension1–3 or under nano-indentation4–6,

and to the synthesis of high quality thin films for microelectronic, optical and magnetic ap-

plications7,8. The fundamental quantity of interest is the dislocation nucleation rate I as a

function of stress σ and temperature T . Continuum9–11 and atomistic models12–14 have been

used to predict dislocation nucleation rate and they both have limitations. The applicability

of continuum models may be questionable because the size of the critical dislocation nucleus

can be as small as a few lattice spacing. In addition, the continuum models are often based

on linear elasticity theory, while dislocation nucleation typically occur at high strain condi-

tions in which the stress-strain relation becomes non-linear. These difficulties do not arise

in molecular dynamics (MD) simulations, which can reveal important mechanistic details

of dislocation nucleation. Unfortunately, the time step of MD simulations is on the order

of a femto-second, so that the time scale of MD simulations is typically on the order of a

nano-second, given existing computational resources. Therefore, the study of dislocation nu-

cleation via direct MD simulation has been limited to extremely high strain rate (∼ 108 s−1)

conditions12,13. This is about 10 orders of magnitudes higher than the strain rate in most

experimental work and engineering applications5,6. Predicting the dislocation nucleation

rate I(σ, T ) under the experimentally relevant conditions is still a major challenge.

An alternative approach is to combine reaction rate theories15–17 with atomistic models.

Atomistic simulations can be used to compute the activation barrier, which is used as an

input for the reaction rate theory to predict the dislocation nucleation rate. There are

several reaction rate theories, such as the transition state theory15,18 and the Becker-Döring

theory16, which lead to similar expressions for the nucleation rate,

I(σ, T ) = Ns ν0 exp

[
−Gc(σ, T )

kBT

]
(1)

where Ns is the number of equivalent nucleation sites, ν0 is a frequency prefactor, Gc is the

activation Gibbs free energy for dislocation nucleation, and kB is Boltzmann’s constant. The

difference between the theories lie in the expression of the frequency prefactor ν0. In practice,

ν0 is often approximated by the Debye frequency νD of the crystal, which is typically on

the order of 1013 s−1. One could also express the dislocation nucleation rate as a function of
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strain γ and temperature T . Then,

I(γ, T ) = Ns ν0 exp

[
−Fc(γ, T )

kBT

]
(2)

where Fc is the activation Helmholtz free energy for dislocation nucleation.

The transition state theory (TST)15,18 has often been combined with the nudged elastic

band (NEB) method19 to predict the rate of rare events in solids14,20,21. However, there exist

several limitations for this approach. First, TST is known to overestimate the rate because

it does not account for the fact that a single reaction trajectory may cross the saddle region

multiple times. This deficiency can be corrected by introducing a recrossing factor which

can be computed by running many MD simulations started from the saddle region22. A

more serious problem is that the NEB method, and the closely related string method23, only

determines the activation barrier at zero temperature, i.e. Gc(σ, T = 0) or Fc(γ, T = 0)

In principle, the activation barrier at finite temperature can be obtained from the finite-

temperature string method24, which has not yet been applied to dislocation nucleation.

Both Gc and Fc are expected to decrease with T , as characterized by the activation entropy

Sc. The effect of the activation entropy is to introduce an overall multiplicative factor of

exp(Sc/kB) to the nucleation rate (See Eq. (13)), which can be very large if Sc exceeds

10 kB. Until recently, the magnitude of Sc has not been determined reliably and, within the

harmonic approximation of TST, Sc is estimated to be small (i.e. ∼ 3 kB). For example,

the activation entropy of kink migration on a 30◦ partial dislocation in Si has recently been

estimated to be less than 3 kB
21.

Recently, we developed an approach26 to accurately predict the rate I(σ, T ) of homoge-

neous and heterogeneous dislocation nucleation over a wide range of σ and T , based on the

Becker-Döring (BD) theory16 and the umbrella sampling method27. The BD theory correctly

accounts for the recrossing effect, and the umbrella sampling method directly computes the

activation Helmholtz free energy Fc at finite temperature. The activation Gibbs free energy

Gc(σ, T ) is set to the value of Fc(γ, T ) at the strain γ that corresponds to the stress σ at

temperature T . The activation entropy Sc is obtained from the reduction of Gc and Fc with

temperature and is found to be very large (e.g. exceeding 9 kB for γ < 9%). Furthermore,

two different activation entropies are found, depending on whether the stress or the strain is

held constant when the temperature is raised. Hence the activation entropy depends on the

choice of the (constant stress or constant strain) ensemble, contrary to entropy itself, which
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is independent of the choice of ensemble. These effects are explained in terms of thermal

expansion and thermal softening, both are anharmonic effects in the crystal.

In this paper, we provide a more thorough discussion on the thermodynamics of dislo-

cation nucleation and algorithms underlying our approach. The thermodynamic properties

of activation, such as activation free energy, activation entropy, and activation volume have

been extensively discussed in the context of dislocation overcoming obstacles, using con-

tinuum theory within the constant stress ensemble25. Recently, there has been interest in

computing these quantities using atomistic simulations, in which it is more convenient to

use the constant strain ensemble. One of the main objectives of this paper is to discuss the

difference between the thermodynamic properties of activation defined in the constant stress

and the constant strain ensembles in the context of dislocation nucleation. First, we prove

that the activation Gibbs free energy Gc(σ, T ) equals the activation Helmholtz free energy

Fc(γ, T ) for dislocation nucleation, when the volume of the crystal is much larger than the

activation volume of dislocation nucleation. This leads to the intuitive conclusion that the

dislocation nucleation rate is independent of whether the crystal is subjected to a constant

stress or a constant strain loading condition. While the equality of Fc(γ, T ) and Gc(σ, T )

quickly leads to the difference of the two activation entropies, we provide an alternative

derivation of this fact, which makes the physical origin of this difference more transparent.

Our goal is to clarify why the activation entropy depend on the choice of ensemble while

entropy itself does not. Second, we describe the computational methods in sufficient detail

so that they can be repeated by interested readers and be adopted in their own research.

We repeat our calculations using an improved order parameter to characterize dislocation

nucleation and find that our previous results26 are independent of the choice of order param-

eters, as required for self-consistency. Third, we compare our numerical results with several

previous estimates of the activation entropy, such as those based on the “thermodynamic

compensation law”, which states that the activation entropy is proportional to the activation

enthalpy. We discuss the conditions at which this empirical law appears to hold (or fail) for

dislocation nucleation.

The paper is organized as follows. Section II is devoted to the thermodynamics of disloca-

tion nucleation. Simulation setup and computational methods are presented in Section III.

Section IV presents the numerical data on activation free energy and the frequency prefactor

over a wide range of stress (strain) and temperature conditions. Section V compares these
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results with previous estimates of activation entropy and discusses the consequence of the

activation entropy on experimentally measurable quantities, such as yield stress. This is

followed by a short summary in Section VI.

II. THERMODYNAMICS OF NUCLEATION

A. Activation Free Energies

Consider a crystal of volume V subjected to stress σ at temperature T . To be specific, we

can consider σ as one of the stress components, e.g. σxy, while all other stress components

are zero. Let G(n, σ, T ) be the Gibbs free energy of the crystal when it contains a dislocation

loop that encloses n atoms. If n is very small, the dislocation loop is more likely to shrink

than to expand. On the other hand, if n is very large, the dislocation loop is more likely to

expand than to shrink. There exists a critical loop size, nc, at which the likelihood for the

loop to expand equals the likelihood to shrink. It is also the loop size that maximizes the

function G(n, σ, T ) for fixed σ and T . The activation Gibbs free energy is defined as,

Gc(σ, T ) ≡ G(nc, σ, T )−G(0, σ, T ) (3)

where G(0, σ, T ) is the Gibbs free energy of the perfect crystal (containing no dislocations) at

stress σ and temperature T . Given Gc(σ, T ), the dislocation nucleation rate can be predicted

using Eq. (1).

While experimental data are usually expressed in terms of σ and T , it is often more

convenient to control strain than stress in atomistic simulations. Let γ be the strain com-

ponent that corresponds to the non-zero stress component, e.g. γxy. While there is only

one non-zero stress component, this usually corresponds to multiple non-zero strain compo-

nents. Nonetheless, the other strain components do not appear in our discussion because

their corresponding work term is zero. Thermodynamics28 allows us to discuss the nucle-

ation process within the constant γ constant T ensemble, by introducing the Helmholtz free

energy F (n, γ, T ) through the Legendre transform29.

γ(n, σ, T ) ≡ − 1

V

∂ G(n, σ, T )

∂ σ

∣∣∣∣
n,T

(4)

F (n, γ, T ) ≡ G(n, σ, T ) + σ γ V. (5)
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A convenient property of the Legendre transform is that it is reversible, i.e.,

σ(n, γ, T ) =
1

V

∂ F (n, γ, T )

∂ γ

∣∣∣∣
n,T

(6)

G(n, σ, T ) = F (n, γ, T )− σ γ V. (7)

Again, let nc be the dislocation loop size that maximizes F (n, γ, T ) for given γ and T . In

Appendix A, it is proven that the same nc maximizes G(n, σ, T ) and F (n, γ, T ), so that the

critical dislocation loop size does not depend on the choice of (constant stress or constant

strain) ensemble. The activation Helmholtz free energy is defined as,

Fc(γ, T ) ≡ F (nc, γ, T )− F (0, γ, T ). (8)

Given Fc(γ, T ), the dislocation nucleation rate can be predicted using Eq. (2).

