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ABSTRACT

PREDICTING THE EFFECTS OF DIMENSIONAL AND MATERIAL PROPERTY

VARIATIONS IN COMPLIANT MECHANISMS

Jonathan W. Wittwer

Department of Mechanical Engineering

Master of Science

Surface micromachining of micro-electro-mechanical systems (MEMS), like all

other fabrication processes, has inherent variation that leads to uncertain material and

dimensional parameters. To obtain accurate and reliable predictions of mechanism behav-

ior, the effects if these variations need to be analyzed. This thesis expands already existing

tolerance and uncertainty analysis methods to apply to micro compliant mechanisms. For

simple compliant members, explicit equations can be used in uncertainty analysis. How-

ever, for a nonlinear implicit system of equations, the direct linearization method may be

used to obtain sensitivities of output parameters to small changes in known variables. This

is done by including static equilibrium equations and pseudo-rigid-body model relation-

ships with the kinematic vector loop equations. Examples are used to show a comparison

of this method to other deterministic and probabilistic methods and finite element analy-

sis.
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CHAPTER 1 INTRODUCTION

1.1 Purpose

In micro-electro-mechanical systems (MEMS), assembly is very difficult due to

the size of the mechanisms, so other methods are used to create self-assembled mecha-

nisms. However, variations in the fabrication process lead to uncertain dimensions. At the

micro scale, where precision and reliability are very important, the effects of these varia-

tions need to be considered.

Compliant mechanisms, mechanisms that gain some or all of the motion from the

deflection of members, often have the unique ability to be fabricated without the need for

assembly, and thus are gaining popularity in MEMS. Although compliance can eliminate

clearance in joints and the associated errors, compliant mechanisms have unique charac-

teristics that make them sensitive to certain variations. The purpose of this thesis is to

develop a method for analyzing the effects of dimensional and material property variations

on the mechanical error in compliant mechanisms, and demonstrate its use through case

studies in MEMS. Some of the specific questions to be answered are listed below:
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• How do variations in the dimensional and material parameters affect the

forces and coupler position of a compliant mechanism?

• What methods can be used to determine the mechanical error in compliant

mechanisms with nonlinear deflections?

Preliminary research has led to the following hypotheses that will be tested:

• For simple compliant mechanisms that can be reduced to the deflection of a

cantilever beam, large-deflection equations can be linearized in order to

perform a complete error analysis considering uncertainty in both dimen-

sional and material parameters.

• The direct linearization method and the use of the pseudo-rigid-body

model make it possible to determine the sensitivity of compliant mecha-

nisms to variations in dimensional and material parameters.

1.2 Delimitation

Micro-electro-mechanical systems are generally planar in nature, hence the mech-

anism analysis methods applied herein will be restricted to two dimensions. Although

clearances in joints contribute to mechanical error, only dimensional variations will be

considered. Although the methods described could possibly be used in mechanism synthe-

sis, they will only be applied to post-synthesis error analysis. Since mechanism synthesis

is not considered, the error associated with the mechanism analysis will not include struc-

tural error. The analysis is based upon given tolerances or variation; therefore, no work
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will be discussed pertaining to the trade-off between cost of manufacturing and mechani-

cal error. Although some analysis will involve forces, dynamic effects of clearances and

tolerances will not be discussed.

1.3 Outline

The next chapter will review the work that has been done in compliant mecha-

nisms, micro-electro-mechanical systems, and mechanical error analysis. It will also

define the types of variations common to micro-electro-mechanical systems. In Chapter 3,

the simplification of large-deflection cantilever beam equations will be used to demon-

strate how to calculate the sensitivities of parameter variations for flexible members using

explicit equations. This discussion will also validate the need for performing error analysis

in MEMS. Chapter 4 will compare deterministic and probabilistic methods for determin-

ing the mechanical error in kinematic linkages. Here, the direct linearization method will

be outlined and the bivariate nature of position error in assemblies will be discussed. In

Chapter 5, the direct linearization method will be used to analyze the mechanical error in

compliant mechanisms by including force-equilibrium equations and pseudo-rigid-body

model relationships. Finally, the conclusions drawn from this research will be summarized

and recommendations will be made for further research.
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CHAPTER 2 BACKGROUND

This chapter gives the background to compliant mechanisms, micro-electro-

mechanical systems (MEMS), and mechanical error in linkages. It contains a review of the

literature pertaining to mechanical error in compliant mechanisms and MEMS, and brief

reviews of the history of the three subjects.

2.1 Compliant Mechanisms

2.1.1 Definition

Compliant mechanisms, or flexible link mechanisms, gain some or all of their

motion through the deflection of flexible members (Sevak and McLarnan, 1974). A fully

compliant mechanism is one that has no rigid body joints. A partially compliant mecha-

nism is one that has some compliant members and some non-compliant joints (e.g. a pas-

sive revolute joint).
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2.1.2 History

One of the earliest compliant mechanisms used by mankind is the bow, but Mother

Nature has used compliance since the beginnings of life in things such as plants and the

wings and legs of small insects. The ability of mankind to synthesize the design of compli-

ant mechanism has only existed a short time.

Euler was the first to quantify the deflection of flexible beams with the develop-

ment of the Bernoulli-Euler equation. In 1945, Bisshopp and Drucker used elliptic integral

solutions to describe large deflection of cantilever beams. These solutions have very lim-

ited applications and are difficult to use. Since then, semi-graphical methods (Burns and

Crossley, 1966; Burns and Crossley, 1968), finite-element methods (Sevak and McLarnan,

1974; Gandhi, 1981), topology optimization methods (Ananthasuresh et al., 1993; Frecker

et al., 1996, 1997, 1998), pseudo-rigid-body methods (Howell and Midha, 1994b, 1995a),

and various other methods (Gorski, 1976) have been developed to analyze and synthesize

compliant mechanisms at both the macro and micro scales.

2.1.3 The Pseudo-Rigid-Body Model

Although there are many methods for analyzing compliant mechanisms, one of the

simplest is the use of the pseudo-rigid-body model (PRBM), which has gained popularity

due to the ability to use conventional kinematic analysis. This method involves replacing

flexible segments with rigid links that have pin joints with torsional springs. Not all flexi-

ble segments can be analyzed using this method, but a large number of typical configura-
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tions have been analyzed. These are listed in Table 2.1, along with the reference in which

a more detailed description can be found.

By combining the models for the particular beam deflections and using the sym-

metry of certain segments, these models can be applied to a surprisingly large number of

configurations. The process of synthesizing mechanisms using the PRBM has been

described in detail by Howell and Midha (1996a).

The Pseudo-Rigid-Body Model is an approximation, so when calculating mechan-

ical error, the error within in the model itself must be realized. In general, the position or

deflection errors associated with the PRBM increase with increasing deflection. The max-

imum deflections for the PRBMs have been determined by Howell and Midha (1995b) for

keeping this error under 0.5%.

