
Annals of Tropical Medicine and Parasitology, Vol. 90, No.3, 225-241 (1996)

REVIEW

Predicting the distribution of tsetse

flies in West Africa using temporal

Fourier processed meteorological

satellite data

By D. J. ROGERS, S. I. KI\Y AND M. J. PACKER

Trypanosomiasis and Land Use in Africa (TALA) Research Group, Department
of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, U.K.

Received and accepted 10 April 1996

An example is given of the application of remotely-sensed, satellite data to the problems of predicting the

distribution and abundance of tsetse flies in West Africa. The distributions of eight species of tsetse,

Glossina morsitans, G. longipalpis, G. palpalis, G. tachinoides, G. pallicera, G. fusca, G. nigrofusca and
G. medicorum in ate d'Ivoire and Burkina Faso, were analysed using discriminant analysis applied to

temporal Fourier-processed surrogates for vegetation, temperature and rainfall derived from meteorologi-
cal satellites. The vegetation and temperature surrogates were the normalized difference vegetation index

and channel-4-brightness temperature, respectively, from the advanced, ve~'-high-resolution radiometers
on board the National Oceanic and Atmospheric Administration's polar-orbiting, meteorological satel-

lites. For rainfall the surrogate was the Cold-Cloud-Duration (CCD) index derived from the geostation-

ary, Meteosat satellite series. The presence or absence of tsetse was predicted with accuracies ranging
from 670/0-1000/0 (mean=82'3%). A further data-set, for the abundance of five tsetse species across the

northern part of ate d'lvoire (an area of about 140 000 km1, was analysed in the same way, and
fly-abundance categories predicted with accuracies of 300/0-1000/0 (mean = 73'00/0). The thermal data

appeared to be the most useful of the predictor variables, followed by vegetation and rainfall indices.

Refinements of the analytical technique and the problems of extending the predictions through space and
time are discussed.

The sensitivity to climate of arthropods in

general, and insect vectors in particular, has
already been stressed in relation to the trans-
mission of vector-borne disease transmission.
Hay et al. (1996) explained how remote-
sensing, satellite platforms can provide data
that are suitable surrogates for the traditional

meteorological data that, in the past, have been
correlated with both vector abundance and
vector-mortality rates. They also explained the
steps in image processing that lead to a variety
of vegetation, thermal and rainfall indices, with

emphasis on those platforms such as the
National Oceanic and Atmospheric Adminis-
tration's (NOAA), polar-orbiting meteoro-

logical satellites and Meteosat satellites which
provide frequent coverages from which rela-
tively cloud-free views of the Earth's surface,
or of cloud-top temperatures, can be produced.

Such multi-temporal data may be used
to give a realistic picture of average monthly
and annual values of vegetation and climate
and have recently been used to describe the
distributions of several species of tsetse fly:
Glossina morsitans Westwood in Zimbabwe
(Rogers and Williams, 1993); G. morsitans and
G. pallidipes Austen in Kenya and Tanzania
(Rogers and Randolph, 1993); and G. palpalis
palpalis (Robineau-Oesvoidy), G. tachinoides
Westwood, G. morsitans submorsitans
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MATERIALS ,"-NO METHODS

Tsetse-fly Distributions
The distributions of tsetse in Cote d'lvoire and
Burkina F aso were taken from maps published
by the Office de la Recherche Scientific
et Technique d'Outre-Mer (ORSTOM)
(Laveissiere and Challier, 1977, 1981). These
maps are compendia of information gathered
over the preceding decades and record species'
presence at a spatial resolution of 0.167°. The
original data sources do not give complete
spatial coverage, and the maps do not neces-
sarily record fly presence in areas where a
species was thought to be ubiquitous by the
compiling authors (e.g. G. palpalis in the
southern part of COte d'lvoire). Thus, whilst
records of fly presence on these maps are
historically accurate, records of absence are
occasionally misleading. The distributions
of eight species of tsetse were used in the
present analysis: G. morsitans submorsitans;
G. longipalpis; G. palpalis s.l.; G. tac/rinoides;
G. pa/licera Bigot; G. fusca; G. nigrofusca
Newstead; and G. medico rum Austen.

Newstead, G. longipalpis Wiedemann and
G. Jitsca Walker in Togo (Rogers e1 al., 1994).

These studies extended previous research in
which tsetse-fly mortality rates (Rogers and
Randolph, 1986, 1991), distribution (Gaschen,
1945), abundance (Fairbairn and Culwick,
1950) and infection rates (Ford and Leggate,
1961) and prevalence of human sleeping sick-
ness (Rogers and Williams, 1993) were related
to ground-based measures of climate based
on synoptic or contemporary meteorological
records.

The problems of processing large amounts
of satellire data have led to the development
of a variety of data-reduction methods. In

the case of multi-temporal data, principal-
components analysis of monthly, normalized
difference vegetation indices (NDVI), derived
from the advanced, very-high-resolution radi-
ometers (A VRRR) on board the NOAA series
of satellites, usually gives a first component
obviously correlated with the mean vegetation
index f(H" the year. The second and third
components are related to seasonality, which is
especially pronounced in the savannah regions
of Afria (Townshend and Justice, 1986;
Eastman and Fulk, 1993). An alternative

approach to data reduction, using temporal
Fourier processing, gives results that have
recently been related to regional- and

continenral-scale, biological processes (.'\ndres
e1 al., 1994; Olsson and Eklundh, 1994; Rogers
and "'.illiams, 1994; Verhoef e1 al., 1996).
When Fourier analysis was applied to monthly
NDVl <bta for Africa, it was found that the

annual, bi-annual and tri-annual cycles (called
'compo~ts' in the analysis) explained a large
part of the variability of the annual NDVI
signal. Features of the Fourier analysis of the
whole-.\frica ~D'vl were related both to eco-
logical IJanerns, such as the savannah regions
of Afria or the Gezira irrigation scheme in
southern Sudan, and to ecological processes,
such as the seasonal groWth of vegetation along
the River ~ile (Rogers and Williams, 1994).
The present review describes the application of
these techniques to the description of the
distribution and abundance of eight species of
tsetse in Cote d'Ivoire and Burkina Faso, West

Africa.