B. Activation Entropies

The activation Gibbs free energy Gc(σ, T ) decreases with increasing temperature T at

fixed σ, and also decreases with increasing σ at fixed T . The activation entropy, defined as25

Sc(σ, T ) ≡ − ∂Gc(σ, T )

∂T

∣∣∣∣
σ

(9)

measures the reduction rate of Gc(σ, T ) with increasing T . Similarly, the activation volume,

defined as

Ωc(σ, T ) ≡ − ∂Gc(σ, T )

∂σ

∣∣∣∣
T

(10)

measures the reduction rate of Gc(σ, T ) with increasing σ.

The activation enthalpy Hc is defined as,

Hc(σ, T ) = Gc(σ, T ) + T Sc(σ, T ). (11)

The activation entropy Sc is usually insensitive to temperature, especially in the range of zero

to room temperature, which will be confirmed by our numerical results. This means that

Hc is also insensitive to temperature and that the Gibbs free energy can be approximated

by,

Gc(σ, T ) = Hc(σ)− TSc(σ). (12)

Consequently, the dislocation nucleation rate in Eq. (1) can be rewritten as,

I(σ, T ) = Ns ν0 exp

(
Sc(σ)

kB

)
exp

(
−Hc(σ)

kBT

)
. (13)
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Therefore, when the dislocation nucleation rate per site, I/Ns, at a constant stress σ are

shown in the Arrhenius plot, e.g. Fig. 1, the data are expected to follow a straight line. The

negative slope of the line can be identified as the activation enthalpy Hc(σ) over kB, and

the intersection of the line with the vertical axis is ν0 exp(Sc(σ)/kB). Hence the activation

entropy Sc contributes an overall multiplicative factor, exp(Sc(σ)/kB), to the nucleation

rate. If Sc = 3 kB, this factor is about 20 and may be considered insignificant. However, if

Sc > 10 kB, this factor exceeds 104 and cannot be ignored.
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FIG. 1: Homogeneous dislocation nucleation rate per lattice site in Cu under pure shear stress

σ = 2.0 GPa on the (111) plane along the [112] direction as a function of T−1, predicted by Becker-

Döring theory using free energy barrier computed from umbrella sampling (See Section III). The

solid line is a fit to the predicted data (in circles). The slope of the line is Hc/kB, while the

intersection point of the extrapolated line with the vertical axis is ν0 exp(Sc/kB). Dashed line

presents the nucleation rate predicted by ν0 exp(−Hc/kBT ), in which the activation entropy is

completely ignored, leading to an underestimate of the nucleation rate by∼ 20 orders of magnitude.

If we choose the constant strain γ ensemble, then the focus is on the activation Helmholtz

free energy Fc(γ, T ), which decreases with increasing temperature T at fixed γ. An alterna-

tive definition of the activation entropy can be given as

Sc(γ, T ) ≡ − ∂Fc(γ, T )

∂T

∣∣∣∣
γ

(14)

which measures the reduction rate of Fc(γ, T ) with increasing T . We can then define the

activation energy Ec(γ, T ) as,

Ec(γ, T ) = Fc(γ, T ) + T Sc(γ, T ). (15)
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Again, since the activation entropy Sc is usually insensitive to temperature, we can use the

following approximation for the activation Helmholtz free energy,

Fc(γ, T ) = Ec(γ)− TSc(γ). (16)

Consequently, the dislocation nucleation rate in Eq. (2) can be rewritten as,

I(γ, T ) = Nsν0 exp

(
Sc(γ)

kB

)
exp

(
−Ec(γ)

kBT

)
. (17)

Therefore, Ec(γ) and Sc(γ) can also be identified from the slope and y-intersection in Ar-

rhenius plot of dislocation nucleation rate at a constant strain γ.

Apparently, the above discussions in the constant σ ensemble and those in the constant γ

ensemble closely resemble each other. It may seem quite natural to expect the two definition

of the activation entropies, Sc(σ) and Sc(γ), to be one and the same, as long as σ and γ lie

on the stress-strain curve of the crystal at temperature T . After all, the entropy of a crystal

is a thermodynamic state variable, which is independent of whether the constant stress or

constant strain ensemble is used to describe it, and we may expect the activation entropy to

enjoy the same property too. Surprisingly, Sc(σ) and Sc(γ) are not equivalent to each other.

For dislocation nucleation in a crystal, we can show that Sc(σ) is almost always larger than

Sc(γ), and the difference between the two can be very large, e.g. 30 kB for σ < 2 GPa. The

large difference between the two activation entropies has not been noticed before. We will

present both theoretical proofs and numerical data on this difference in subsequent sections.

C. Difference between the Two Activation Entropies

While the Gibbs free energy G(n, σ, T ) and the Helmholtz free energy F (n, γ, T ) are

Legendre transforms of each other, the activation Gibbs free energy Gc(σ, T ) and the acti-

vation Helmholtz free energy Fc(γ, T ) are not Legendre transforms of each other. In fact,

it is proven in Appendix B that Gc(σ, T ) and Fc(γ, T ) equal to each other, in the limit of

V À Ωc, as long as σ and γ lie on the stress-strain curve of the perfect crystal at temperature

T , i.e. σ = (1/V ) ∂F (0, γ, T )/∂γ. This has the important consequence that the dislocation

nucleation rate predicted by Eq. (1) and that by Eq. (2) equal to each other. This result is

intuitive because the dislocation nucleation rate should not depend on whether the crystal

is subjected to a constant stress, or to a constant strain that corresponds to the same stress.
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The thermodynamic properties of a crystal of macroscopic size can be equivalently specified

either by its stress and temperature or by its strain and temperature, and we expect the

same to hold for kinetic properties (e.g. dislocation nucleation rate) of the crystal.

It then follows that the activation entropies, Sc(σ, T ) defined in Eq. (9) and Sc(γ, T )

defined in Eq. (14), cannot equal to each other. In the following, we will let σ and γ follow

the stress-strain curve, σ(γ, T ), of the perfect crystal at temperature T . Using the equality

Gc(σ, T ) = Fc(γ, T ), we have,

Sc(σ, T ) ≡ − ∂Gc(σ, T )

∂T

∣∣∣∣
σ

= − ∂Fc(γ, T )

∂T

∣∣∣∣
σ

= − ∂Fc(γ, T )

∂T

∣∣∣∣
γ

− ∂Fc(γ, T )

∂γ

∣∣∣∣
T

∂γ

∂T

∣∣∣∣
σ

(18)

= Sc(γ, T )− ∂Fc(γ, T )

∂γ

∣∣∣∣
T

∂γ

∂T

∣∣∣∣
σ

. (19)

Similarly, starting from the definition of Sc(γ, T ), we can show that,

Sc(γ, T ) = Sc(σ, T )− ∂Gc(σ, T )

∂σ

∣∣∣∣
T

∂σ

∂T

∣∣∣∣
γ

. (20)

Eqs. (19) and (20) are consistent with each other because of the Maxwell relation,

∂σ

∂T

∣∣∣∣
γ

∂T

∂γ

∣∣∣∣
σ

∂γ

∂σ

∣∣∣∣
T

= −1 (21)

and the chain rule of differentiation,

∂Gc(σ, T )

∂σ

∣∣∣∣
T

=
∂Fc(γ, T )

∂γ

∣∣∣∣
T

∂γ

∂σ

∣∣∣∣
T

. (22)

Therefore, the difference between the two activation entropies is

∆Sc ≡ Sc(σ, T )− Sc(γ, T ) =
∂Gc(σ, T )

∂σ

∣∣∣∣
T

∂σ

∂T

∣∣∣∣
γ

= − ∂F (γ, T )

∂γ

∣∣∣∣
T

∂γ

∂T

∣∣∣∣
σ

. (23)

Recall the definition of activation volume Ωc in Eq. (10), we have

∆Sc = −Ωc
∂σ

∂T

∣∣∣∣
γ

. (24)

Notice that Ωc is always positive and that, because of thermal softening, ∂σ
∂T

∣∣
γ

is usually

negative31. Therefore ∆Sc is positive for dislocation nucleation in a crystal under most

conditions.

While the difference between the two activation entropies have not been widely discussed,

it has been pointed out by Whalley in the context of chemical reactions34,35. However, ∆Sc
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has been estimated to be rather small in chemical reactions. The main reason is that the

activation volume for most chemical reactions is bounded. As a rough estimate, let us

assume that Ωc < 100Å3. Under low stress conditions, we expect ∂σ
∂T

∣∣
γ

to be linear with

stress, i.e.,
∂σ

∂T

∣∣∣∣
γ

≈ 1

µ

∂µ

∂T

∣∣∣∣
γ

· σ (25)

where µ is the shear modulus. Although for chemical reactions it is more appropriate to

use the bulk modulus instead of µ, this approximation is acceptable for a rough estimate.