A detailed description of the PRBM will not be discussed herein. The reader is

referred to the references listed in Table 2.1. The model has proven to be very useful in

design and analysis of compliant mechanisms (Derderian et al., 1996; Derderian, 1996;

Howell et al., 1994c; Howell and Midha, 1995b; Howell and Midha, 1996a; Jensen et al.,

TABLE 2.1 PRBM configurations and associated references.

PRBM Configurations Reference

Small Length Flexural Pivots (Howell and Midha, 1994a)

End-Loaded Cantilever Beams (Howell and Midha, 1995a)

Fixed-Guided Flexible Segments (Howell et al., 1996)

End-Loaded Initially Curved Cantilever Beams (Howell and Midha, 1996b)

Functionally Binary Pinned-Pinned Segment (Edwards et al., 1999)

Moment and End-Loaded Cantilever Beams (Lyon et al. 2000)
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1997; Jensen et al., 1998; Lyon et al., 1997; Mettlach and Midha, 1996; Millar et al., 1996;

Opdahl, 1996; Opdahl et al., 1998; Salmon et al., 1996).

2.2 MEMS

2.2.1 Definition and Fabrication

Micro-electro-mechanical systems (MEMS) integrate electrical circuitry with

mechanical devices having dimensions measured in microns. Although there are many

processes used to create MEMS, these devices are typically manufactured using surface

micro-machining. Although there are a wide variety of surface micro-machining methods

and materials, the processes associated with the Multi-User MEMS Process (MUMPs™)

will be detailed in this thesis. This process includes an insulating silicon nitride layer,

three layers of polycrystalline silicon (polysilicon), two layers of phosphosilicate glass

(PSG), and a gold metal layer.

In short, surface micro-machining of MEMS on silicon wafers involves a combi-

nation of thin film depositions, patterning, and etching, followed by a release process, to

form planar structures. The polysilicon layers are structural, while the PSG layers are sac-

rificial - meaning that they are deposited only as a means of separating other layers. These

sacrificial layers are chemically etched (using hydrofluoric acid) to release the moving or

suspended parts. The metal layer is used for electrical circuitry and contacts.

The many limitations associated with surface micro-machining make designing

micro mechanisms complex. Some of the complications of MEMS design include scaling
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material properties, adhesion forces, stiction, dimensional constraints, self-assembly, and

limited motion.

2.2.2 History

The design of MEMS is only a fairly recent development, having its beginnings in

the early 1980s. The development of advanced integrated circuit processes has enabled

engineers to take advantage of silicon’s excellent combination of electrical and mechani-

cal properties. The first major applications for MEMS were micro sensors that are now

being used in everything from accelerometers that trigger air bags to scuba-diving equip-

ment (Bryzek et al., 1994; Wise, 1991). As predicted, research in MEMS has become an

inter-disciplinary field that includes mechanical, electrical, chemical, and biomedical

fields (Komvopoulos, 1998). Fujita (1997) provides an excellent overview of the history

and future of MEMS. Kota et al. (1994) summarizes many of the challenges of designing

micro mechanisms from a mechanical engineering perspective.

2.2.3 Use of Compliance in MEMS

Compliant mechanisms are often well suited for MEMS applications. Many of the

difficulties associated with MEMS can be overcome by using compliance, such as elimi-

nation of wear, lubrication, friction, and clearance problems associated with the pin joints.

In addition, compliant mechanisms are planar in nature, do not require assembly, and can

be made using a single layer. The work done by Clements (1999) provides an overview of

how compliant mechanisms can be implemented in MEMS.
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2.2.4 Material Properties of Silicon

The main structural material for use in surface micro-machined MEMS is poly-

crystalline silicon. Although the bulk material properties of silicon are well known

(Petersen, 1982), the properties of polysilicon, especially scaled down to micro dimen-

sions are not well defined. It is not within the scope of this thesis to discuss in detail the

properties of silicon and polysilicon, but rather to determine how uncertainties in material

properties can lead to mechanical error. A good description of the how the material prop-

erties of silicon affect compliant mechanism design is provided by Opdahl (1996).

Although the electrical and thermal properties of silicon and polysilicon are well

known (because of their extensive use in integrated circuits), the mechanical properties are

not well understood. Work is being done to get more exact measurements for important

mechanical characteristics of polysilicon, such as Young’s modulus and strength. Sharpe

and Jackson (2000) have determined that Young’s modulus for polysilicon is 160 ± 10

GPa. Even though the uncertainty is fairly large (±6%), they propose that this variation is

not critical because it is much more precise than the present ability to measure the cross-

sectional area of a MEMS device. This assumption is one that will be investigated in this

thesis, since compliant mechanisms are highly dependent on the value of Young’s modu-

lus.

One of the complications of using polysilicon as a structural material is the relative

size of the grains with respect to the overall size of the mechanism. The size of the grains

vary with each batch of deposited polysilicon, but can be on the order of 0.5 microns.
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Sharpe et al. (1997) found that for the MUMPs™ process, the grains are generally colum-

nar and oriented perpendicular to the substrate. The presence of the grain boundaries,

which are typically about 0.5-1.0 nm wide, have many effects on the material properties

(Wolf and Tauber, 2000). They lead to larger variations in the structural properties and

change the thermal and electrical properties.

2.2.5 Dimensional Variations

Thickness Variation:

Both the polysilicon and the sacrificial PSG layers are grown using low pres-

sure chemical vapor deposition (LPCVD). This is a timed process designed to produce a

nominal thickness for each layer. The process control chart shown in Figure 2.1 shows the

variation in the thickness of the first polysilicon film for the first 35 MUMPs™ runs,

where the error bars represent plus and minus one standard deviation from the mean.

Figure 2.1 Poly-1 layer thickness over 35 MUMPs™ runs.

Thickness of Poly-1

18000

18500

19000

19500

20000

20500

21000

21500

22000

5 10 15 20 25 30 35 40

Run

T
h

ic
kn

es
s

(A
)

Mean

UCL

LCL

Target

UCL

LCL



12

Although the standard deviation for each individual run is small (approximately 200 ang-

stroms for the latest runs), the mean shifts from run to run, so when predicting the thick-

ness of the layer, upper and lower control limits (UCL and LCL) or tolerances have been

set to represent the minimum and maximum thicknesses. Table 2.2, adapted from the

MUMPs™ Design Handbook (Koester et al., 2000), lists these minimum and maximum

thicknesses for each layer, along with the nominal value. The standard deviation for thick-

ness, when predicting the mean for future runs, is approximately one third of the tolerance.

Width Variation:

The geometry in the various polysilicon and PSG layers is created using a

Reactive Ion Etch (RIE). Although the masks can be made very precise, the variables in

the etch process lead to variations in the smoothness and angle of the side-walls (Mirfend-

ereski et al., 1993). Figure 2.2 shows a scanning electron micrograph of the end of a poly-

Film Min. Typ. Max.
Nitride 0.530 0.600 0.670
Poly0 0.470 0.500 0.530
Oxide1 1.750 2.000 2.250
Poly1 1.850 2.000 2.150
Oxide2 0.670 0.750 0.830
Poly2 1.400 1.500 1.600
Metal 0.460 0.520 0.580

Thickness in (µµµµm)

TABLE 2.2 Thicknesses of deposited films in MUMPs™.