~I

Tsetse-fly Abundance
The abundance of flies in the northern part of
COte d'!voire was monitored by a joint Food
and Agriculture Organization/German Tech-
nical Assistance (F AO/GTZ) project that ran
from 1979 to 1980 and produced detailed maps
of fly distributions at scales of I: I 000 000 and
1:200 000 (Anon., 1982). The data at a spatial
resolution of 0.250. are used in the present
analysis. Flies were sampled using Challier /

Laveissiere traps (Challier and Laveissiere,
1973) placed in suitable habitats by the survey
teams and left for short periods before collec-
tion and removal. Given the very large area
sampled and the short sampling time in each
habitat, these data are likely to be affected
by a number of confounding effects such as
sampling errors, poor ".eather at the time of
sampling and seasonali~., so only the mean
values (flies/trap per nominal 6-h trapping

session) were analysed.
Some of the species present in the region

were inadequately sampled by the traps used in
the surveys, and supplementary catches using
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hand nets were recorded separately on the
maps. The coverage using this method was
relatively poor, however, and these results
have not been included in the present analysis,
which is based entirely upon the trap catches
of G. morsitans, G. longipalpis, G. palpalis,
G. tachinoides and G. fusca.

Cold-cloud-duration (CCD) imagery was
obtained from the F AO-ARTEMIS program
as 5-year, monthly means for the period 1988-
1992. The CCO imagery has been correlated
with surface rainfall measurements as part of
the Tropical Applications in Meteorolo~. of

Satellite and other data (T AMSA T) program
within the area covered by the present tsetse

surveys (Snijders, 1991).
Oigital-elevation-model (OEM) data were

obtained from a O.O83°-resolution elevation
surface for Africa, produced by the Global
Land Information System (GLIS) of the
United States Geological Survey, Earth

Resources Observation Systems (USGS,
EROS) data centre. The original files were
resampled to a 7.6 x 7.6 km resolution image

to ensure compatibilit). with the other data

layers.

Satellite-data Processing and

Data Reduction
Multi-temporal satellite data produce multi-
variate data-sets for each unit area (pixel)
within an image. Each of the 12, monthlv
MVC of each of the image types forms a singl~
axis in a multi-variate space defining the en-
vironment of the vector. Many of these axes
are strongly correlated with each other be-
cause, for example, a pixel with a high :t\TDVI
in one month is likely to have a high NDVI in

other months. This indicates that data reduc-
tion (i.e. ordi~tion) could be achieved, with-
out loss of information, by replacing the raw
imagery with some combined signal derived

from these highly correlated values.
The simplest combination is obviously the

arithmetic mean, and seasonal variability may
be captured b)' the variance or standard devi-
ation of the mean. More complex ordination
techniques generally involve projecting the
data onto a rotated (usually orthogonal) set of
axes (called 'principal components') such that

the first new axis captures the largest pro-
portion of data variance, the second captures
the largest proportion of the remaining vari-

ance, and so on. Principal-components analysis
(PCI\) retains the same number of axes as the

original data-set, but the sequential partition-
ing of the variance often means that many of

Satellite Data
NDVIs are derived from readings in channels
1 and 2 (ChI and Chz, respectively) of
the A \'HRR on board the NOAA series of
meteorological satellites, being calculated as

(Chz -Chl)/(Chz+Chl).
Prince et al. (1990) have described the ap-

plication of NDVI data to a range of biological
problems and Hay et al. (1996) not only
described their application to arthropod vec-
tors of disease specifically but also reviewed
alternative vegetation indices. 1982-90 ten-day

'dekadal' maximum-value-composite (M\TC)
NDV1 data (Holben, 1986) were obtained from

the Food and Agriculture Organization's
(F AO) African Real Time Environmental
Monitoring using Meteorological Satellites
(ARTEMIS) program at 7.6 x 7.6 km resol-

ution. The registration of these images was
checked against a geo-referenced 'master'

image, and corrections made where necessa~-.
This involved shifting images by 0-3 pixels
in an east-west or north-south direction, de-
pending on the scene. The raw imagery was
then corrected for satellite-sensor drift in

channell using calibration coefficients derived
by Los (1993), and then maximum-value com-
posited by selecting the highest value of the

dekadal pixels for each site within each month,
to produce a set of monthly images for further

analvsis.
A \'HRR-channel-4-brightness temperature

correlates with air temperature at the Earth's
surface (Hay et al., 1996). Dekadal data
at 7.6 x 7.6 km spatial resolution from the

archives of the Global Inventory Monitoring
and Modelling Systems (GI~L\1S) group at
the NASA Goddard Space Flight Center were

maximum-value composited for the period
1987-1992. Monthly image~- was later pro-

duced, again by MVC, and used in the present

analysis.
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where p= 1, ...[(NI2) -1]. The component
at a frequency wp=2nplN is called the
pth harmonic and, for all P # N /2, these
harmonics may be written in the equivalent

form

apcoswpt+ bpsin(J)pt= Rpcos«(J)pt+ <P,> 3)

where Rp is the amplitude of the pth harmonic

= "(lIp2 + bp2)

and <t>p is the phase of the pth harmonic

(Chatfield, 1980)

-1,
-bpi ap).

= tan

The effect of Fourier analysis is to partition the
variability of the time-series into (orthogonal
and thus uncorrelated) components at frequen-
cies of 21l/ N, 41l/ N, 61l/ N ..., 1l, or periods
equal to 1, 1/2, 1/3, ...2/ N times the
duration of the observations, N. If monthly
observations are taken, Fourier analysis can
partition the time-series into frequencies
equivalent to periods ranging from as long as
the whole time-series, down to 2 months
(higher frequencies, i.e. shorter period cycles,
cannot be distinguished by monthly data). Full
Fourier analysis exactly describes the original
data set [since the Fourier series in eqn (1)
contains N parameters to describe N obser-
vations], but not all harmonics may be con-
tributing equally to this description. The
following relationship, known as Parseval's
theorem, applies to the Fourier representation

of x,

the axes in principal-component space are
effectively redundant because they explain
only a very small proportion of the variance in
the original data-set (Green, 1978). Projection
of the original data-set onto the principal
component axes involves applying a series of
coefficients or weights to the raw data, effec-
tively to achieve the desired axis rotation (the
weights are the cosines of the angles between
the original and rotated co-ordinate axes). Data
values in the original co-ordinate system all
contribute (via their weighted values) to each
principal-component-axis score. Thus, for ex-
ample, a series of 12, monthly images, from
January-December, may be subjected to PCA
and every month would then contribute to
each of the 12 resulting principal-component
axes. If, however, only the firsr-few principal-
component axes explain the great majority of
the variance in the original data, only these
need be used in further analysis. PCA is not
independent of the scale of the original axes

and it is generally necessary to standardize (or
transform) the raw variables to roughly similar
variances before analysis, or else to use the
correlation matrix in the analysis (Marriott,
1974). This makes it difficult to extend the
results of PCA to other times and places
because principal-component-axis rotation is
uniquely determined by the original set of

observational data (the 'training set').
An entirely different approach to the same

problem of data reduction was suggested by
the literature on time-series analysis (e.g.
Chatfield, 1980). The time-series Xt may be

described by a Fourier series representation

where

(4)
N/2-1

I:(X,-i)2/N= L R;/2+a2NlZo
0=1

(1)