Let us assume that µ reduces by 10% as T increases from 0 to 300 K33, then − 1
µ

∂µ
∂T

∣∣∣
γ

is

approximately 3.3×10−4 K−1. If we further assume that σ < 100 MPa, then ∆Sc < 0.25 kB,

which is negligible.

The situation is quite different for dislocation nucleation, where the activation volume Ωc

diverges as σ goes to zero. The activation volume is proportional to the size nc of the critical

dislocation loop (see Appendix F). Based on a simple line tension model, it is estimated36

to be Ωc ∝ σ−2 in the limit of σ → 0. Combining this with Eq. (25), we have

∆Sc ∝ 1

µ

∂µ

∂T

∣∣∣∣
γ

· σ−1 (26)

which diverges as σ goes to zero. In the relevant stress range, e.g. from 0 to 2 GPa, ∆Sc is

found to be very large, easily exceeding 9 kB, for both homogeneous and heterogeneous dis-

location nucleation, as shown in subsequent sections. The divergence of activation volume

and activation entropy in the zero stress limit is a unique property of dislocation nucle-

ation, which distinguishes itself from other thermally activated processes such as dislocation

overcoming an obstacle37,38.

While the expression for the difference between the two activation entropies, Eq. (24),

follows mathematically from the equality of Gc and Fc and the chain rule of differentiation,

one may still wonder whether there exists an alternative (perhaps more physical) explana-

tion. After all, the entropy of the crystal is a property of the thermodynamic state and

is independent of the choice of ensembles. The activation entropy can be expressed as the

difference of the entropies between the “activated” state and the “initial” (i.e. meta-stable)

state. It may seem puzzling that the activation entropy does not share some of the funda-

mental properties of entropy itself. This question is discussed in detail in Appendix C. The

answer is that, in the definitions of Sc(σ) and Sc(γ), we are not taking the entropy differ-

ence between the same two states. If we choose the same “initial” state, then two different

10



“activated” states are chosen depending on whether the stress or strain is kept constant

during dislocation nucleation. This is because the act of forming a critical dislocation loop

introduces plastic strain into the crystal. Following this analysis, we are lead to exactly the

same expression for ∆Sc ≡ Sc(σ)− Sc(γ) as Eq. (24).

A similar expression has been obtained for the difference between the point defect for-

mation entropies under constant pressure (Sp) and under constant volume (Sv)
39. This

difference is proportional to the relaxation volume of the defect and is negative for a va-

cancy and positive for an interstitial. More discussion is given in Appendix C.

D. Previous Estimates of Activation Entropy

There exist several theoretical approaches that could be used to estimate the activation

entropy of dislocation nucleation. We note that none of these approaches address the fact

that there are actually two different activation entropies, and, as such, they can be equally

applied to Sc(σ) and to Sc(γ) and lead to similar estimates. In this sense, all of these

approaches will lead to inconsistencies when applied to dislocation nucleation.

An approach that is widely used in the solid state is the harmonic approximation of

the transition state theory (TST)15, in which the activation entropy is attributed to the

vibrational degrees of freedom. In TST, the frequency prefactor is ν0 = kBT/h where h is

Planck’s constant. At T = 300 K, ν0 = 6.25 × 1012 s−1. Expanding the energy landscape

around the “initial” state (i.e. perfect crystal, or the meta-stable state) and the “activated”

state (i.e. crystal containing the critical dislocation nucleus) up to second order, we get

ν0 exp(Sc/kB) =

∏N
i=1 νm

i∏N−1
i=1 νa

i

(27)

where νm
i and νa

i are the positive normal frequencies in the meta-stable state and the “ac-

tivated” state, respectively15,18,40 and N is the number of normal modes in the meta-stable

state. Note that the “activated” state contains one fewer normal frequency than the meta-

stable state. A further (rather crude) approximation is often invoked, in which it is assumed

that the normal frequencies in the “activated” state are not significantly changed from those

in the meta-stable state and approximate the entire expression in Eq. (27) by the Debye fre-

quency νD of the perfect crystal. The Debye frequency41 is typically the highest vibrational

frequency in a crystal and is on the order of 1013 s−1. Recall that ν0 itself is also on the
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order of 1013 s−1 at room temperature. This leads to the conclusion that exp(Sc/kB) would

not deviate from 1 by more than one order of magnitude. This is perhaps one of the rea-

sons for the entropic effects to be largely ignored so far for dislocation nucleation processes.

In subsequent sections, we will show that the activation entropies are large for dislocation

nucleation and they originate from anharmonic effects. This is consistent with the above

estimate that the vibrational entropy, captured by the harmonic approximation, makes a

negligible contribution to the activation entropy for dislocation nucleation in metals.

Alternatively, one can estimate the activation entropy by postulating that the activation

Gibbs free energy scales with the shear modulus µ of the crystal. Because µ decreases with

temperature due to the thermal softening effect, so does Gc(σ, T ), leading to an activation

entropy25,42. This approximation can be expressed more explicitly as,

Gc(σ, T ) = Hc(σ)
µ(T )

µ(0)
(28)

where µ(T ) and µ(0) are the shear moduli of the crystal at temperature T and zero temper-

ature, respectively. Assuming that µ(T ) is a linear function of T , we arrive at the following

estimate for Sc(σ),

Sc(σ) = −Hc(σ)
1

µ(0)

∂µ

∂T
. (29)

A similar expression has been derived for dislocations overcoming obstacles43,44. Note that

1
µ(0)

∂µ
∂T

is a material constant that measures the severity of the thermal softening effect. For

convenience, we can define a characteristic temperature T ∗ such that,

1

T ∗ = − 1

µ(0)

∂µ

∂T
(30)

Then we arrive at the following estimate of Sc(σ),

Sc(σ) =
Hc(σ)

T ∗ (31)

Again, if we assume µ reduces by about 10% as T increases from 0 to 300 K, then T ∗ ≈
3000 K. This means Sc(σ) ≈ 7.5 kB when Hc(σ) = 2 eV.

While the above analysis seems quite reasonable, the same argument can be applied to

the activation Helmholtz free energy, leading to the following approximations,

Fc(γ, T ) = Ec(γ)
µ(T )

µ(0)
(32)

Sc(γ) =
Ec(γ)

T ∗ (33)
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with the same T ∗ as defined in Eq. (30). Again, assuming T ∗ ≈ 3000 K, we have Sc(γ) ≈
7.5 kB when Ec(γ) = 2 eV. Given the large difference between Sc(σ) and Sc(γ), the above

two estimates cannot be both correct. In Section IV we will see that this estimate is closer

to Sc(γ) than Sc(σ) for homogeneous dislocation nucleation in Cu.

Recently, Zhu et al.14 introduced the following approximation to the activation Gibbs

free energy for dislocation nucleation from the surface of a Cu nanorod,

Gc(σ, T ) = Hc(σ)

(
1− T

Tm

)
(34)

where Tm is the surface melting temperature of the nanorod and is chosen to be 700 K.

This approximation was based on the so-called “thermodynamic compensation law”45 , or

the Meyer-Neldel rule46, which is an empirical observation that in many thermally activated

processes, Sc is proportional to Hc. It is interesting that such an approximation leads to

an expression for the activation entropy Sc(σ) that is identical to Eq. (31) provided that

T ∗ = Tm. This amounts to assuming that the shear modulus decreases at a constant rate

with temperature and vanishes at melting temperature, as in Born’s theory of melting47.

Again, while this approximation seems reasonable, the same argument can be applied to

the activation Helmholtz free energy,

Fc(γ, T ) = Ec(γ)

(
1− T

Tm

)
(35)

which has been used by Brochard et al.48 This would lead to an expression for the activation

entropy Sc(γ) that is identical to Eq. (33) provided that T ∗ = Tm. Clearly, these two

approximations, i.e. Eqs. (34-35), cannot both be correct, at least for the same Tm.

III. COMPUTATIONAL METHODS

A. Simulation Cell

We study both the homogeneous nucleation of dislocation in bulk Cu and the hetero-

geneous nucleation in a Cu nanorod. Although dislocations often nucleate heterogeneously

at surfaces or internal interfaces, homogeneous nucleation is believed to occur in nano-

indentation4 and in a model of brittle-ductile transition49. It also provides an upper bound

to the shear strength of the crystal. For simplicity, we benchmark the computational method
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against brute force MD simulation and spend most of the discussions on homogeneous nu-

cleation. Heterogeneous nucleation will be discussed following the homogeneous nucleation

analysis.
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FIG. 2: Schematics of simulation cells designed for studying (a) homogeneous and (c) heterogeneous

nucleation. In (a), the spheres represent atoms enclosed by the critical nucleus of a Shockley

partial dislocation loop. In (c), atoms on the surface are colored by gray and atoms enclosed by

the dislocation loop are colored by magenta. Shear stress-strain curves of the Cu perfect crystal

(before dislocation nucleation) at different temperatures for (b) homogeneous and (d) heterogeneous

nucleation simulation cells.

Our model system is a Cu single crystal described by the embedded atom method (EAM)

potential50. As shown in Fig. 2 (a), the simulation cell to study homogeneous dislocation

is subjected to a pure shear stress along [112]. The dislocation to be nucleated lies on the

(111) plane and has the Burgers vector of a Shockley partial51, ~bp = [112]/6. The cell has

dimension of 8 repeat distances along the [112] direction, 6 repeat distances along the [111]

and 3 repeat distances along the [110], and consists of 14, 976 atoms. Periodic boundary

conditions (PBC) are applied to all three directions. To reduce artifacts from periodic image
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interactions, the applied stress is always large enough so that the diameter of the critical

dislocation loop is smaller than half the width of the simulation cell.