Figure 2.2 End of a polysilicon cantilever beam.
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silicon cantilever beam designed to be 2 microns thick and 3 microns wide. Note that the

side-walls are not perfectly vertical. Figure 2.3 shows an exaggerated diagram of how

sidewall roughness and slope contribute to width variation.

2.2.6 Mechanical Error in MEMS

Little work has been done to model mechanical error in micro mechanisms due to

material property and dimensional variations; however, compliant mechanisms are known

to be particularly sensitive to Young’s modulus and cross-sectional dimensions. Therefore,

the design of reliable MEMS must take into account both the uncertainties associated with

material properties and variations in the fabrication process, especially since the uncer-

tainties and variations are large in comparison to the nominals.

Sloped Sidewalls

Rough Sidewalls

width

Figure 2.3 Width variation due to sidewall slope and roughness.
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2.3 Mechanical Error

2.3.1 Error Definitions

Mechanisms are often designed for function, path, or motion generation. Function

generation relates the orientation of an output link to the orientation of an input link. Path

generation describes the location of a coupler point through space. Motion generation

describes both the path and orientation of the coupler. The kinematic function of a mecha-

nism is a more general term that can include any or all of these. Joskowicz et al. (1997)

defined the kinematic function of a mechanism as "...the relationship among the motions

of its parts imposed by contacts between them." An example of a kinematic function for a

compliant MEMS might be the position of a point on a coupler link for a given displace-

ment of a thermally expanded member.

The kinematic error of a mechanism can be divided into two main categories,

structural (mathematical) error and mechanical error (Hartenberg and Denavit, 1964).

Structural error is that associated with mechanism synthesis when a specific kinematic

function is desired and the mechanism cannot achieve the function exactly, even when the

dimensions are exact. Mechanical error is associated with variations in manufacturing pro-

cesses and dynamic effects, in addition to dimensional variations. Some of the sources of

mechanical error in rigid linkages are link flexibility, axial deflection, lateral deflection,

torsional deflection, and joint clearances. Joint clearances are usually the largest cause of

mechanical error (Vocaturo, 1983). Coit and Riley classify the three main error sources as

link length tolerances, joint clearances, and link static and dynamic deflections (Coit and
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Riley, 1981). Rigid linkages are usually designed so that the link deflections can be

neglected, so only the link length tolerances and joint clearances are considered; whereas,

compliant mechanisms are designed to deflect, so they are more subject to variations in

the height and width of the links. Therefore, even though compliant joints eliminate one of

the largest sources of error (joint clearances), additional sources of error are added due to

the flexibility of the segment.

Note: In this thesis, in order to characterize the mechanical error, the structural

error will not be considered, or it will be considered to be zero. The ideal kinematic func-

tion will be based upon expected values for link dimensions and no clearance in joints.

The structural error would be the deviation of the ideal kinematic function from another

predefined function. Treating the structural error as zero means that the mechanical error

will be the deviation from the ideal kinematic function.

2.3.2 Dimensional Tolerances vs. Joint Clearances

Care must be taken in comparing the sources of mechanical error. Tolerances on

dimensions based upon the inadequacies of manufacturing processes to produce exact

sizes have a different effect on the mechanical error than do joint clearances. Dimensional

tolerances can be analyzed using statistical models because tolerances, by nature, are sta-

tistical. For example, when designing a part to be 5.00 cm long, the process used to make

the part may only be able to achieve that dimension to within ±0.03 cm. This is usually

interpreted to mean that the expected part dimension will be 5.00 cm with a standard devi-

ation of 0.01 cm (one third of the tolerance).



16

In contrast, the clearance in a joint is based upon the combination of two tolerances

(the variation in diameters of the pin and hole). The resulting complexity in analysis

comes in trying to determine how to model the shift in the relative axial position of pin

and hole. Although this thesis does not include joint clearances in the analysis of mechan-

ical error, it provides a basis for further research in that area.

2.3.3 Previous Research in Mechanical Error

The problem of mechanical error was addressed in the 19th century when a mathe-

matician, Charles Babbage, tried to make a mechanical computer. It failed because of the

accumulation of errors from tolerances and joint clearances (Morrisson and Morrisson,

1961). One of the first detailed investigations of the effects of tolerances on mechanical

error in mechanisms was made by Knappe (1963). His approach was based upon the ran-

dom nature of tolerances, and by using probabilistic methods, was able to find sensitivity

coefficients relating the amount of error due to individual variables. Hartenberg and

Denavit (1964) were among the first to include mechanical error analysis in a textbook.

Like Knappe however, their analysis was limited to just link length tolerances. Since these

early studies, many methods for determining the static and dynamic effects of tolerances

and clearances on mechanical error have been developed.

Extending the methods of Knappe (1963), Garrett and Hall (1969) developed a sta-

tistical approach to determine mechanical error due to both tolerances and clearances and

represented the error as mobility bands. Schade (1983) used a bivariate normal model to

determine the position error of a coupler point. He concluded that the root mean square
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approach for position error is much too conservative. The work by Choi et al. (1998)

shows various improved stochastic methods applied to mechanical error including both

link length tolerances and clearances.

An interesting aspect of research in mechanical error is the presence of a parallel

body of literature that branches from a different origin, but is now paralleling the studies

already cited. Chase and Parkinson (1991) provide a survey of research in tolerance analy-

sis of mechanical assemblies. This field originates from the need for tolerance analysis in

design for manufacture, where most of the models are static assemblies. However, the

methods used to analyze static assemblies have also been to kinematic mechanisms. The

main link between the two communities is the use of vector loops to describe assemblies

and kinematic linkages. An effective method used in assembly tolerance analysis, called

the Direct Linearization Method (Marler, 1988; Chase et al., 1995), is based upon the lin-

earization of a system of vector loop equations. This is the method which will be extended

in this thesis to analyze compliant mechanisms.

2.3.4 Deterministic vs. Probabilistic Methods:

The many methods for analyzing the effects of tolerances in mechanisms can be

placed into two different groups: deterministic and probabilistic. Deterministic methods

involve fixed values or constraints that are used to find a single exact solution. Determin-

istic methods are used mostly for post-synthesis analysis, where set tolerances are used to

determine worst-case position error.



18

In contrast, probabilistic or statistical methods involve random variables that result

in a probabilistic response, which predicts the range of possible solutions. In addition to

analysis, statistical methods may be used for analyzing or optimizing tolerances during

mechanism synthesis, where the dimensions have some type of probability distribution

associated with them.

Chapter 4 will compare various deterministic and probabilistic methods as a means

of validating the direct linearization method.