N/2-1

%,=110+ L [lIpcos(27tpt/N)
p=l

+b~in(27tpt/ N)] +1I,IV/2COS7tt

t=I,2, .lV, and the coefficients ap and bp are

defined as follows:
a =x

0

aNn = I:(-I)tXt/N

(2)
ap = 2[I:Xtcos(21tpt/ N)]/ N

bp = 2[I:x,sin(21tpt/ N)]/ N

This equation states that a quantity very simi-
lar to the variance of the original observations
[the left-hand side of the equation, but with
the divisor N rather than (N -1)] is the sum
of the contributions of each of the harmonics
for values of p from 1 to N /2, where Rj /2 is

the contribution of the pth harmonic.
The combination of the orthogonality of the

harmonics in the Fourier-series representation
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of multi-temporal satellite data and the (per-
haps illusory) biological transparency of the
interpretation of these harmonics makes this
approach to data reduction especially attractive
to biologists (Rogers and Williams, 1994). In
effect, it may be possible to reduce a monthly
or dekadal data stream covering 10 or more
years to just seven variables (the mean of the
whole series and the amplitude and phases of
the first three Fourier components) without a
significant loss of information.

For the present study, each of the NDVI,
channel-4-brightness-temperature and CCD,
monthly-image data-sets were subjected to
temporal Fourier processing and the means,
amplitudes and phases of the annual, bi-annual
and tri-annual cycles calculated. These vari-
ables were stored as new image layers for
analysis, at the same spatial resolution as the
original imagef).. The combined (i.e. annual
plus bi-annual plus tri-annual cycle) Fourier
description of the original signal was also

calculated (a summation that essentially
smooths the original data-set) and its mini-
mum, maximum and range were recorded for
use in the analysis. In addition, certain combi-
nations of the Fourier-processed signals were
calculated, such as the ratio of ~~VI to mean

values of channel-4-brightness temperatures,
which has been shown to be a more stable
indicator of vegetation type than either vari-

able alone (Lambin and Ehrlich, 1995, 1996).
A full list of predictor variables used in this

study is given in Table 1.
All satellite imagery was further processed

by selecting a block of 2 x 2 pixels positioned

at the centre of each grid square on the
fly-distribution, and the mean values for each

square were used in further analyses.

I

,

(=dlsperslon) matnx (\..freen, l'JIO). lill t:qn
(5), the subscript n for the number of variables
has been dropped for clarity.] Thus, the
Mahalanobis distance is the distance between
the sample centroids adjusted for their com-

mon co-variance. In the case of the Euclidean
distance, dtz, the co-variances are zero, so that
the co-variance matrix C~ equals c~ -I or I,

the identity matrix (with values of I along the
diagonal and 0 elsewhere). This reduces
the equation for Dtz to that for dtz' If the

Data Analysis
The reduced-dimension data-set produced by
the methods outlined above form the set of

predictor variables for describing the species'
distributions and abundance. Of the methods

available, such as correspondence analysis (Ter

Braak, 1986; Hill, 1991), projection pursuit,
nearest neighbour and neural network analysis
(Williams et ai., 1992), this review concentrates
on the use of various forms and modifications

~

of discriminant analvsis; these are relativelv
easy to apply and provide biological insight
into the nature of the limits to the distribution
and abundance of vector species. The simple
problem of describing the distribution of a
vector is taken to illustrate the techniques.

In its simplest form, discriminant analysis
assumes a multi-variate normal distribution of
the predictor variables and a common within-
group co-variance of the variables for all points
defining vector presence and vector absence.
The mean values of the predictor variables in
sites of vector presence and absence, and the
within-group co-variance matrix, are estimated
from representative samples from reliable dis-
tribution maps (the 'training sets'). Means of
multi-variate distributions are referred to as
centroids and are defined by mathematical vec-
tors (~) where n is the number of dimensions

(i.e. variables). The Mahalanobis distance, d,
is the distance between two multi-variate dis-

tribution centroids, or between a sample point
and a centroid, and is a generalization of the
traditional squared Euclidean distance, ~:

dt2 = (X";- -i;)'(X";- -i;) =d'd

and

Dt2 = (X";- -i;)'C-;' 1 (X";- -i;) =d'C-;' Id (5)

where dfl and Dfl are, respectively, the
Euclidean and Mahalanobis distances between
group I (e.g. for vector absence) and group 2.
(e.g. for vector presence), d is (XI -Xl)' witlJ
the subscripts again referring to the tw(]
groups (or, alternatively, 1 and 2 might refer
to a point and a centroid), and Cw -I is the

inverse of the within-groups co-varianct
..'~"""" rT- ---
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T.WLE I
Predictor vllrillbles used in the IInlllyses of tsetse fly distributions in Cote d'/voire IInd Burk1nll FIISO, IInd their

obsen'ed mllximum IInd minimum villues in the trllining-set dlltll

;\r1inimumName l\1aximum-lbbreviation

ALnTUDE

Elev 829'8 0Elevation (m)

VEGETATION

NDmean

NDpl
NDal

NDp2
NDa2

~Dp3
NDa3
NDmax
NDmin

NDrange

0.492

11.23

0.19
4.78-

0'083
3.925-

0.033
0.597

0.4
0.408

-0.082

3.13
0.012

1.6
0,009

0,05

0-002
-0.061

-0.106

0,04

:-"-ormalized difference vegetation index (NO VI) mean

:-,,-oVI phase 1

:-,,-oVI amplitude 1
NoVI phase 2
~oVI amplitude 2

:-,,-oVI phase 3

~nVI amplitude 3

NoVI maximum

~'DVI minimllm

:-,,-oVI range

R.\JNF.U-L

CCDmean

CCDpl
CCDal

CCDp2
CCDa2

CCDp3
CCDa3
CCDmax
CCDmin

CCDrange

27
2-65

23
0-5
2-75

0-025
I

81-9

-30'6t
85-6

Cold-cloud duration (CCD) mean (h)
CCD phase 1
CCD amplitude I (h)
CCD phase 2
CCD amplitUde 2 (h)
cm phase 3
CCD amplitude 3 (h)
CCD maximum (h)
cm minimum (h)
CCD range (h)