Fig. 2 (b) shows the shear stress strain relationship of the perfect crystal at different

temperatures (before dislocation nucleation) that clearly shows the thermal softening effect.

The shear strain γ is the xy component of the engineering strain. The following procedure is

used to obtain the pure shear stress-strain curve, because the conventional Parrinello-Raman

stress control algorithm52 does not work properly here due to the non-linear stress-strain

relationship at large strain. At each temperature T and shear strain γxy, a series of 2 ps MD

simulations under the canonical, constant temperature-constant volume (NVT) ensemble are

performed. After each simulation, all strain components except γxy are adjusted according

to the average Virial stress until σxy is the only nonzero stress component. The shear strain

is then increased by 0.01 and the process repeats until the crystal collapses spontaneously.

For heterogeneous dislocation nucleation, we study a Cu nanorod that has the dimension

of 15[100] × 15[010] × 20[001] with PBC along [001], which is shown in Fig. 2 (c). When

subjected to axial compression along [001], a dislocation with the Burgers vector ~b = [112]/6

is expected to nucleate from the corner of the nanorod. The compressive stress-strain curve

is shown in Fig. 2 (d). An important step in obtaining the stress-strain curve is to achieve

thermal equilibrium before taking the average of stress σzz and computing the nucleation

rate at a given strain εzz. Due to the free side surfaces, a nano-rod undergoes low frequency

but long-lived oscillations in the x and y directions (i.e. “breathing” mode) at the initial

stage of MD simulation. This leads to very large oscillation in σzz, at a frequency that is

several orders of magnitudes smaller than the Debye frequency. We suppress this “breath”

mode by running simulation using a stochastic thermostat53, which is more effective than the

Nosé-Hoover thermostat54 for equilibrating systems with a wide range of eigenfrequencies.

B. Nucleation Rate Calculation

In this work, we predict the nucleation rate based on the BD theory, which expresses the

nucleation rate as

IBD(γ, T ) = Ns f+
c Γ exp

[
−Fc(γ, T )

kBT

]
(36)

where f+
c is the molecular attachment rate, and Γ is the Zeldovich factor. Fc is computed

with the shape and volume of the simulation cell fixed. We assume that the activation
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Helmholtz free energy Fc obtained from the finite simulation cell is very close to the value

of Fc in the infinite volume limit, which equals the activation Gibbs free energy Gc
55 (see

Appendix B). The BD theory and TST only differs in the frequency prefactor. Whereas

TST neglects multiple recrossing over the saddle point15,22 by a single transition trajectory,

the recrossing is accounted for in the BD theory through the Zeldovich factor.
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FIG. 3: (a) The Helmholtz free energy of the dislocation loop as a function of its size n during

homogeneous nucleation at T = 300 K, σxy = 2.16 GPa (γxy = 0.135) obtained from umbrella

sampling. (b) Size fluctuation of critical nuclei from MD simulations.

The Helmholtz free energy barrier Fc is computed by umbrella sampling27. The umbrella

sampling is performed in Monte Carlo simulations using a bias potential that is a function

of the order parameter n, which is chosen to be number of atoms inside the dislocation loop.

The bias potential kBT̂ (n − n)2 is super-imposed on the EAM potential, where T̂ = 40 K

and n is the center of the sampling window. We chose T̂ empirically so that the width of the

sampling window on the n-axis would be about 10. The umbrella sampling provides F (n)

at a given γ and T . The maximum value of the free energy curve F (n) is the activation free

energy Fc and the maximizer is the critical dislocation loop size nc. The Zeldovich factor Γ

can be computed from the definition Γ ≡
(

η
2πkBT

)1/2

, where η = −∂2F (n)/∂n2|n=nc .

In the previous study, we used a method suggested by Ngan et al.57 to identify the

formation of dislocation loop and compute the reaction coordinate n. We labelled an atom

as “slipped” if its distance from any of its original nearest neighbors has changed by more

than a critical distance dc. We chose dc = 0.33, 0.38, and 0.43 Å for T ≤ 400 K, T = 500 K,

and T = 600 K, respectively, because thermal fluctuation increases with temperature. The

“slipped” atoms are grouped into clusters; two atoms belong to the same cluster if their
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FIG. 4: Atomistic configurations of dislocation loops at (a) 0 K and (b) 300 K.

distance was less than a cutoff distance rc (3.4Å). The reaction coordinate is defined as the

number of atoms in the largest cluster divided by two.

A possible problem of this reaction coordinate is that it does not take the slip direction

into account even though we are specifically interested in slip along the [112] direction, which

is parallel to the Burgers vector of the Shockley partial. In this paper, we use another order

parameter to focus exclusively on the slip along the [112] direction. As a self-consistency

check, the activation free energy should be independent of this modification of the order

parameter. To compute the new order parameter during umbrella sampling, we focus on

atoms on one (111) plane, each of which has 12 neighbor atoms; three in the plane above, six

in the same plane, and three in the plane below. When the relative displacement along the

[112] direction between an atom and the center of mass position of its three neighbor atoms

in the plane below exceeds a critical distance dc = 0.35Å, we label the atom as “slipped”.

Here, we used a smaller cutoff radius of rc = 3.09Å to group “slipped” atoms into a cluster.

The size of the largest cluster of the slipped atoms is the reaction coordinate n.

As expected, we find that predictions of free energy barrier and nucleation rate are inde-

pendent of these two choices of the reaction coordinate. The data obtained from these two

methods match within statistical errors. In the following analysis, we will use the data from

the new order parameter, because its definition appears to be more physical. Fig. 4 (a) and

Fig. 4 (b) shows the critical cluster sampled by the simulation of homogeneous dislocation

nucleation at T = 0 K (from the string method) and T = 300 K (from umbrella sampling),

respectively. Although the dislocation loop at 0 K appears symmetric, the configuration at

300 K is distorted due to thermal fluctuation.

The attachment rate f+
c is computed by direct MD simulations. From umbrella sampling,
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we collected an ensemble of 500 atomic configurations for which n = nc, and ran MD simu-

lations using each configuration as an initial condition. The initial velocities are randomized

according to the Maxwell-Boltzmann distribution. The mean square change of the loop size,

〈∆n2(t)〉, as shown in Fig. 3 (b), is fitted to a straight line59, 2f+
c t, in order to extract f+

c .

IV. RESULTS

A. Benchmark with MD Simulations

Before applying the BD theory to predict the nucleation rate at a wide range of applied

load and temperature, we would like to establish the applicability of the theory to dislocation

nucleation. We benchmark the prediction of BD theory against direct MD simulations at a

relatively high stress σ = 2.16 GPa (γ = 0.135) at T = 300 K for homogeneous nucleation.

To obtain average nucleation time at the given condition, we performed 192 independent

MD simulations using the NVT ensemble with random initial velocities. Each simulation

ran for 4 ns. If dislocation nucleation occurred during this period, the nucleation time was

recorded. This information is used to construct the function Ps(t), which is the fraction of

MD simulation cells in which dislocation nucleation has not occurred at time t, as shown in

Fig. 5. Ps(t) can be well fitted to the form of exp(−IMDt), from which the nucleation rate

IMD is predicted to be IMD = 2.5× 108 s−1.
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FIG. 5: The fraction of 192 MD simulations in which dislocation nucleation has not occurred at

time t, Ps(t), at T = 300 K and σxy = 2.16 GPa (γxy = 0.135). Dotted curve presents the fitted

curve exp(−IMDt) with IMD = 2.5× 108s−1.

From umbrella sampling at the specified condition, we obtain the free energy function
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F (n). Fig. 3 (a) shows the maximum of F (n), which gives the activation free energy Fc =

0.53 ± 0.01 eV and the critical nucleus size nc = 34. The Zeldovich factor, Γ = 0.051, is

obtained from Γ ≡
(

η
2πkBT

)1/2

, where η = −∂2F (n)/∂n2|n=nc . Using the configurations

collected from umbrella sampling with n = nc as initial conditions, MD simulations give the

attachment rate f+
c = 5.0 × 1014 s−1, as shown in Fig. 3 (b). Because the entire crystal is

subjected to uniform stress, the number of nucleation sites is the total number of atoms,

Ns = 14, 976.

Combining these data, the classical nucleation theory predicts the homogeneous disloca-

tion nucleation rate to be IBD = 4.8 × 108 s−1, which is within a factor of two of the MD

prediction. The difference between two is comparable to our error bar. This agreement is

noteworthy because no adjustable parameters such as the frequency prefactor is involved in

this comparison. It shows that the classical nucleation theory and our numerical approach

are suitable for the calculation of the dislocation nucleation rate.

B. Homogeneous Dislocation Nucleation in Bulk Cu

Having established the applicability of nucleation theory, we now examine the homo-

geneous dislocation nucleation rate under a wide range of temperature and strain (stress)

conditions relevant for experiments and beyond the limited timescale of brute force MD

simulations. We find that the prefactor ν0 = Γf+
c is a slowly changing function of stress

and temperature. It varies by less than a factor of two for all the conditions tested here.