2.3.5 Spatial / Matrix Methods:

Due to the special interest in robotics to determine the effects of joint clearances,

many matrix methods have been used to determine the effects of joint clearances. Gener-

ally, a transformation matrix is defined to describe the relative displacement between pin

and bearing (Kinzel and Hall, 1975; Waldron and Kumar, 1979). Both deterministic and

stochastic models have been based upon transformation matrices. Zhu and Ting (2000)

developed the probability distribution function for a robotic manipulator based upon both

normal and uniform distributions. This enables them to determine the uncertainty in posi-

tion for the end-point of the manipulator, but only works for open-loop kinematic chains.

2.3.6 Computer Simulations / Optimization:

The use of computers has spawned many methods for analyzing mechanisms.

Monte Carlo simulations have been used to validate statistical models (Choi et al., 1998;

Shi, 1997; Lee and Gilmore, 1991; Wei-Liang and Qi-Xian, 1989), but even with modern

computing power, Monte Carlo simulations are often too computationally expensive.
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Other approaches may use optimization for determining the trade-off between

manufacturing costs and errors due to tolerances (Rhyu and Kwak, 1988; Biswas and Kin-

zel, 1998c). In addition, optimization methods offer a way to analyze very complex mech-

anisms involving many variables and constraints. Schade and Lai (1983) developed a

technique in which nonlinear optimization was used to determine the maximum error in

coupler-point position due to pin-joint clearances and link tolerances. The path-normal

error for a straight-line mechanism was determined using this technique. Yin and Wu

(1990) used a very similar approach, but included some dynamic analysis in their method

to get a quasi-static model.

Another method that has been made possible by the use of computers is stochastic

finite element analysis, which is currently one of the only methods for determining the

probabilistic response of compliant mechanisms. Mirfendereski et al. (1993) has applied

this method to analyze uncertainty in micro strain gauges.

Joskowicz and Sacks (1997) have produced a computer program for analyzing the

kinematic tolerance space of mechanisms by reducing the tolerance analysis to computa-

tional geometry. Although it works for determining variations in the kinematic function of

rigid linkages, it does not account for large non-linear deflections typical of compliant

mechanisms.

New computer software for analyzing effects of tolerances continues to be devel-

oped as more importance is placed on using computer simulations in product develop-

ment. Early software could only be applied to specific applications, but with the
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development of more general analysis methods, the scope of the software can be

expanded. For example, the Pseudo-Rigid-Body Model allows compliant mechanisms to

be analyzed using normal kinematic analysis tools. Likewise, new methods of variation

analysis that can circumvent the need for Monte Carlo simulations or Finite Element anal-

ysis, may prove to be useful in mechanism synthesis.

2.3.7 Dimensional Variations in Compliant MEMS:

Only a few people have looked at the effects of dimensional variations on the

design of micro mechanisms. Mirfendereski et al. (1993) applied stochastic finite element

methods to analyze uncertainty in micro strain gauges. Howell et al. (1994d) included

variation in link lengths, material properties, and cross-sectional dimensions in the analy-

sis of the reliability of a bistable compliant mechanism, but did not consider force or posi-

tion error.

2.4 Summary

Much work has been done to determine the effects of tolerances on mechanical

error in rigid mechanisms and assemblies. As explained in Section 2.3.1, compliant mech-

anism analysis contains additional complications that require further study. In addition to

link length variations, compliant mechanisms may be sensitive to cross-sectional dimen-

sions in flexible members, reaction forces, and material properties. For micro compliant

mechanisms, these additional variations may prove to be very significant.
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CHAPTER 3 UNCERTAINTY IN

COMPLIANT MEMBERS

This chapter discusses the theory of uncertainty analysis and demonstrates how it

is applied to explicit equations with random variables. It is important to determine the

effects of dimensional variations and material property uncertainty on the forces and

stresses in compliant members. To do this, a vertically end-loaded cantilever beam will be

analyzed. For large deflections, the equations are nonlinear and none explicit. However,

this chapter will demonstrate a method of obtaining an explicit equation that can be used

even for large deflections.

3.1 Uncertainty Analysis

Given a function , where are independent random

variables with standard deviations of , respectively, the approximate vari-

ance of f is calculated as:

(3.1)

f ψ1 ψ2 … ψi, , ,( ) ψ1 ψ2 … ψi, , ,

σ1 σ2 … σi, , ,

σf
2 ∂f

∂ψ1
--------- 
  2

σ1
2 ∂f

∂ψ2
--------- 
  2

σ2
2 … ∂f

∂ψi
-------- 
  2

σi
2

+ + +=
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where the partial derivatives are calculated using the expected (mean) values. The partial

derivatives are the sensitivities of the function with respect to changes in the random vari-

ables, whereas the individual terms are the variance components. The variance compo-

nents are often represented as a percentage of the total variance in order to determine the

relative contribution of each of the variables. Equation (3.1) is an accurate approximation

if the function is well-behaved (not highly nonlinear) and if the variations are relatively

small ( σi << ψi ). For the purposes of this thesis, all random variables will be assumed to

be normally distributed.

As an example, consider the explicit equation relating the force of a vertically end-

loaded cantilever to the vertical deflection at the end of the beam:

(3.2)

where the moment of inertia, I, for a rectangular beam is , P is the force, δ is the

beam deflection, w is the width of the beam, h is the height, L is the length, and E is

Young’s modulus. Of course, this assumes the beam deflection is small and that the beam

is linearly elastic, isotropic, and homogeneous.

The force variance of the beam is found by applying Equation (3.1) as follows:

(3.3)
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This analysis is limited to small beam deflections, but most compliant mechanisms oper-

ate in the nonlinear (large deflection) range. The following section will demonstrate a

method for simplifying the force-deflection relationship for nonlinear deflections so that

this same method of uncertainty analysis can be applied.

3.2 Simplifying the Non-Linear Force-Deflection Relation-
ship

3.2.1 Elliptic Integral Solution

Bisshop and Drucker (1945) developed a closed-form elliptic integral solution for

the large deflection of end-loaded cantilever beams. This solution is based upon the Ber-

noulli-Euler equation which states that the moment in the beam is directly proportional to

its curvature. A comparison of the elliptic integral solution to equation (3.2) shows that

error is a function of the ratio δ/L (beam deflection / beam length). The percent error is

defined to be , where P is the force found from equation (3.2). By

curve fitting the percent error to the ratio δ/L (Figure 3.1), equation (3.2) can be modified

to give a simplified explicit equation that gives the nominal force for a given beam deflec-

tion:

(3.4)

P Pelliptic–( ) Pelliptic⁄

P
Ewh

3δ
4L

3
----------------- 1

1 εP+
---------------=
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where is given by the following fitted equation:

(3.5)

The same process can be used to find a simplified explicit equation for the maximum

stress in the beam (Figure 3.2). For small deflections, the maximum stress in the beam is:

(3.6)

After substituting equation (3.2) in for P, the simplified explicit equation is

(3.7)
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where is given by the following .fitted equation:

(3.8)

The curve fits for equations (3.5) and (3.8) have R2 values of 1.00000 and 0.99997,

respectively. There is some round-off error when using the coefficients of these equations.