111
6.9

66.75
4.2

72-25
3.975

27.8
223.6
52.2

192.4

TL..IPER.\ TURE

CH4mean

CH4pl
CH4al

CH4p2
CH4a2

CH4p3
CH4a3
CH4max
CH4min

CH4range

41
2.7

11.5
5.2
3-8

3-8
1-8

50.5
34-8

26.6

21
0.8
1.15
1.025
0.125
0.225
0.1

21.9
18.6
2.5

Thermal (A VHRR-channel-4) radiance mean rC)
Thermal phase 1
Thermal amplitude 1 rC)
Thermal phase 2
Thermal amplitude 2 rC)
Thermal phase 3
Thermal amplitude 3 rC)
Thermal ma.'{imum rC)
Thermal minimum rC)
Thermal range rC)

MLXED

~~p-Cdp
NDm/CDm
:-.iDm/CH4m

:-.iDpl-CH4pl
:-.iDal/CH4al

0.10
-0.130

-0.369

2.1i5
0.065

6.93
0.742
2.097

10.025
3'674

~DVI phase-CCD phase
100 x NDVI mean/CCD mean

100 x ND,-l mean/thermal mean

~D,-l phase I-thermal phase I
100 x NDVI amplitude I/thermal amplitude I

.Values are the timing of the maxima of the first of the bi-annual or tri-annual cycles.

tNegative values are possible in Fourier harmonics.



L Pgl Cgl-1/2e-D;/2
g=1

2

P(llx) = pte-Dt/2
2

L prf-D;/2
n=1

and and

2

P(2Ix) = P2t'-D212
2

L p/-D;12
a=1

P(2Ix) = P2IC21-1/2e-D~/2
2

L P,I C,I-112e-D;12
,=1

(6) (7)

where P(llx) is the posterior probability that
observation x belongs to group I and P(2,x)
the posterior probabili~. that it belongs to

group 2 (Green, 1978). PI and P2 are the prior
probabilities of belonging to the two groups,
defined as the probabilities with which any

observation might belong to either group,
given prior knowledge or experience of the
situation (often, when applied, based on the
training-set data). In the absence of any prior

experience, it is usual to assume equal prior
probability of belonging to any of the groups.
Where there are only two groups, for absence
and presence, PI and P2 are both 0.5. Equation
(6) assumes that observation x must come from
either group I or group 2; the possibility it

belongs to neither is discounted. Once again,
the assumption in eqn (6) is of multi-variate
normali~., the other terms of the multi-variate

normal equation cancelling out (Tatsuoka.

1971).

where !C)! and ICzl are the determinants of
the co-variance matrices for groups g= 1 and
g=2, respectively [the Mahalanobis distances
in eqn (7), calcplated from eqn (5), are now

evaluated using the separate within-group
co-variance matrices] (Tatsuoka, 1971). \\:ith

unequal co-variance matrices, the discriminant
axis (strictly speaking a plane) that separates
the two groups in multi-v.ariate space is no

longer linear.
It is relatively straightforward to extend

eqns (5) to (7) to situations in which more than
two groups (absence/presence) are encoun-
tered. The most obvious example is when
vector abundance data are 'binned' into more
than two groups, with each bin defining a
range of vector densities. Examples are given
here of binning the abundance data for the five
species of tsetse in northern Ci>te d'ivoire into

three or five abundance classes, with approxi-
mately equal sample sizes (although using the

problem is to predict only to which of the
groups of 'presence' or 'absence' a new point
belongs, it is simply necessary- to calculate the
two values of d between the point and each of
the two centroids. The point is then assigned
to the group to which it is closest in multi-
variate space (i.e. the one which gives the
smallest d). This assignment rule is obviously
an over-simplification since the values of d

may differ by only a little, or by a very large
amount. There is always a probabilit)., how-
ever slight, that the observation in fact belongs
to the group to which it was not assigned.

The 'posterior probability' replaces the
simple prediction of group membership by
calculating the probabilit). with which any
observation belongs to each group as follows

The above formulae apply only to those
situations in which a common co-variance
matrix can be assumed. In many cases of
distribution data, however, this does not apply
because animals do not live within a random
subset of environmental space, but within a
rather unusual subset, with specific environ-
mental conditions which cannot be described
by general environmental conditions. The re-
sult is that the co-variances of the variables
within a distributional range are often different
from those of the same variables outside the
distributional limits. This requires a modi-
fication of eqns (5) and (6), to allo,," for
different, within-group co-variance matrices.
Equation (6) is then modified as follows

2

P IC 1-1/2e-D1/2P(llx)= 21 1 1
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rule that no abundance level appeared in more
than one class).

A more subtle application of eqns (5) to (7)
is when distributional data of a single species
are drawn from more than one data source,
extending across a wide geographical region.
Here there may be regional variation in areas of
vector absence that gives different co-variance
matrices in different areas. There may also
be different sub-specific- or strain-variation
responses of the vectors to environmental con-
ditions in the different regions, again requiring
different co-variance matrices defining fly

presence in the different areas. The statistical
significance of any differences found may be
tested using Bartlett's:l approximation (9) for
testing co-variance matrix equality (Green,
1978), defined as follows -

G

B= (m-G)lnIC",I- L (mg-l)lnICgl (8)
q=l

where m is the total number of observations of
all groups (m=m\+mz+ ...mc) and G is the
total number of groups (i.e. two in the simple
case of presence/absence). B is approximately
distributed as i with ~(G -l)(n)(n+ I)]
degrees of freedom, where n is the number
of variables contributing to the co-variance
matrices. Cw! and Cg! respectively refer to
the determinants of the within-groups co-
variance matrix of all groups combined or of
each group, g, separately. A priori, the best
approach to analysing multiple data-sets from
large areas is to keep them separate initially
and then to combine co-variance matrices
appropriately only when they can be shown
not to differ significantly. In practice, however,
this may result in rather small sample sizes

giving unreliable co-variance matrices (Lark,
1994). In the present study, both approaches
were tested. Whilst there was an improvement
in the predicted distribution of some species
when the data for Cote d'Ivoire and Burkina
F aso were kept separate, for others the overall
fit was worse. Only the overall fits are shown,

with comments on the alternative approach.
In the analyses, all of the map data were

used as the training sets for each tsetse species,
and the predictor satellite variables were

selected in a forward, step-wise manner, the
criterion for inclusion being that the addition
of the selected variable caused the greatest

increase in the Mahalanobis distance [eqn (5)]

compared with all other variables during that
round (since unequal co-variance matrices
were assumed in the analysis, the Mahalanobis
distance calculated for each comparison was
the sum of the distance between the presence
and absence category and between the ab-
sence and presence category). Variables were
selected in order of their ability to separate the
different groups either of presence/ absence or
of density classes. A total of 10 variables (out of
36) was selected and those chosen were later
used to produce maps of posterior probabilities
[eqn (7)] which represent the probabilities with
which each grid-square falls into the category
of fly presence or absence. These predicted
maps cover the region from Cote d'Ivoire in
the west, to Togo in the east and are based on
sampling the satellite and other data files at a
spatial resolution of 0.125°.