The average value of ν0 is about 2.5× 1013 s−1, which is comparable to the Debye frequency

∼ 1013 s−1.

The nucleation rate varies dominantly by the change of the activation free energy Fc(γ, T ),

which is presented as a function of γ at different T in Fig. 6 (a). The zero temperature

data (i.e. activation energies) are obtained from minimum energy path (MEP) searches

using a modified version of the string method, similar to that used in the literature14,58.

The downward shift of Fc curves with increasing T is the signature of the activation entropy

Sc(γ). Fig. 6 (c) plots Fc as a function of T at γ = 0.092. For T < 400 K, the data closely

follow a straight line, whose average slope gives Sc = 9 kB in the range of [0, 300] K. This

activation entropy contributes a significant multiplicative factor, exp(Sc/kB) ≈ 104, to the

absolute nucleation rate, and cannot be ignored.
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FIG. 6: Activation Helmholtz free energy for homogeneous dislocation nucleation in Cu. (a) Fc

as a function of shear strain γ at different T . (b) Gc as a function of shear strain σ at different

T . Squares represent umbrella sampling data and dots represent zero temperature MEP search

results using simulation cells equilibrated at different temperatures. (c) Fc as a function of T at

γ = 0.092. (d) Gc as a function of T at σ = 2.0 GPa. Circles represent umbrella sampling data

and dashed lines represent a polynomial fit.

In Section IID, we mentioned that the activation entropy would be negligible if only the

vibrational entropy were taken into account. It is likely that the origin of the large activation

entropy is an anharmonic effect such as thermal expansion. To examine the effect of thermal

expansion, we performed a zero temperature MEP search at γ = 0.092, but with other

strain components fixed at the equilibrated values at T = 300 K. This approach is similar

to the quasi-harmonic approximation (QHA)60,61 often used in free energy calculations in

solids, except that, unlike QHA, the vibrational entropy is completely excluded here. The

resulting activation energy, Ẽc = 2.04 eV, is indistinguishable from the activation free energy
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Fc = 2.05 ± 0.01 eV at T = 300 K computed from umbrella sampling. For T < 400 K, we

observe that the activation energy Ẽc and Fc matches well at each γ and T condition (See

Table I in Appendix E).

Because atoms do not vibrate in the MEP search, this result shows that the dominant

mechanism for the large Sc(γ) is indeed thermal expansion, whereas the contribution from

vibrational entropy is negligible. As temperature increases, thermal expansion pushes neigh-

boring atoms further apart and weakens their mutual interaction. This expansion makes

crystallographic planes easier to shear and significantly reduces the free energy barrier for

dislocation nucleation. Here, we confirm that Sc(γ) arises almost entirely from the anhar-

monic effect for dislocation nucleation. At T = 400 K and T = 500 K, we observe significant

differences between Fc computed from umbrella sampling and Ẽc computed from a zero

temperature MEP search in expanded cell. These differences must also be attributed to

anharmonic effects. The activation energy Ẽc from the expanded cell and the activation

free energy Fc(γ, T ) at T = 400 K and T = 500 K are not plotted in Fig 6 (a), because

they overlap with data points at lower temperatures. All data can be found in Table I in

Appendix E.

Combining the activation Helmholtz free energy Fc(γ, T ) and the stress-strain relations,

we obtain the activation Gibbs free energy Gc(σ, T ) shown in Fig. 6 (b). We immediately

notice that the curves at different temperatures are more widely apart in Gc(σ, T ) than those

in Fc(γ, T ), indicating a much larger activation entropy in the constant stress ensemble. For

example, Fig. 6 (d) plots Gc as a function of T at σ = 2.0 GPa, from which we can obtain

an averaged activation entropy of Sc(σ) = 48kB in the temperature range of [0, 300] K.

This activation entropy contributes a multiplicative factor of exp[Sc(σ)/kB] ≈ 1020 to the

absolute nucleation rate, as shown in Fig. 1.

The dramatic increases in the activation entropy when stress, instead of strain, is kept

constant is consistent with the theoretical prediction in Section II. This is caused by changing

stress-strain relationship with temperature. For example, when the shear stress is kept at

σxy = 2.0 GPa, the corresponding shear strain at T = 0 K is γxy = 0.092. But at T = 300 K,

the same stress is able to cause a larger strain, γxy = 0.113. Hence at constant stress the

activation free energy decreases much faster with temperature than that at constant strain.
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C. Heterogeneous Dislocation Nucleation in Cu Nano-Rod
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FIG. 7: Activation free energy for heterogeneous dislocation nucleation from the surface of a Cu

nanorod. (a) Fc as a function of compressive strain εzz at different T . (b) Gc as a function of

compressive stress σzz at different T . Squares represent umbrella sampling data and dots represent

zero temperature MEP search results.

We studied dislocation nucleation from the corner of a [001]-oriented copper nanorod

with {100} side surfaces under axial compression. While the size of dislocation loop n is

the only order parameter used in the umbrella sampling, the umbrella sampling simulation

automatically locates the dislocation nucleus at the corner of nanorod, as shown in Fig. 2

(c). This is because the nucleation barrier is much smaller for the nucleation from the corner

than the surface, as found by Zhu et al.14 We also find that the prefactor ν0 varies slowly

similar to the case of homogeneous nucleation, changing less than one order of magnitude at

all γ and T conditions tested. Interestingly, the average value of ν0 is about 0.5× 1013 s−1,

several times smaller than the average prefactor homogeneous nucleation. The measured

growth rate f+
c of a critical nucleus turns out to be significantly smaller (by about a factor

of 3) due to the shorter dislocation line length relative to that of the complete dislocation

loop in homogeneous nucleation.

Fig. 7 plots the activation free energy barrier as a function of axial compressive strain

εzz and compressive stress σzz. Both Fig. 7 (a) and (b) show the reduction of the activation

free energy with temperature, and the reduction in (b) is more pronounced due to thermal

softening. For example, at the compressive elastic strain of ε = 0.03, the compressive stress
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is σ = 1.56 GPa at T = 0 K. The activation entropy Sc(ε) at this elastic strain equals 9 kB,

whereas the activation entropy Sc(σ) at this stress equals 17 kB. Unfortunately, we could

not perform the minimum energy path search at zero temperature using an expanded cell

to mimic the thermal expansion effect due to the free surface of the nanorod.

The activation entropy difference is smaller than the homogeneous nucleation because

both thermal softening and activation volume are smaller. In order for the homogeneous

nucleation to occur at room temperature, the perfect crystal must be sheared significantly,

close to the ideal shear strength. In such a high non-linear elastic regime, the thermal

softening effect becomes very large, as depicted in Fig. 2. However, the heterogeneous

nucleation is much easier to occur so that it can happen when the nanorod is subjected to a

moderate loading in which the stress-strain relation is still relatively linear. Therefore, the

thermal softening effect is not as large as the case of homogeneous nucleation. Secondly,

because the applied compression stress is not parallel to the slip direction (Schmid factor

0.471), the activation free energy is less sensitive to the applied stress, leading to a smaller

activation volume compared with the case of homogeneous nucleation (see Appendix F for

more discussions on the activation volume).

V. DISCUSSION

A. Testing the “thermodynamic compensation law”

With the numerical results of Gc(σ, T ), we can test the approximations Sc(σ) = Hc(σ)/T ∗

and Sc(γ) = Ec(γ)/T ∗. Specifically, we are interested in whether Sc(σ) is proportional to

Hc(σ), and whether Sc(γ) is proportional to Ec(γ), and if so, how the coefficient T ∗ compares

with the (bulk or surface) melting point of Cu. While Eqs. (31) and (33) assume that the

activation entropies do not depend on temperature, our data show that they do vary with

temperature for T ≥ 400 K. Hence, we test the average activation entropy Sc in the range of

zero to 300 K. For homogeneous nucleation, we find that Sc(γ) can be roughly approximated

by Ec(γ)/T ∗ with T ∗ ≈ 2700 K as shown in Fig. 8 (a), while Sc(σ) is not proportional to

Hc(σ) as shown in Fig. 8 (c). On the other hand, for heterogeneous nucleation, we find

that Sc(ε) can be approximately fitted to Ec(γ)/T ∗ with T ∗ = 2450 K as shown in Fig. 8

(b), while Sc(σ) can be approximately fitted to Hc(σ)/T ∗ with T ∗ = 930 K as shown in
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Fig. 8 (b). Both values of the fitted T ∗ are different from the surface melting temperature14

of Tm = 700 K. The value of T ∗ = 2450 K also greatly exceeds the (bulk) melting point

of Cu (1358 K63). Hence the empirical fitting parameter T ∗ is most likely not connected

to the melting phenomenon. Fig. 8 shows a consistent trend that the activation entropy

increases as the activation enthalpy (or the activation energy) increases. The “compensation

law” appears to hold for Sc(σ) in heterogeneous nucleation and for Sc(γ) in homogeneous

nucleation, but it does not hold for Sc(σ) in homogeneous dislocation nucleation.
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FIG. 8: The relation between Ec and Sc in the temperature range of zero to 300 K for (a) homo-

geneous and (b) heterogeneous nucleation. The relation between Hc and Sc for (c) homogeneous

and (d) heterogeneous nucleation. The solid lines represent simulation data and the dashed lines

are empirical fits of the form Sc = Ec/T ∗ or Sc = Hc/T ∗.