Including this round-off error with the error inherent in the fitted curve, the accuracy of

these equations can be found through a comparison to the elliptic integral solution. For 0 <

δ/L < 0.75, the percent error for force is less than 0.03% and less than 0.32% for the max-

imum stress. In addition to finding the error between the linear force-deflection equations

and the non-linear elliptic integral solution, equations (3.5) and (3.8) can be used to find a

general rule of thumb for the limits of the uncorrected linear equations. For example, if an

εS

Figure 3.2 Curve fit for finding percent error in stress for a given δ/L.

Percent Error for Stress vs. δδδδ/L

y = -1.07623x4 + 0.88358x3 - 0.71041x2 + 0.02665x

R2 = 0.99997
-40%

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

5%

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

δδδδ/L

%
E

rr
o

r

εS 0.02665
δ
l
-- 
  0.71041–

δ
l
-- 
  2

0.88358
δ
l
-- 
  3

1.07623–
δ
l
-- 
  4

+=



26

error of less than 1.0% for force is desired using equation (3.2), then δ/L must be less than

about 0.1. Equations (3.4) and (3.7) can be applied to any beam that is linearly elastic, iso-

tropic, homogeneous, and has a constant rectangular cross section.

3.3 Application: Force Gauge Uncertainty Analysis

Many micro mechanisms require force measurements to determine the behavior of

a system or validate theoretical predictions. Friction forces, actuator forces, and contact

forces are some examples the important forces to be measured in MEMS. Fabrication of

tools for measuring micro forces is complicated by the additional sources of uncertainty

involved in surface micromachining processes. To obtain accurate and reliable measure-

ments of on-chip micro forces, the uncertainty in dimensional and material parameters

must be included in the error analysis.

3.3.1 General Force Gauge Model

The general force gauge shown in Figure 3.3 consists of a symmetric array of

beams in parallel and/or series that acts as a spring. A displacement, d, is used to deter-

mine the applied force, F. Np is the number of beams in parallel, and Ns is the number of

sets of parallel beams in series on each side of the gauge. The mechanism or system to be

tested can be connected at point B and the force applied by probe at point A. This model

can describe an infinite number of possible configurations, one of which was demon-

strated in Yeh and Pister (1995).
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Figure 3.4 shows the free-body diagrams used to simplify the force gauge model.

Each beam of the force gauge can be modeled as a fixed-guided flexible segment (or con-

stant end angle) with , and a resultant moment, Mo. The deflected beam

has an inflection point at its center where the curvature is zero. According to the Ber-

noulli-Euler assumption which states that the moment is directly proportional to the curva-

ture, the moment will be zero at this inflection point. This allows the beam to be simplified

to a vertically end-loaded cantilever beam with deflection and length

as shown in Figure 3.4.

The equations for calculating the force come from the simplification of the model

to a cantilever beam with applied force, P, and deflection, δ, as shown in Figure 3.4c.

Assuming the cross-section is rectangular and the deflection in each individual beam is

d

F

F

L

h

A

B

Ns 4=

Np 2=

Figure 3.3 General force gauge model.

P F 2Np( )⁄=

δ d 2Ns( )⁄=

l L 2⁄=
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small, the force and maximum stress for the gauge are calculated using the following

explicit equations:

(3.9)

(3.10)

where the moment of inertia is , w is the out-of-plane thickness of the beam, h

is the in-plane width of the beam, E is Young’s modulus, d is the overall gauge deflection,

Figure 3.4 Free-body diagrams for (a) one ‘leg’ of the force gauge, (b) a fixed-
guided flexible segment, and (c) a vertically end-loaded cantilever beam.
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L is the length of the beam as shown in Figure 3.3, and εP and εS are the error functions

given by equations (3.5) and (3.8).

3.3.2 Standard Deviation Values

The dimensional variations and material properties will vary with the process used

to fabricate the force gauges. In this example, the force gauge was fabricated using

MUMPs™. For this process, Sharpe et al. (1999) have measured a value of 162 ± 14 GPa

for Young’s modulus and 1.56 ± 0.25 GPa for tensile strength. Typical engineering prac-

tice is to report the plus/minus values at the 95% confidence limit, or approximately 1.96

standard deviations. Using this assumption, the standard deviations for Young’s modulus

and tensile strength are approximately σE = 7.143 GPa and σSy = 0.128 GPa.

The tolerances for the individual layer thicknesses can be found in the MUMPs™

Design Handbook (Koester et al., 2000), discussed in Section 2.2.5. For w = 2.0 µm

(Poly1), σw = 0.050 µm. For w = 1.5 µm (Poly2), σw = 0.033 µm. For w = 3.5 µm

(Poly1+Poly2), σw = 0.060 µm.

The variation of the in-plane width of the beams is determined by a combination of

the surface roughness and side-wall angle variation, as discussed in Section 2.2.5. A side-

wall angle between 89 and 90 degrees combined with the surface roughness results in
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approximately σh = 0.05 µm. Although the variation in the beam lengths is very small, a

value of 0.1 µm will be used for σL. This results in σl = σL/2 = 0.05 µm.

The uncertainty in the displacement measurement will vary greatly depending

upon the equipment being used. Using an optical microscope, a conservative value for the

standard deviation in the displacement measurement is σd = 0.5 µm. This results in σδ =

σd/(2Ns) = 0.25 µm.

For the example micro force gauge described in this thesis, the nominal values and

standard deviations are summarized in Table 3.1.

3.3.3 Variance and Sensitivity Equations

Using the explicit force gauge equations (3.9) and (3.10) for nonlinear deflections,

the variance for force and stress are calculated as follows:

(3.11)

(3.12)

Nominal σ Units
L 150 0.1 µm
w 3 0.06 µm
h 3.5 0.05 µm
d 2 to 20 0.5 µm
δ 1 to 10 0.25 µm
E 162 7.143 GPa
S y 1.56 0.128 GPa

TABLE 3.1 Nominal values and standard deviations for the example micro force gauge.
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where

(3.13)

(3.14)
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and for i = P or S,

(3.22)

(3.23)

where Ci1, Ci2, Ci3, and Ci4 are the coefficients of equations (3.5) and (3.8).

3.3.4 Results

Table 3.2 shows the results of the error analysis for force and stress at different

deflections. Felliptic and Selliptic are the theoretically exact force and stress for the given

deflection, based upon an elliptic integral solution for nonlinear deflections. This compar-

ison was done to show how closely equations (3.9) and (3.10) approximate the nominal

force and stress. The standard deviations for force and stress, σF and σS, were calculated

using the method described in the previous section. The uncertainties are then represented

as the nominal value ± the standard deviation, or F±σF and Smax±σS. The percent error is
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TABLE 3.2 Force and stress results by deflection.