No transformation of the raw variables was
undertaken before analysis, to make biological
interpretation of the results more straight-
forward. The method of variable selection,
using Mahalanobis distances, overcomes the
potential effect of unequal co-variances arbi-
trarily determining the importance of the
predictor variables.

The ability of the technique to describe the
observed distribution and abundance data was
measured in several ways. The overall percent-
age correct predictions (of presence/absence,
or of abundance class) were calculated together
with the percentages of false-positive and
false-negative predictions (i.e. false predictions

of presence or absence, respectively). Finally,
the sensitivity (ability to predict presence
correctly) and specificity (ability to predict
absence correctly) were also calculated. In the
case of the abundance data, the percentage
correct assignment to each density class was

recorded.

RESUL TS

Table I lists the 36 predictor variables avail-
able to the analysis, and Fig. I (a-h) shows the
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observed and predicted distributions for each

of the eight species present, and the accuracy

of each, using the 10 most important predictor
variables. Table 2 lists the predictor variables
in order of importance for each species and
lists the accuracy of predictions when one, five
or all 10 predictor variables were used. When
the three data-sets for each species (two from

COte d'Ivoire and one from Burkina Faso)
were kept separate in the analysis, and when
variables were chosen during training on their

ability to distinguish presence and absence

within each country only (between-country
comparisons were confused by the large vari-
ation in some of the predictors across the full
geographical range), the accuracies of the final

maps increased considerably for some species

(e.g. G. morsitans, 83% correct;-G. longipalpis,
91% correct; G. tachinoides, 85% correct)
but decreased for others (e.g. G. palpalis,
50% correct). This was possibly because, for
G. palpalis, areas of absence in one of the

samples were rather similar in satellite charac-
teristics to areas of presence in another. This
indicates a certain degree of adaptation of

the tsetse species to local conditions (the
geographical area covered includes the two

sub-species of G. palpalis).
Figure 2 (a-e) shows the observed and

predicted abundance classes of the five species
sampled in the north of Cote d'Ivoire and
Table 3 lists the predictor variables used and
the accuracy of the predictions. Given the

relatively small ranges of density in each class,
the results are surprisingly good. Table 4 lists
the mean values of the predictor variables
for the five density classes for each of the

three most widespread species, G. morsitans,
G. tachinoides and G. palpalis. In many cases
there is a gradual, monotonic increase or

decrease in the mean values of the predictor

variables across the density classes. Only very
slight differences between the predictor vari-

ables are found in areas of absence or presence

at the different densities.

satellite imagery and the development of novel
image-processing and analytical techniques all
contribute to an increasing ability to predict
the distribution and abundance of natural
resources and disease vectors using remotely-
sensed, satellite imagery. The success of the
approach described in this review is all the

more remarkable when the relatively poor
quality of the distribution data is remembered,
together with the long periods of time over
which they were recorded. The satellite data

were gathered during the 1980s, when particu-
larly severe droughts affected much of the
study area, resulting in rapid changes of the

distributional limits of some of the species
considered. Glossina tachinoides, for example,
extended its range south, and apparently
replaced G. palpalis over large areas of central

Cote d'Ivoire (Clair, 1987; DJR, unpubl. obs.).
Curiously, and perhaps significantly, when
each data-set is kept separate within the
analysis, the predicted area of suitability for
G. tachinoides shifts southwards into the same
central and southern regions of Cote d'Ivoire
that the species invaded in the 1980s. These fly

advances may be facilitated by only slight
changes in the average environmental con-
ditions in the newly invaded areas. For
example, the present analysis indicates that the
difference between the mean NDVI in sites of
presence or absence of G. tachinoides varies
betWeen -0.08 and +0.04 (in COte d'Ivoire
and Burkina Faso, respectively), each a

small fraction of the total range shown by

this variable across these two countries (0.53;
Table I). l'\S some areas become more suitable
for flies, however, other areas become less
suitable, so that the distributional limits shift
slowly with time. The expansion and subse-

quent contraction of tsetse-fly distributions
have been previously recorded, but global
environmental change will bring about perma-
nent range shifts in addition to these relatively

short-term variations.
.\s more predictor variables are added into

the analysis, the predictions tend to become
more accurate (Table 2) and more well-

defined, so that with 10 predictor variables
the analvsis identifies areas of suitabilitv with
either ~ relatively high or relatively low

~

DISCUSSION

;~;(I~~J
~~~'.~~~"::

,;\~~i(e
Advances in micro-computing technology,
the increasing availability of remotely-sensed,



~-~
.

::"..
~e

,

~~"=
~~.~-.~...
'""
,....::'"'
'"'

,...
~.,.~~~~~,~~~.,.~~~~'"
~

.
.,. ~
~

~
,~

 
.~

N
"",t:~

"",~
 

...

~
:~

~
~

-
;'-~

~
t""'~

"~ 
'"

~
"'=

.
~

 
'

;: 
.;

:: 
~

,... 
~

:§~"~",...t:'"'

~~~~
.

::'"~~,.t:~'"...~~.;:~.".
~,.~~.".
E-~~E~"..,~

~< S
A

T
E

L
L
IT

E
 

D
A

T
A

 A
N

D
 T

S
E

T
S

E
-F

L
Y

 D
IS

T
R

IB
U

T
IO

N
S

c
 

C
"""- 

"-"
C

o
." 

" 
..f'". ,,""'

8
~

x
Q

O
8
8
Q

~
~

u
z
u
z
Z

u
u
z
:tu

u
 

u

E
c
c
~

~
 N

 -~
.-:c

"" 
~

 
~

 
N

E
~

~
E

E
U

~
 

Q
~

Q
rt:C

~
~

E
:c

8
u
:c

Z
U

U
U

u
Q

U
u
u
uZ

,,~
b
D

... -.~
 

~
~

 
..." 