Because the activation entropies in dislocation nucleation mainly come from anharmonic

effects such as thermal softening and thermal expansion, the exhibition of the “compensa-

tion law” in Fig. 8(a) and (d) cannot be attributed to the usual explanation46,62 that the

activation energy is provided by multiple (small) excitations. The breakdown of the “com-

pensation law” for Sc(σ) in homogeneous dislocation nucleation is probably caused by the
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elastic non-linearity at the high stress needed for homogeneous nucleation.

We note that the empirically fitted value of T ∗ = Ec(γ)/Sc(γ) is close to the estimated

value of 3000 K, which is based on a 10% reduction of the shear modulus as temperature

increases from zero to 300 K (See Section IID). Therefore, Eq. (32) can be considered as

a reasonable approximation to the activation Helmholtz free energy as a function of strain,

i.e.

Fc(γ, T ) ≈ Ec(γ)
µ(T )

µ(0)
(37)

whereas Eq. (28) is not a good approximation for Gc(σ, T ). In other words, Eq. (33) can be

considered as a reasonable approximation to the activation entropy Sc(γ), i.e.

Sc(γ) ≈ −Ec(γ)

µ(0)

∂µ

∂T
(38)

whereas Eq. (31) is not a good approximation for Sc(σ). See Appendix D for more discussions

on the approximation of Sc(σ).

B. Entropic Effect on Nucleation Rate and Yield Strength
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FIG. 9: Contour lines of (a) homogeneous and (b) heterogeneous dislocation nucleation rate per

site I as a function of T and σ. The predictions with and without accounting for the activation

entropy Sc(σ) are plotted in thick and thin lines, respectively. The nucleation rate of I ∼ 106 s−1

per site is accessible in typical MD timescales whereas the nucleation rate of I ∼ 10−4 − 10−9 is

accessible in typical experimental timescales, depending on the number of nucleation sites.
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In this section, we discuss how do the activation entropies affect experimental measure-

ments. The simplest case to consider is to subject a perfect crystal to a constant stress

(i.e. creep) loading condition and measure the rate of dislocation as a function of stress

and temperature. (In practice, these kind of experiments are very difficult to carry out5,

especially to observe homogeneous nucleation.) The data can be plotted in the form of con-

tour lines, similar to those shown in Fig. 9, which are our theoretical predictions. To make

these predictions, we use the activation Gibbs free energy obtained from umbrella sampling.

Because the frequency prefactor ν0 = f+
c Γ varies slowly with σ and T , we use average value

2.5 × 1013 s−1 for the homogeneous nucleation and 0.5 × 1013 s−1 for the heterogeneous nu-

cleation. To show the physical effect of the large activation entropies, the thin lines plot

the rate predictions if the effect of Sc(σ) were completely neglected. Significant deviations

between the two sets of contour lines are observed. For homogeneous dislocation nucleation,

at T = 400 K and σxy = 2.0 GPa (where a thick and a thin contour line cross), we see about

20 orders of magnitude difference between the two contours. The difference between thick

and thin curves becomes larger at smaller stress because activation entropy becomes larger

at smaller stress. For heterogeneous nucleation, at T = 300 K and σzz = 1.5 GPa, the ne-

glect of activation entropy would cause an underestimate of the nucleation rate by 10 orders

of magnitude. The smaller activation volume in heterogeneous dislocation is manifested by

the larger gaps between the contour lines at different nucleation rates.

Experimentally, it is often convenient to impose a constant strain rate to the crystal and

measure the stress-strain curve and the yield strength under the given strain rate. If the

crystal contains no pre-existing defects, then the yield strength is the stress at which the

first dislocation nucleates. The following implicit equation for the yield strength σY has

been derived by considering a nano-rod is loaded at a constant strain rate ε̇.

Gc(σY , T )

kB T
= ln

kB T Ns ν0

E ε̇ Ωc(σY , T )
(39)

This equation is derived14,57 based on the assumption that the nano-rod remains linear elastic

with Young’s modulus E prior to yielding and that ν0 is insensitive to σ and T . One may

apply this equation to homogeneous nucleation case if we replace E by the shear modulus

µ and the uniaxial strain rate ε̇ by γ̇. However, since we observe that the crystal becomes

non-linear elastic prior to dislocation nucleation (see Fig. 2), we predict the yield strength

numerically without assuming linear elasticity. The stress-strain relations shown in Fig. 2(b)
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FIG. 10: (a) Nucleation stress of our bulk sample (containing 14,976 atoms) under constant shear

strain loading rate γ̇ = 10−3 and (b) nucleation stress of the nanorod under constant compressive

strain loading rate ε̇ = 10−3. The strain rate 10−3 is experimentally accessible loading rate. The

solid lines are the prediction based on the activation free energy computed by umbrella sampling.

The dashed lines are the nucleation stress prediction when the activation entropy is neglected. The

dotted line in (b) is the prediction based on the approximation by Zhu et al.14.

and (d) are used to extract the stress rate given the imposed strain rate and current strain.

We replace E in Eq. (39) by ∂σ/∂ε|σ=σY
. The athermal nucleation stress causing dislocation

nucleation at T = 0 K is σxy = 2.8 GPa for homogeneous nucleation and σzz = 4.7 GPa for

heterogeneous nucleation, which can also be obtained from in Fig. 2(b) and (d). At 300 K

and a strain rate of 10−3 s−1, however, the yield strength (i.e. nucleation stress) becomes

σnuc
xy = 2.0 GPa for homogeneous nucleation, about 71% of the athermal nucleation stress,

and σnuc
zz = 1.7 GPa for heterogeneous nucleation, about 36% of the athermal stress.

Fig. 10 plots our predictions of the yield strength as a function of temperature at a strain

rate of 10−3 s−1. As temperature rises, the nucleation stress decreases. This decrease is faster

in the heterogeneous nucleation, Fig. 10(b), than in the homogeneous nucleation, Fig. 10(a).

This observation can be explained by the larger activation volumes in the homogeneous

nucleation than those in the heterogeneous nucleation. We note that the predicted nucleation

stress depends on both the number of atoms in the sample and the applied strain rate.

Increasing the number of atoms has the same effect as decreasing the strain rate.

For comparison, Fig. 10(b) also plots the prediction by Zhu et al.14, which is based on

the assumption of Sc(σ) = Hc(σ)/Tm with Tm = 700 K. (The yield strength is only plotted
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up to T = 300 K in the original paper14.) The two predictions (solid and dotted line) are

close to each other for T < 200 K, but their difference becomes large for T ≥ 300 K. While

the dotted line suggests that the yield strength vanishes at T = 500 K, our prediction (solid

line) shows that the nanorod still retains 71% of its room temperature strength at 500 K. We

believe this difference is caused by the overestimate of the activation entropy when assuming

Tm = 700 K in Sc(σ) = Hc(σ)/Tm.

VI. SUMMARY

In this paper, we have shown that the dislocation nucleation rate is independent of

whether a constant stress or a constant strain is applied, because Fc(γ, T ) = Gc(σ, T ) when

σ and γ lie on the stress-strain curve at temperature T . This naturally results in different

activation entropies depending on whether constant stress or constant strain ensemble is

used. The difference between the two activation entropies equals the activation volume

times a term that characterizes the thermal softening effect. We have shown that the

Becker-Döring theory combined with the activation free energy determined by umbrella

sampling can accurately predict the rate of dislocation nucleation. In both homogeneous and

heterogeneous dislocation nucleation, a large activation entropy at constant elastic strain is

observed, and is attributed to the weakening of atomic bonds due to thermal expansion. The

activation entropy at constant stress is even larger due to the thermal softening. Both effects

are anharmonic in nature, and emphasize the need to go beyond harmonic approximation in

the application of rate theories in solids. The “compensation law” turns out not to hold for

homogeneous dislocation nucleation, probably because of the non-linear effects at high stress

conditions. The “compensation law” appears to work better for heterogeneous nucleation,

probably related to the linearity of the stress-strain relation. We have predicted that the

yield stress decreases faster with temperature for the heterogeneous nucleation than for the

homogeneous nucleation. We believe that our methods and the general conclusions are

applicable to a wide range of nucleation processes in solids that are driven by shear stress,

including cross slip, twinning and martensitic phase transformation.
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APPENDIX A: EQUALITY OF CRITICAL SIZES nσ
c AND nγ

c

Suppose that the Gibbs free energy G(n, σ, T ) is maximized at n = nσ
c , then

∂G(n, σ, T )

∂n

∣∣∣∣
σ,n=nσ

c

= 0. (A1)

T is held constant throughout this section. Through Legendre transform, Eq. (5), we have

the following property for the Helmholtz free energy F (n, γ, T )

∂F (n, γ, T )

∂n

∣∣∣∣
γ,n=nσ

c

=
∂

∂n

∣∣∣∣
γ,n=nσ

c

[G(n, σ, T ) + σγV ]

=
∂G(n, σ, T )

∂n

∣∣∣∣
σ,n=nσ

c

+
∂G(n, σ, T )

∂σ

∣∣∣∣
n=nσ

c

∂σ

∂n
+

∂σ

∂n
γV

= 0− (V γ)
∂σ

∂n
+ (V γ)

∂σ

∂n
= 0. (A2)

By definition, F (n, γ, T ) reaches maximum at n = nγ
c at constant γ and T ,

∂Fc(n, γ, T )

∂n

∣∣∣∣
γ,n=nγ

c

= 0 (A3)

Therefore, we establish that nγ
c = nσ

c , i.e. the maximizer nσ
c of G(n, σ, T ) is also the maxi-

mizer nγ
c of F (n, γ, T ).