2 µm 10 µm 15 µm 20 µm

F elliptic 108.88 546.82 824.98 1108.97

F 108.88 546.77 824.91 1108.93

σF 28.24 46.68 63.36 81.60

%Error 25.9% 8.5% 7.7% 7.4%

S elliptic 129.61 649.24 976.20 1306.03

S max 129.58 648.99 976.08 1306.35

σS 32.96 44.69 56.55 70.00

%Error 25.4% 6.9% 5.8% 5.4%

P[fracture] 0.000% 0.000% 0.002% 4.105%

Deflection (d )
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the ratio of the standard deviation over the nominal value. The following observations can

be made from Table 3.2:

• This particular gauge design is not well suited to making measurements at

small deflections.

• Even though the maximum stress is below the fracture strength, there is

still about a 4.1% chance of fracture at a gauge deflection of 20 µm.

A better understanding of how variation in the individual parameters affect the

force is gained from a sensitivity analysis. This is done by comparing the terms on the

right hand side of equations (3.11) and (3.12). The percent contribution is found by divid-

ing each term by the total variance. Table 3.3 shows the variance components evaluated at

a gauge deflection of 20 µm. It is seen that variance component associated with uncer-

tainty in length is insignificant compared to that of the other random variables.

It is important to determine if the force error is constant or whether it changes with

gauge deflection. The total force error at different gauge deflections is shown in Figure 3.5

along with the relative contributions of the variation in measured beam deflection (σd), in-

TABLE 3.3 Variance components for force and stress for a gauge deflection of 20 µm.

Value Contribution Value Contribution

VarE 2390.80 35.90% 3317.81 67.71%

Varw 361.39 5.43% n/a n/a

Varh 3074.33 46.17% 474.04 9.67%

Varδ 827.33 12.42% 1104.84 22.55%

Varl 5.04 0.08% 3.09 0.06%

VarTotal 6658.89 4899.78

Force Stress
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plane width (σh), beam thickness (σw), and Young’s modulus (σE). The error due to varia-

tion in length was nearly zero, so it is excluded. This graph shows that the error due to σh,

σw, and σE increases linearly with increasing deflection, while the error due to measured

beam deflection increases nonlinearly.

A better way of comparing the variance components is by looking at the percent

force error. It is a simple matter to show that if σd is taken to be zero, the percent error due

to σl, σh, σw, and σE is a constant value of 6.89% in this example. However, including σd

in the analysis affects the error significantly for small deflections. Figure 3.6 shows the

percent force error vs. gauge deflection and the relative contributions of the different

parameter variations. From this graph, the following observations can be made:

• For small deflections, the force error is dominated by the uncertainty in the

deflection measurement.

Figure 3.5 Relative contributions of the variation in δ, h, w, and E to the total force
error at different deflections.
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• For large deflections, the force error is dominated by the uncertainty in in-

plane width (h) and Young’s modulus.

These results would suggest that the first step in improving the accuracy of the

force gauge is to design it for large deflections in the range of force that is required. Any

further reduction in error would require knowing Young’s modulus with more certainty,

reducing the beam width variation (σh), or performing design synthesis on the mechanism

coupled with optimization to give the best combination of h, w, L, Ns, and Np. Choosing a

design to give a minimum uncertainty is therefore not trivial, but as a general rule,

decreasing the ratio of σi to the nominal parameter value will also decrease the force

uncertainty. This means that if nothing can be done to alter the uncertainty in Young’s

modulus, the force uncertainty can still be decreased by increasing h.

Figure 3.6 Contribution of the relative variation in δ, h, w, and E to the overall force
uncertainty at different deflections.
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3.4 Summary

This chapter discussed the theory of uncertainty analysis and demonstrated how it

is applied to explicit equations with random variables, using a vertically end-loaded canti-

lever beam as an example. A method for simplifying nonlinear beam deflection equations

was demonstrated and applied to the explicit uncertainty analysis of a micro force gauge.

It was found that uncertainty in Young’s modulus and cross-section dimensions do con-

tribute to the overall force error in the compliant micro gauge.
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CHAPTER 4 THE DIRECT

LINEARIZATION

METHOD

The previous chapter demonstrated how to determine the statistical error in com-

pliant members using explicit equations. Before looking at compliant mechanisms, this

chapter will discuss how to determine the statistical position error in assemblies and link-

ages using the Direct Linearization Method (DLM). This method will be validated by

comparing it to various other deterministic and probabilistic error analysis methods. A

multiple loop mechanism will be used as an example.

4.1 Introduction

When analyzing the position error in kinematic linkages, the goal is usually to find

error bands around an ideal path. Error bands were first developed by Garrett and Hall

(1969), where they were applied to a function generating four-bar mechanism. When

applied to coupler point position, there are numerous methods for determining the magni-

tudes of these error bands, involving both deterministic and probabilistic approaches.
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An approach common to both deterministic and statistical methods is sensitivity

analysis, where the sensitivity represents how the position will change with a change in an

input parameter. An efficient method used in assembly tolerance analysis, called the

Direct Linearization Method (DLM) (Marler, 1988; Chase et al., 1995), is based upon the

linearization of a system of vector loop equations, representing an assembly, to obtain a

sensitivity matrix. Kinematic joints may be inserted between mating surfaces to include

the effects of small kinematic adjustments.

A common method in kinematic analysis is the use of a Jacobian matrix to analyze

the sensitivity of position error with respect to individual tolerances (Cleghorn et al.,

1993). These two methods are based upon the same mathematical principles, but the DLM

is very general and easy to automate.

Another approach common to both deterministic and statistical methods is to solve

for the position of a mechanism after making small adjustments to the component dimen-

sions. A vertex analysis is used to determine the worst-case position error by trying all

possible combinations of extreme tolerance values (Fenton et al., 1989). Monte Carlo sim-

ulation is a statistical approach where the variations are represented by probability distri-

bution functions, with sets of parts selected randomly and assembled mathematically to

obtain the predicted variation of critical assembly features.

There are several methods for estimating position error in linkages, and each

method has advantages and disadvantages. For example, Monte Carlo simulations are

computationally expensive, but may be applied to highly nonlinear systems. They are also
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useful in validating other statistical methods (Gao et al., 1995) and determining the actual

distribution of error. As a tool for use in design of kinematic linkages, a variational model

for estimating position error should:

• Be general enough to apply to any 2-D or 3-D model that can be repre-

sented using vector loops.

• Be computationally efficient, so it can be implemented in kinematic analy-

sis packages and used for design iteration.

• Be able to provide both worst-case and statistical results.

This chapter will show how the Direct Linearization Method meets these require-

ments.

4.2 General Linkage Model

The example used to compare the various error analysis methods is shown in Fig-

ure 4.1. Point P is designed to follow a specific path as the input crank (link 6) is rotated.