~
 

~
 

N
 

~
~

 
U

 
C

o
" 

" 
~

 
N

 
-.-

~
E

:t~
~

:tO
~

~
~

'C
O

U
Z

'C
U

Z
""'C

U
Z

 
U

c
.."

'"~
~

..C
N

N
_
-~

~
~

~
o
5
0
5
e
~

~
;I:O

X
Uu
u
u
u

uo
o
o

u
Z

u
 

u
u
u
u
z
z

e
c
:C

:" 
C

:Q
.-~

 
~

N
'" 

N
 .., -~

 
u

~
~

~
ii8

~
8
~

~
:.;a

~
u
u
u
u
u
'd

~
z

..'t">
<

C
 

~
N

_
C

"',," 
>

<
 

to
;

P
o
. 

, 
~

 
C

Q
't"c

U
~

C
"C

P
o
...

.,~
,..,'O

,..,Q
O

O
~

u
u
z
~

~
8
z
z
z
o

Z

~
 

c
:.. 

-; 
E

~
c
'"' 

'-t" 
C

 
'-t"

C
.e

u
N

X
~

..., 
~

N
X

~
O

b
.Q

~
O

Q
E

~
~

X u
;jO

z
-;;jz

zO
u
 

E
Z

O
O

Z
 

Z

-N
...,'o

t",,",-C
r-..~

Q
-:

=
~

~
~

=
.:..c~

.,.,
~

=
c
c
:o

.,.,-c

Q
~

""~
Q

':"c
~

~
~

~
~

~
-Q

C
C

~
-

.,.,~
~

~
~

""Q
C

C
:O

~
-

r-.r-.

~
r-.

~
-Q

C
:O

C
r 

.,.,'"

~
r-.

r-.""-C
C

:O
r 

",r-.

~
.

r-.-C
C

"'.
~

~
~

-Q
C

C
~

-

~
~

.,.,r-.Q
C

C
~

-
.,.,r-.
~

~
~

""-C
C

:O
~

-
"'.,.,
~

.c
C

C
r 

"'.c

~
'"

=
~

 
c
:o

c
:o

r 
~

:;?

-C
Q

.C
:O

C
-C

 
"'.

=
.~
r-.

r-..~
C

C
~

~
.c

~
-C

-C
C

C
~

.,.,~
~

'"

r-.r-.-C
C

:O
C

:O
~

~
.~
-C

-~
-C

:O
C

r 
r-.~

~
'"

r-..,.,-C
:O

C
:O

-C
 

~
.

g
::,~

-C
C

~
.

r-.~
.C

:O
C

:O
-C

""

--C
~

.
"'-.c

:o
C

-C
""

~
'"

~
.

:$
M

"'C
:O

C
:O

, ##" 
"

,...»
C

'- .-
C

" 
.~

 
..>

, 
>

,
~

I/O
W

J
"""

g
,

" 
...>

 
U

~
 

U
 

C
 ':' 

~
U

 " 
" 

" 
~

 
..'" 

'" 
I/O

 u

~
'O

 
;~

~
U

U
~

~
C

I;C
I;

~

0
:0

-~
 

~
.-. 

.
~

..;c.=~.~"o
S

.Q.."o
f

'-0c.=~c.."Q
.

"";..E"~ro
o
""C
/)
.

2
3
5

" 
O

J
C

 
O

J
"'" 

_
C

b
D

""', 
b
D

:t N
 --~

 
'-5

C
O

J
~

c
U

~
""- 

"

~
5
~

~
5
5
~

§
§
§

z



:§
:

2
3
6

'~I~.=0(5:§
:

...,0
0
\<

"1

8
~

r"\0
0

a
c
io

o
o
o

,

O
\o

r---
g

-0
1
"\0

0

~
g
g
g
g

, 
, 

., 
,

-~
N

-
8

0
1
"\0

0
0

~
 

0
0
0
0
0

";n
 

II 
II 

II 
II 

II
c8

R
O

G
E

R
S

 E
T

 
A

L
.

rt;,

~

:1

.~
 

\
C

o

~
v

1r

i \
0,

'1

J~~0

a~

;!j

-;;0
:

..9~S~0

ae
: 2
=

'
";nc8

-:;;.
.~c8

~ ~s<
'I-q

-~
<

'IO
-0

<
'1

0
0
0

M
O

O
O

O
, 

,
.,.,a

 ,-0
<

'1
0
0
0
0

0
0
0
0
0

\I 
\I 

\I 
\I 

\I

0
0
\~

fO
"I-x

-0
-,

0
0
0

..

N
-

8
0
0

0
0
0

II 
II 

II..

~"-'~(61'-.

-

.-r-,I
111

j~

II"\\O
N

II"\~
""II"\II"\~

""
r.:M

":O
O

, 
, 

,
r-- 

\0
 

C
\

8
II"\II"\~

""
?
;- 

M
":O

O
O

';n
 

II 
II 

II 
II 

II
c.8

j

1'""

, 
'"

~
-:

.., -;n
:-:: 

c
~

 
..

~
~~
 

--
~

c
'"

-~
 

~

C
o
-' 

;-~
,c

.
---c

.~
~

 
c
.

.., 
-E

~
...,~
..

~
--

~
~

,..
~

,c
o
 

=
=

~
-~

~
. 

~
-c

--->
,

C
o
-'~

~..-
~

- 
c
o

---"'~
c
o
 --C

--:;: 
-;;; 

-..
~

 
..0

~
 

-~
c
.

~
 

,.. 
c
.

'" ---
~

 
~

 
,.. 

"
, ~ ~ 

:: 
!o

n

--~
'" 

'" 
w

~
~

:
C

o
-' ~

-;n
'- 

c
.~

o
..c

o
-c

>
,- 

-.
c
o
~

"
~

-~-co
 

-.
c
.",-

c
o
..>

,
=

~
o
C

,, '" 
'"

..c
..

--::--
-'"~

~
"

" 
c
.

>
'"""

-~
 

~
...

"'o
C

c
 

~
1

.." -
~

 
...0

--=
-

c
 
~

 
'"

"-,,
...' '"
c
o
~

'"
0
. 

C
O

c
.:!,~

C
O

 -0" 
"

~
'-'..

-5
 

c
-.l:

'- ~ ..~
w

~
-

"' C 
~

 
::

0
Cw

 
..,

--~u
c
'-.

~
 

""
.."-
c
.""'",

~
 

..
-~

 ~
 
~

>
'~

..:!
",

C
O

 
-

c
C

o
-'"

C
O

 
..