APPENDIX B: EQUALITY OF ACTIVATION GIBBS AND HELMHOLTZ FREE

ENERGIES

The activation Gibbs free energy is the free energy difference between state 0: a perfect

crystal, and state 1: a crystal containing a critical dislocation loop under a same shear stress

σ. Because of the plastic shear deformation caused by dislocation loop, state 1 has a higher

strain (γ) than the state 0 (γ0). It has been shown that the maximizer nσ
c of G(n, σ, T )

equals to the maximizer of nγ
c of F (n, γ, T ) when σ equals σ(nc, γ, T ), as defined in Eq. (6).

Note that we keep σ to be the stress at nc,γ, and T . Then at the same σ, but for n = 0, the

strain becomes γ0. Hence, the activation Gibbs free energy barrier can be written as

Gc = G(nc, σ, T )−G(0, σ, T )

= F (nc, γ, T )− σγV − F (0, γ0, T ) + σγ0V (B1)
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Notice that F (nc, γ, T ) and F (0, γ0, T ) do not correspond to the same strain state, so that

their difference is not the activation Helmholtz free energy. To construct the activation

Helmholtz free energy, we subtract and add the F (0, γ, T ) term in the right hand side,

Gc = F (nc, γ, T )− F (0, γ, T ) + F (0, γ, T )− F (0, γ0, T )− V σ(γ − γ0)

≈ Fc +
∂F

∂γ

∣∣∣∣
γ0,V

(γ − γ0) +
1

2

∂2F

∂γ2

∣∣∣∣
γ0,V

(γ − γ0)
2 − σ(γV − γ0V )

= Fc +
1

2

∂2F

∂γ2

∣∣∣∣
γ0,V

(γ − γ0)
2

= Fc +
1

2
V

∂σ

∂γ

∣∣∣∣
γ0,V

(γ − γ0)
2 (B2)

Notice that γV = −∂G(nc, σ, T )/∂σ and γ0V = −∂G(0, σ, T )/∂σ. Then (γV − γ0V ) is

equivalent to − ∂
∂σ

(G(nc, σ, T ) − G(0, σ, T )) = −∂Gc

∂σ
≡ Ωc, i.e. the activation volume. By

plugging (γ − γ0) = Ωc/V into the equation, we have

Gc = Fc +
1

2

1

V

∂σ

∂γ

∣∣∣∣
γ0,V

(Ω∗)2 + O(V −2)

= Fc + O(V −1) (B3)

In the thermodynamics limit (V → ∞), we have Gc = Fc. Hence, the nucleation rate does

not depend on whether the crystal is subjected to constant stress or constant strain loading.

The equality allows us to compute the activation Gibbs free energy Gc(σ, T ) by combining

the activation Helmholtz free energy Fc(γ, T ) and the stress-strain relations of the perfect

crystal shown in Fig. 2 (b) and (d).

APPENDIX C: PHYSICAL INTERPRETATION OF ACTIVATION ENTROPY

DIFFERENCE ∆Sc

It is well-known that the entropy is a thermodynamic stat variable that is indepen-

dent of the ensemble of choice, i.e., S(n, γ, T ) ≡ ∂F (n, γ, T )/∂T |n,γ and S(n, σ, T ) ≡
∂G(n, σ, T )/∂T |n,σ equal to each other as long as σ = V −1∂F/∂γ|n,T . At the same time, the

activation entropy is just the entropy difference between the activated state and the meta-

stable state, i.e., Sc(γ, T ) = S(nc, γ, T )−S(0, γ, T ) and Sc(σ, T ) = S(nc, σ, T )−S(0, σ, T ). If

the entropies in two ensembles can equal each other, it may seem puzzling how the activation

entropies can be different.
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The resolution of this apparent paradox is that under the constant applied stress, the

nucleation of a dislocation loop causes a strain increase. Let γ be the strain at the state

defined by n = nc, σ, and T , and γ0 be the strain at the state defined by n = 0, σ, and

T , then γ > γ0. Hence, we have S(nc, σ, T ) = S(nc, γ, T ) and S(0, σ, T ) = S(0, γ0, T ), but

S(0, γ, T ) 6= S(0, γ0, T ).

Sc(σ, T ) = S(nc, σ, T )− S(0, σ, T )

= S(nc, γ, T )− S(0, γ0, T )

= S(nc, γ, T )− S(0, γ, T ) + S(0, γ, T )− S(0, γ0, T )

= Sc(γ, T ) + S(0, γ, T )− S(0, γ0, T ) (C1)

This shows that the activation entropy difference ∆Sc ≡ Sc(σ)−Sc(γ) equals to S(0, γ, T )−
S(0, γ0, T ), which is entropy difference of the perfect crystal at two slightly different strains.

In the limit of V → ∞, because we expect (γ − γ0) → 0, we might reach a false con-

clusion that ∆Sc = (S(0, γ, T ) − S(0, γ0, T )) → 0. Instead, the correct behavior in the

thermodynamic limit can be obtained by expanding ∆Sc in a Taylor series.

S(γ)− S(γ0) =
∂S

∂γ
(γ − γ0) + · · ·

= − ∂σ

∂T

∣∣∣∣
γ,V

V (γ − γ0) + · · · (C2)

where the Maxwell relationship ∂S/∂γ|T = −V ∂σ/∂T |γ,V is used. The term (γV − γ0V )

equals the activation volume Ωc, and can be interpreted as plastic strain γpl due to formation

of dislocation loop times the volume of the crystal, i.e.

(γV − γ0V ) = Ωc = γplV = bAc (C3)

where b is the magnitude of the Burgers vector and Ac is the area of the critical dislocation

loop. Using the relation (γ − γ0) = Ωc/V , we have

∆Sc = S(γ)− S(γ0) = − ∂σ

∂T

∣∣∣∣
γ,V

Ωc + O(V −1) (C4)

which is exactly the same as Eq. (24).

A similar expression has been obtained for the difference between point defect formation

entropies under constant pressure (Sp) and under constant volume (Sv)
39, with

Sp − Sv = βBVrel (C5)
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where β ≡ V −1 ∂V
∂T

∣∣
p=0

is the thermal expansion factor at zero hydrostatic pressure p, B is

the isothermal bulk modulus, and Vrel is the relaxation volume of the defect. In Cu, the

value of Sp − Sv is estimated to be −1.7 kB for a vacancy and 13.7 kB for an interstitial39.

Comparing Eq. (C5) with Eq. (C4), we note that relaxation volume Vrel for point defects

corresponds to the activation volume Ω for dislocation nucleation, and that βB corresponds

to the − ∂σ
∂T

term. The similarity between these two equations stems from the fact that they

both express the entropy difference between two states, and the choice of the two states

depends on whether the stress or the strain is kept constant when the defect is introduced.

On the other hand, there are also some differences between the physics expressed by these

two equations. First, thermal expansion plays a prominent role in Eq. (C5) because it focuses

on hydrostatic stress and strain effects. In comparison, thermal expansion does not play a

role in Eq. (C4) because it focuses on shear stress and strain effects. Second, the formation

entropy of a point defect is the entropy difference between two metastable states and governs

equilibrium properties, e.g. density of vacancies at thermal equilibrium. In comparison, the

activation entropy is the entropy difference between a saddle (i.e. unstable) state and a

metastable state and governs kinetics, such as dislocation nucleation rate. In addition, the

saddle state (i.e. the size of the critical nucleus) depends on stress and temperature, while

such complexity does not arise in the formation entropy of point defects.

APPENDIX D: APPROXIMATION OF Sc(σ)

In this appendix, we introduce a series of simplifying approximations to estimate the

magnitude of Sc(σ) in the low temperature, low stress limit. In the temperature range of

zero to 300 K, the activation entropy is found to be insensitive to temperature. Starting

from Eqs. (24) and (38), we have

Sc(σ) = Sc(γ) + ∆Sc ≈ −Ec(γ)

µ(0)

∂µ

∂T
− Ωc

∂σ

∂T

∣∣∣∣
γ

(D1)

If we assume the crystal is linear elastic, i.e. σ = µ γ, then,

Sc(σ) ≈ −Hc(σ) + Ωc(σ) · σ
µ(0)

∂µ

∂T
(D2)

Similar expressions can be obtained for normal (compressive) loading by replacing γ with ε

and replacing µ by the Young’s modulus.
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To gain more intuition, we note that in the limit of σ → 0, the line tension model36

estimates that Hc(σ) ∝ σ−1. In addition, in the limit of T → 0, Ωc(σ) ≈ −∂Hc/∂σ. Under

these conditions, Ωc(σ) · σ ≈ Hc(σ), so that,

Sc(σ) ≈ −2Hc(σ)

µ(0)

∂µ

∂T
(D3)

Comparing Eq. (D3) with Eq. (38), we have,

Sc(σ)

Hc(σ)
≈ 2

Sc(γ)

Ec(γ)
(D4)

This trend is qualitatively observed in heterogeneous nucleation, when comparing Fig. 8(b)

and (d), and is less clear in homogeneous nucleation, when comparing Fig. 8(a) and (c).