The nominal position of point P for a given input crank angle, θ6, is found by solv-

ing two closed vector loop equations and one open vector loop equation. The two closed

vector-loops are:

and (4.1)

(4.2)

r6 r7 r8– r5–+ 0=

r2 r3 r4– r1–+ 0=
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where each vector has a magnitude of and an angle of measured counterclockwise

from the positive x axis.

These equations are expanded into four equations representing the sum of the vec-

tor components in each of the two dimensions:

(4.3)

(4.4)

(4.5)

(4.6)

where all angles are measured counterclockwise from the positive x-axis. Equations (4.3)

through (4.6) represent a nonlinear implicit set of equations with four unknown angles, θ2,

θ3, θ4, and θ7. The unknown angles can be found using a nonlinear equation solver, which

ri ri θi

r6

θ6

x

y

r1

r2 r3

r4

r5

r8

r7

P

a3

b3
B

C

DA

r1 2.36 cm= r2 AB 1.33 cm= = r3 5.08 cm= r4 3.94 cm=

r4 3.94 cm= r5 1.00 cm= r6 0.45 cm= r7 1.50 cm=

r8 1.00 cm= a3 6.00 cm= b3 0.50 cm=

Figure 4.1 Double-rocker four-bar mechanism with driving crank.

h1 r6 θ6cos r7 θ7cos r8 θ2cos r5––+ 0= =

h2 r6 θ6sin r7 θ7sin r8 θ2sin–+ 0= =

h3 r2 θ2cos r3 θ3cos r4 θ4cos r1––+ 0= =

h4 r2 θ2sin r3 θ3sin r4 θ4sin–+ 0= =
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is necessary in order to find the nominal position of point P for a given crank angle. An

alternative method for this specific example is to treat the mechanism as two individual

four-bar mechanisms and solve for the angles explicitly. Still another method is to use an

accurate CAD layout and a query of the CAD system to obtain the nominal angles.

After equations (4.3) through (4.6) have been solved, the nominal position of point

P is found using the following open-loop equations representing the sum of the vector

components in each of the two dimensions:

(4.7)

(4.8)

Links one through four have an associated tolerance of ±0.03 cm and the other

dimensions are treated as exact to simplify this example. The analysis of this mechanism

considering tolerances on all of the dimensions can be found in Appendix A. It will be

assumed that the actual dimensions are normally distributed, with a mean equal to the

nominal link length and a standard deviation of 0.01 cm. This case represents a 3-sigma

process, where the standard deviation is one third of the symmetric tolerance value.

Position error in linkages normally consists of both structural and mechanical

error. Mechanical error occurs when the link lengths exhibit dimensional errors due to pro-

duction. Structural error is present even when all the link lengths are precisely constructed.

It arises from the inability of the ideal linkages to describe exactly the desired path for P.

The structural error will not be considered in this thesis since the exact configuration of

the mechanism is not the main issue. The mechanical or position error will therefore repre-

Px r2 θ2cos a3 θ3cos b3 θ3 90°+( )cos+ +=

Py r2 θ2sin a3 θ3sin b3 θ3 90°+( )sin+ +=
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sent the deviation of point P from the ideal position, where the ideal position is found from

the nominal values of the input parameters.

4.3 Direct Linearization Method

When applied to kinematic linkages, the Direct Linearization Method can predict

position error using the implicit system of open and closed vector loops. This is done by

deriving the sensitivity matrix and then applying either worst-case or statistical

approaches to determine the magnitudes of position error.

4.3.1 Sensitivity Matrix

The first step is to derive the assembly equations, which for the example in this

chapter are equations (4.3) through (4.6). These equations are then linearized using a first-

order Taylor’s series expansion. This is written as:

(4.9)

where {X} is the vector of independent variables , {U} is the vec-

tor of dependent variables , and [A] and [B] are (4 x 4) matrices

of first-order partial derivatives with respect to the independent and dependent variables,

respectively:

(4.10)

(4.11)

A[ ] ∆ X{ } B[ ] ∆ U{ }+ 0{ }=

X{ } r1 r2 r3 r4, , ,{ }=

U{ } θ 2 θ3 θ4 θ7, , ,{ }=

A[ ] ∂ hi( ) ∂Xj( )⁄=

B[ ] ∂ hi( ) ∂Uj( )⁄=
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Equation (4.9) is then solved using linear algebra to obtain the variations in the indepen-

dent variables:

(4.12)

This same procedure is then applied to the system of open vector loops, equations

(4.7) and (4.8) to obtain

(4.13)

where [C] and [D] are the first-order partial derivatives with respect to the independent

and dependent variables:

(4.14)

(4.15)

where Pi is {Px, Py}, the coordinates of the coupler point.

Equation (4.12) is then substituted into equation (4.13) to obtain

(4.16)

where is the variation sensitivity matrix, Sij, describing how changes in the

independent variables affect the position error. The expanded solution for the example in

this paper is listed in Appendix A.

∆U{ } B[ ] 1–
A[ ] ∆ X{ }–=

∆P{ } C[ ] ∆ X{ } D[ ] ∆ U{ }+=

C[ ] ∂ Pi( ) ∂Xj( )⁄=

D[ ] ∂ Pi( ) ∂Uj( )⁄=

∆P{ } C[ ] D[ ] B[ ] 1–
A[ ]–( ) ∆X{ } Sij[ ] ∆ X{ }= =

C DB
1–
A–[ ]
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4.3.2 Position Error

After obtaining the sensitivity matrix, it is a relatively simple matter to determine

position error using either a deterministic (worst-case) or probabilistic (statistical)

approach.

The worst-case position error is found using the following equation:

(4.17)

where Sij is the sensitivity matrix found from equation (4.16) and tolj is the tolerance asso-

ciated with the jth independent variable.

The statistical position error is estimated using the following equation:

(4.18)

where σj is the standard deviation of the jth independent variable, Var(Pi) is the position

variance for the ith dimension. For a three-sigma estimate of position error, the standard

deviation (which is the square root of the variance) is simply multiplied by three, since in

this example all the tolerances represent the three-sigma manufacturing process limits.

4.3.3 Comparison to Deterministic Methods

In order to verify the DLM method for use in determining worst-case position

error, it was compared to two other deterministic methods. The first was a vertex analysis,

∆Pi Sij tolj

j 1=

n

∑=

σPi

2
Var Pi( ) Sij( )2 σj( )2

j 1=

n

∑= =
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where the nonlinear vector equations (4.3) through (4.8) were solved using all combina-

tions of the extreme values of the tolerances. The second method used optimization to

determine the worst possible magnitude of error given the tolerances as constraints. Both

of these two methods used nonlinear solvers, whereas the DLM method uses linearization

as discussed earlier. The purpose for using optimization was to determine if there were any

combinations of dimension values other than extremes that could lead to worse error than

predicted by the vertex analysis method.