-~
..

C
c
~

~
 

~
 

-

c
~

o

-:e
 3

-5
-c

 
'"

"",~
",:-:0

"
---~
'"' 

~
--

'-' :: ..
-~

~
N

 
~'" 

"
b
iI-..

-..
~

"'~

-0
"'-

8
"'-0

0
>

- 
.~

 
0
 

0
 

0
 

0
 

0

~
 

II 
II 

II 
II 

II

8



SATELLITE DATA AND TSETSE-FLY DISTRIBUTIONS 237

T.I\BLE 3
The 10 most important predictor variables used to tkscribe the apparent densilJ' of tsetse (flies/trap. day) in

northern Cote d'/voire, and the accuracy of the predictions ~r the abundance classe.( (five for all species except

G. fusca)+

G. longipalpisG. morsitans

Spec;e.( of Isel.(e fly

G. tachinoide.{ G. fusca

RANK

1

2
3
4

NDP-CDp
NDm/CCDm

CH4al

CCDp2
CH4p2

CH4range
NDaZ

CCDmax
CCDa2

NDp2

CCDa2
Cffial

NDP-ffip
CH4a2

Cffip2
NDaI/CH4al

CH4min
CCDa3

CH4mean

CCDp3

CH4p3
CH4a2
NDmax

CCDa3
CH4min

CH4max

CCDpl
CCDaI

CH4p2
NDa.,

NDrn/GI4m
Elev

GI4a2

NDp2
CCDmin

NDm/Cffim

Cffirange
NDrange

NDaJ

GI4range

CCDa2
CH4a2

NDpl
CH4al
Elev

CCDp2
CCDmin

CCDrange
NDpl-CH4pl

NDmax

8
9

10

Densiry and /arcurat:J' of prediction (%)]

o.OO-().oo (58)
0.01-0.01 (100)

0.02-0.07 (72)

0.08-0.50 (51)

0.51-12.2 (63)

O.OO-O.()() (81)

0.01-0.02 (80)

0.03-0.08 (76)

0.09-0.20 (94)

0.25-2.62 (83)

0.00-{).38 (78)
0.39--{}.85 (50)
0.86-].49 (30)
].53-2.53 (59)
2.57-7.45 (58)

O.OO-{).()() (65)
0.01-{).02 (78)
0.03-0-09 (78)
0.la-o.30 (62)
0'31~'53 (65)

O-QO-{)-OO (98)

0'01-0-01 (100)
0'02-0-13 (100)

.See Table 1 for an explanation of the abbreviations

probability; and intermediate probabilities (i.e.
within the range 0.35-0.65) are ven. scarce
(Fig. I). With the exception of G. palpalis, the
percentage of false positives (i.e. false predic-
tions of presence) always outnumbers the

percentage of false negatives (false predictions
of absence), often considerably (Table 2 and

Fig. I). The former indicate areas of apparent
suitability for flies that are not occupied by
them, or in which flies were not recorded
by the surveys. This is a feature of many
distribution maps (i.e. species do not always
occupy all areas that are suitable for them, or
are not always found, even when they occur

there). False-negative predictions, however,
indicate a more serious situation where the
technique, for one reason or another, has failed
to define the full range of conditions in which
the flies can survive. The percentage of false
negatives is highest (8%) for G. palpalis, the
most widespread species, and the errors arise

because the analysis fails to identify its re-
corded northern limits in Burkina Faso [Fig.
l(c)]. The same environmental changes that
caused a southward extension of G. tachinoides
may, however, -have caused a retreat of G.
palpalis (a species adapted to moister con-
ditions) from the northern part of its range,
thus explaining the high error rate.

Whilst the ability to describe the training-
set data is the first criterion for a successful

statistical description of a species distribution,
the technique is only of real use when it can be

used to describe distributions in other places,
and at other times. The maps presented in
Fig. 1 show predicted distributions of the

study species in Ghana and Togo. The predic-
tions for Togo sho\\ both similarities and
differences with the recently mapped tsetse
distributions in this country (Rogers et al.,
1994; Hendrickx et al., 1995). Predictions for
G. palpalis and G. tachinoides are rather better



~~

2
3
8.
~~~=
.::s

",~~~...
"~'-=~~~o

n
u

"0

'0c

:E'"ac
.:j

"'"~'=
,~-;Q

,

-;Q
,

c
.:j

'"c~'~..~e
..,.c

.:j

~
~

...J
~

 
t

<
 
~

f-.~
'"'
:0

.-
...'
~~

~~~'=~'="~~~'"'
'="...

,~-...,
~.c

,'=t:'=~...~~~<
'-.

"~~t~~~~'=

~

~""'~t:~..~~~~ R
O

G
E

R
S

 
E

T
 

.,-fL
.

~::g~~EI.,:) ~u~~ -'"~u~e"'-

~ '"~""'
""'

'"~~ ~~~u '"'3

~ '"~~..~su '"~~ ~~~'3
'-"1

~
""""""M

""""""""""
0
0
0
0
0

O
\O

N
~

-
~

-""~
~

r:.. 0
0
 0

0
0
0
 

0
0

o
-N

-o
t-U

"lo
-

N
...,...,-O

M
M

M
M

M

""-C
O

M
-C

o
-o

-O
O

Q
\

~
~

N
N

~

-N
 

Q
\Q

\
t"o

t"Q
\N

«
)

~
~

~
tt

~
:;?

-r--o
-

-'0
0
""

N

,.-""q
i

"'~
-N

~
-

~
~

?
?
9
~

Z
O

O
O

O
O

'"Q

r.-.~
"'~

~
~

~
~

"?
"

~
"'""'"~

"'"
_
0
0
_
0

6
6
6
6
6

""M
~

""M
N

-t"-t"--t"
,0

 r'N
 

M
.i-,

M
N

M
M

M

N
a
-M

r--C
"".-r--~
N

~
~

-Q
~

M
N

N
N

N

r-.Q
M

~
-

""""1
'""1

'"'"
..;.,..;.,..;.,..;.,..;.,

1
r)('-.Q

\-r-,
-Q

-r-,'f"'f"

...,
~~,..,.,

\S "",:.
~u '"'3

:t:
\o

J ~E"to

a
~~

~u..~~ '"~E"1
-

~"" ~uu ~s~ '".::-

~ ,.,
~:c

o
;

~E
'

~r...,

~
."=

 
,,

~
't"""t"

~
.6

~
N

r:.. 
~

 
I 

I 
I 

I 
e
- 

=
--o

 
r-

~
 

.~
 

~
 '!' ~

.
Z

O
O

O
-N

o
.J

Q

~
N

~
-M

~
~

~
r:--~

~
-c

-r--=
,

=
'=

'0
""""

N
M

';'M
+

O
""N

~
-

O
~

N
""'"

~
6
~

6
~

N
N

N
N

N

M
Q

\~
~

Q
\

N
r--O

Q
\r--

Q
()r:.Q

()-c
.r:.