This is probably because the stress-strain relationship is more nonlinear in the case of ho-

mogeneous nucleation.

APPENDIX E: ACTIVATION FREE ENERGY DATA

In Table I and II, we provide the activation free energy data at all temperature and

strain conditions in this study so that interested readers can use them as a benchmark. For

homogeneous nucleation, the strain γxy is defined as ∆x/h0
y where ∆x is the displacement

of the repeat vector initially in the y-direction along the x axis at each pure shear stress

condition, and h0
y is the height of the cell along the y-axis at zero temperature without

external loading. Shear stress σxy is determined from the x-y component of the average

Virial stress. For heterogeneous nucleation, we take only the elastic strain into account. The

elastic strain εzz at T is defined as [Lz(σ, T )−Lz(σ = 0, T )]/L0
z where Lz(σ, T ) is the length

of the repeat vector along the z-axis, Lz(σ = 0, T ) is the equilibrium length at temperature

T under zero stress. L0
z = 20a0 = 72.3Å is the reference length (before relaxation), where

a0 is the lattice constant of copper. The compressional stress σzz is defined by σzz = 〈F 〉/d2

where 〈F 〉 is the axial force computed from the z-z component of the average Virial stress,

and d = 15a0 = 54.225Å is the reference side length of the nanorod.
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T γxy 0.092 0.095 0.100 0.105 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145

0 K
σxy 2.00 2.04 2.11 2.17 2.24 2.30 2.36 2.42 2.48 2.53 2.58 2.63

Ec 2.2851 2.0866 1.7946 1.5426 1.3234 1.1315 0.9627 0.8133 0.6815 0.5648 0.4615 0.3703

100 K
σxy 1.94 1.98 2.05 2.11 2.17 2.22 2.28 2.33 2.38

Ẽc 2.196 2.004 1.718 1.477 1.268 1.085 0.925 0.784 0.660

200 K

σxy 1.87 1.91 1.97 2.03 2.08 2.13 2.18 2.22

Ẽc 2.116 1.924 1.650 1.419 1.216 1.043 0.890 0.757

Fc 2.115 1.911 1.650 1.428 1.214 1.027 0.863 0.755

Γ 0.062 0.064 0.067 0.070 0.072 0.073 0.073 0.073

f+
c 3.2 3.6 2.9 3.9 3.5 3.4 2.7 2.5

300 K

σxy 1.80 1.83 1.89 1.94 1.98 2.02 2.06 2.10

Ẽc 2.042 1.853 1.586 1.362 1.171 1.004 0.859 0.730

Fc 2.054 1.876 1.585 1.370 1.173 1.006 0.860 0.728

Γ 0.048 0.049 0.051 0.054 0.056 0.056 0.055 0.054

f+
c 3.6 4.5 5.1 3.6 4.4 4.2 5.1 4.4

400 K

σxy 1.71 1.74 1.79 1.84 1.88 1.91 1.95

Ẽc 1.968 1.793 1.529 1.312 1.124 0.962 0.824

Fc 2.008 1.828 1.579 1.347 1.155 0.995 0.853

Γ 0.039 0.040 0.043 0.044 0.045 0.045 0.045

f+
c 5.0 5.9 6.4 7.4 5.3 6.9 6.9

500 K

σxy 1.62 1.64 1.69 1.73 1.76 1.79

Ẽc 1.897 1.727 1.476 1.261 1.081 0.925

Fc 1.939 1.782 1.548 1.341 1.167 1.010

Γ 0.034 0.035 0.037 0.038 0.038 0.038

f+
c 7.7 6.6 8.3 9.9 7.0 7.3

TABLE I: Data for homogeneous nucleation: σxy in GPa, Ec, Ẽc and Fc in eV, f+
c in 1014 s−1. γxy

and Γ are dimensionless. The error in Ẽc is about 0.003 eV, due to the small errors in equilibrating

the simulation cell to achieve the pure shear stress state. The error in Fc is about 0.5 kBT , i.e.

approximately 0.01 eV, due to the statistical error in umbrella sampling. The error in Zeldovich

factor Γ is within ±0.01. The attachment rate f+
c has relative error of ±50%.

APPENDIX F: ACTIVATION VOLUME AND CRITICAL LOOP SIZE

The activation volume Ωc is defined as the derivative of activation free energy with stress,

i.e., Ωc(σ, T ) = −∂Gc/∂σ|T , and measures the sensitivity of nucleation rate to the stress.

Physically, it is interpreted as plastic strain associated with the dislocation loop times the

volume of the crystal, i.e. Ωc = bAc where Ac is the area of critical dislocation loop (See

Appendix C). In this appendix, we use our numerical data to test the validity of the latter

interpretation.
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T = 0 K
εzz 0.0303 0.0353 0.0403 0.0453 0.0503 0.0553 0.0603 0.0653 0.0703 0.0753 0.0803

σxy 1.56 1.81 2.04 2.28 2.50 2.73 2.95 3.16 3.37 3.58 3.78

Ec 1.5110 1.0383 0.7550 0.5650 0.4296 0.3277 0.2495 0.1878 0.1388 0.0993 0.0671

200 K

εzz 0.0312 0.0342 0.0372 0.0402 0.0432

σxy 1.56 1.69 1.82 1.95 2.07

Fc 1.278 1.017 0.825 0.690 0.571

Γ 0.030 0.038 0.047 0.054 0.062

f+
c 1.1 1.0 0.91 0.84 0.85

300 K

εzz 0.0307 0.0337 0.0367 0.0397 0.0427

σxy 1.48 1.60 1.72 1.83 1.94

Fc 1.254 1.004 0.824 0.695 0.579

Γ 0.021 0.028 0.033 0.045 0.049

f+
c 1.5 1.4 1.3 1.1 1.1

400 K

εzz 0.0301 0.0331 0.0361 0.0391 0.0421

σxy 1.39 1.50 1.62 1.73 1.83

Fc 1.258 1.003 0.839 0.700 0.578

Γ 0.019 0.028 0.029 0.037 0.038

f+
c 1.8 1.8 1.7 1.5 1.4

500 K

εzz 0.0296 0.0326 0.0356 0.0386

σxy 1.29 1.40 1.50 1.60

Fc 1.226 1.008 0.833 0.697

Γ 0.018 0.021 0.026 0.032

f+
c 2.6 2.0 2.0 2.0

TABLE II: Data for heterogeneous nucleation: σzz in GPa, Ec, and Fc in eV, f+
c in 1014 s−1. γxy

and Γ are dimensionless. The error in Fc is about 0.5 kBT , i.e. approximately 0.01 eV, due to

the statistical error in umbrella sampling. The error in Zeldovich factor Γ is within ±0.01. The

attachment rate f+
c has relative error of ±50%. Notice that, due to the existence of thermal strain,

the elastic strain values are slightly different at different temperatures.

Because the activation volume measures the sensitivity of Gc(σ, T ) to applied stress, see

Eq. (10), it must be proportional to the Schmid factor, S, in uniaxial loading. Hence, the

hypothesis we wish to test is,

Ωc = nc bAa S (F1)

where b is the magnitude of Burgers vector, Aa is the average area each atom occupy on the

{111} slip plane. Given that the lattice constant of Cu is a0 = 3.615Å, we have b = a0/
√

6 =

1.48 Å and Aa =
√

6a2
0/4 = 5.66 Å2, so that bAa = 8.35 Å3. For the pure shear loading in

our homogeneous nucleation case, the Schmid factor S = 1. For the uniaxial loading in our

heterogeneous nucleation case, S = 0.471.
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FIG. 11: The relation between critical dislocation size nc and the activation volume Ωc ≡ −∂Gc
∂σ .(a)

homogeneous nucleation (b) heterogeneous nucleation. Circles represent the activation volume

obtained from the derivative of Gc with respect to σ. Squares represent the activation volume data

multiplied by 1/S where S is the Schmid factor. Dashed lines are linear fits to the data.

Fig. 11 plots nc versus Ωc for both homogeneous and heterogeneous dislocation nucleation.

In both cases, Ωc appears to be roughly linear with nc, as expected from Eq. (F1). For

homogeneous nucleations under pure shear, Fig. 11(a), the slope of the curves is roughly

Ωc/nc ≈ 10 Å3, close to the expected value of 8.35 Å3. For heterogeneous nucleation under

compression, Fig. 11(a), the slopes of the curves after correction for the Schmid factor is

roughly Ωc/(nc S) ≈ 8 Å3, which is similar to the case of homogeneous nucleation. Therefore,

our data confirms that the idea that the activation volume is proportional to the size of the

critical dislocation loop. The fact that Ωc/(nc S) is somewhat smaller than bAa supports

the notion that the Burgers vector of a critical dislocation nucleus is smaller than that of a

fully formed dislocation9,11.
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