M
M

M
M

M

-c
 

::>
 

U
") 

-.to

~
'":'~

~
r:-

r--.~
a

--Q"."
0
0
0
0
0

0
 

""N
N

-o
t-

""""-o
t--C

-C
.;., .;., .;., .;., .r.

a
-N

"",",N
O

-.c
,",,",-.c

N
':'N

.,f-.:c
~

~
~

~
~

N
"""""'-C

Q
\Q

\O
Q

\O
":"':'N

":'N

0
0
0
0
0

6
6
6
6
6

-N
M

-'"
-to

-to
-to

-to
-to

~~~~~~

~~,..,u~~ ;:.
~...

'"~"t-

a '"~~ '"~~:<
:

'"~~suSu"-~~~uU "'"'~

~ ~E
'

'3
"J~~~~'""

x
N

~
O

""
_
0
0
...,'"

~
~

~
~

~
~

'" ZO
O

O
O

O

~

~
.,.~

-
~

. -:- -:- ?
 

-:-

U
"I~

~
O

N
M

r:..N
+

+
"'U

"I""-O
...,...,...,...,...,

N
N

-.r-~
'9

";t"";t"";t"~

-c
..".-~

..".
-C

""'M
N

M
M

M
M

M
M

Q
o
O

ll'lr-.-
r-.~

O
'-t"'"

c
i-+

r:.";".;,

-N
O

-o
-

Q
.";'N

.;,";'
N

N
N

N
N

...,~
...,"t-"t-

...,...,...,...,...,
6
6
6
6
6

Q
-O

O
O

Q
-=

'
N

N
M

N
N

6
6
6
6
6

0
0
0
0
0

6
6
6
6
6

N
(X

)Q
\t"-U

"I
Q

\Q
\",,"N

N

';",c
r:..~

~

O
, 

,-C
..,

-N
N

N
N

-

.;.§';;:".E~,."-5"0,§E;0
"E

o
""c,...-":c;~:IJ
.



S.\TELLITE DATA A1'.'D TSETSE-FLY DISTRIBUTIONS 239

NDVI and CCD variables appear 10 and six
times, respectively (some combination of these
variables making up the remainder). Consider-
ing only those species for which the abundance
data are also available, the figures become 14
for thermal, six for NDVI and two for CCD
data. Thermal-channel data also predominate
in describing the abundance data, but less so
than for the distribution data (with nine, three
and seven occurrences for the thermal, NDVI
and CCD data, respectively). The low import-
ance of the CCD imagery in determining
distribution and its relatively greater import-
ance in predicting abundance indicates that
fly distribution limits in this part of Africa
may be more sensitive to temperature, whilst
abundance within the distributional limits is
some function of rainfall, which determines

vegetation growth.

COND...USIONS

than those for G. morsitans and G. longipalpis,
although there has also been a southward
extension of G. tachinoides in Togo that is not
predicted by the present analysis, and does not
appear on previous maps for tsetse in Togo

(Ford and Katondo, 1977). Clearly, therefore,
the distribution of tsetse in Togo, and presum-
ably elsewhere, has changed from the historical
picture that forms the basis of much of the
present analysis and, in the light of recent
environmental changes in Africa, it is unlikely
that non-contemporary satellite data will give

an entirely satisfactory fit. The ideal approach
to tsetse mapping is therefore to use contem-
porary satellite and fly-distribution data to

define the areas of suitability for each tsetse
species and, from this, to make predictions for

other places and times.
A further complication arises from the ad-

aptation of each species to local conditions,
about which very little is known at present.
Species such as G. morsitans, and even its

subspecies, occupy vast areas of Africa (e.g.
greater than 400 of longitude for G. m. submor-

sitans) and almost certainly show biological
variation across such distances. Behavioural
and ecological differences within G. pallidipes,
a widespread species in East and southern

Africa, have. already been shown (Rogers,
1990; Baylis and Nambiro, 1993). These effects
mean that the characterization of a species'
habitat in one area may not easily be extended

to other, remote areas. Given contemporary
satellite and distributional data, however, the

approach suggested may be used to estimate
the degree of difference in habitat types across
wide geographical areas. Whilst satellite data

may not immediately explain within-species
differences across large geographical areas,
they may, in the first instance, illuminate such

differences and hence lead to a better biological

understanding of them.
Of the three main satellite data types used in

the present analysis (NDVI, A VHRR-channel-
4-bri!!,htness temperature and CCD imagery),
the tht:rmal channel data appear most fre-

quently in the predictor variables for fly distri-

bution. On 19 occasions, one or other thermal
variable is in the top five predictor variables for

the eight species of tsetse considered, whilst

It is clear that remotely-sensed satellite
imagery can be a powerful tool in our ability
to investigate large-area phenomena such as
the distribution and abundance of the insect
vectors of disease. The application of temporal
Fourier processing to multi-temporal, meteor-
ological, satellite imagery allows characteriz-
ation of habitat 'fingerprints' in the form of
means and the seasonal timing and seasonal
extremes of values of temperature, rainfall
and vegetation surrogates. Insect-vector distri-
butions clearly depend on habitat types and so

should be amenable to statistical descriptions
based on such habitat fingerprinting. In future,
satellites giving data with higher spatial and
spectral resolution will provide a much more

fine-grained view of natural habitats (Hay
el al., 1996) and it is timely to prepare now for
the wealth of new data these satellites will

provide.
A statistical description of a tsetse-fly habi-

tat or distribution is, however, no substitute
for a full, biologically based understanding of

the same phenomenon. Such an understanding
comes from a study of the underlying demo-
graphic processes but, as explained elsewhere

(Rogers and Randolph, 1993; Randolph, 1994),
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the information on such processes is often
lacking, leaving the statistical approach as the
only one available at present. The long-term
aim of the present work is to produce risk
maps for tsetse-borne diseases based on a
sound biological understanding of epidemio-

logical processes. Satellite imagery provides a
way of revealing the patterns in epidemiologi-

cal processes from which such an understand-
ing will eventually arise.
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