Figure 4.2 shows the results of these three methods performed for the example

mechanism at a crank position of 120 degrees. The x and y axes show the magnitude of

-0.21

-0.14

-0.07

0.00

0.07

0.14

-0.21 -0.14 -0.07 0.00 0.07 0.14

DLM: Worst Case

Optimization

Vertex Analysis

Figure 4.2 Predicted position error by deterministic methods.

x

y
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deviation from the expected location of the coupler point. The DLM method gives the esti-

mated error as an error band about the nominal position, which results in a rectangle. The

vertex analysis shows that almost all the points lie within this box. It is assumed that the

points that lie outside of the DLM zone is a result of linearization. A very important vali-

dation of the DLM method is that the results of the optimization routine corresponds with

one of the extreme values found using the vertex analysis method. At this time there is no

known means of proving that this will be true for all kinematic linkages, but in every case

tried so far, no exceptions have been found. Another important result of this comparison is

that the vertex points are not uniformly distributed about the nominal position. The zone

that circumscribes these points appears to be narrowly clustered about a sloped line of

about 45 degrees. This would suggest that there is some correlation between the x and y

error.

4.4 Bivariate Normal Model of Position Error Using DLM

There is a difference between the position error of a part feature and an assembly

feature. For example, a hole may be located on a feature with respect to two datums,

where the position error with respect to these datums are independent. However, in assem-

blies or kinematic linkages, the position error is generally not independent with respect to

the different axes, meaning you cannot have an error in the x direction without introducing

error in the y direction. An accurate model must account for this correlation.

Schade (1983) presented a bivariate normal model of mechanism coupler-point

position error, where the contour of equal probability is described as an ellipse. The results
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were verified using a Monte Carlo simulation. Independent research led Brown (1995) to

develop a similar method for describing the position error in mechanical assemblies and

these results were also verified using a Monte Carlo simulation. The main difference is

that Brown developed a general model based upon DLM, while Schade provided a spe-

cific example for the case of a four-bar mechanism. A detailed comparison of the two

methods found them to be in agreement, adding validity to use of DLM for general use in

kinematic position error analysis.

4.4.1 Contours of Equal Probability

The essential ingredient to extend the DLM method to a bivariate normal model is

the use of covariance. The two-dimensional position error at a given point on a coupler

path can be described using a symmetric variance matrix:

(4.19)

where Vx and Vy are found using equation (4.18) and Vxy is found using the following

equation:

(4.20)

The variance matrix is important because its eigenvalues indicate the magnitude

and direction of greatest variation. The eigenvalues are principle variances that represent

Vx Vxy

Vxy Vy

Vxy Sij( ) Sji( )σj
2

j 1=

n

∑=
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the major and minor diameters of an elliptic contour of equal probability (Schade 1983).

Solving the eigenvalue problem leads to the principle variances:

(4.21)

(4.22)

with being the major ellipse diameter and being the minor

ellipse diameter. The angle of rotation of the y-axis to a principle axis is found using:

(4.23)

Using the inverse tangent function, which gives an angle from -90 to 90 degrees, only

finds the rotation of the y-axis to one of the principle axis, without a distinction of whether

the axis is the major or minor ellipse diameter. This problem can be solved using an

“arctan2” function that determines the angle from -180 to 180.

When Vxy is zero, the principle axes correspond to the x and y coordinate axes. In

this case, the equation of the ellipse is simply

(4.24)

V1

Vx Vy+

2
------------------ Vxy

2 Vy Vx–

2
----------------- 
 

2

++=

V2

Vx Vy+

2
------------------ Vxy

2 Vy Vx–

2
----------------- 
 

2

+–=

2σ1 2 V1= 2σ2 2 V2=

θR
1
2
---

2Vxy

Vy Vx–
----------------- 
 tan 1–=

∆x
2

σ2
2

--------- ∆y
2

σ1
2

---------+ n
2

=
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where n is the sigma-level of the process. Each value of n gives a different contour of

equal probability. Converting this equation to polar coordinates allows for a simple

method of accounting for a nonzero Vxy:

(4.25)

where and , and θR is the rotation angle found

using equation (4.23). If , then equation (4.25) becomes the equation of a circle

with radius . In this case, the magnitude of variance is constant in all directions, and

the error bands are simple to determine. However, for elliptic contours, the magnitude of

variance may vary widely with direction. In these cases, it is common to create error bands

that represent the maximum normal distance to the coupler path, since variation parallel to

the path is of no consequence, (unless points on the path must be indexed to positions of

the input crank).

This is done by solving for the points on the ellipse whose tangents have the same

slope as the coupler path. It is not difficult to solve for the point on the ellipse that is the

maximum normal distance from the path slope, if the principle axes of the ellipse are used

as a reference coordinate system. The slope of the tangent at any point on the ellipse can

be found from equation (4.24) as:

(4.26)

θ θR–( )cos2

σ2
2

-------------------------------
θ θR–( )sin2

σ1
2

------------------------------+
n

2

r
2

-----=

∆x r θ θR–( )cos= ∆y r θ θR–( )sin=

σ1 σ2=

n r⁄

slope
1

θ( )tan
----------------

V1

V2
------–=
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If the slope of the coupler path in the reference frame of the ellipse is

, then the angle that represents the point on the ellipse at the

maximum normal distance from the coupler path is:

(4.27)

Equation (4.25) is then used to solve for r, ∆x, and ∆y and the results are then transformed

to the original coordinate frame.

Finding the yield, or the probability that the position will be within a contour of

equal probability, is simple for the bivariate normal distribution. The bivariate normal

model for two-dimensional position error uses the chi-squared distribution, ,

with degrees of freedom, evaluated at n, where n is the sigma level. Whereas a 3-

sigma one-dimensional normal distribution yields 99.73%, a 3-sigma bivariate normal dis-

tribution yields 98.89%.

4.4.2 Comparison to Monte Carlo

In order to verify the DLM method for use in statistical position error, it was com-

pared to a Monte Carlo simulation. Both the root-sum-square (RSS) DLM approach and

the bivariate normal model were used and Figure 4.3 shows the results of these three

methods performed for the example mechanism at a crank position of 120 degrees. A

sigma level of 3 was used in the example. A more detailed comparison of the RSS

approach with Monte Carlo was also done in an earlier study by Gao et al. (1995) for a

variety of assemblies. The results of this study showed that if the tolerances are small rela-

mo θm θR–( )tan= θ θR–( )

θ θR–( ) 1
mo
------

V1

V2
------– 

 tan 1–=

χ2
n

2 ν,( )

ν 2=
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tive to the nominal dimensions, and if the assembly equations are not highly nonlinear,

then DLM is accurate.

Brown (1995) extended the DLM to find ∆Px and ∆Py for position variation, and

applied equation (4.18) to obtain Vxy from the DLM sensitivity matrix. He concluded that

the position variation contour was an ellipse, not a rectangle. If you simply apply ∆Px and

∆Py without calculating the covariance, you get a box, which predicts the limits with rea-

sonable accuracy, but cannot predict the yield or percent rejects.

-0.21
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Figure 4.3 Comparison of statistical methods.
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The Monte Carlo simulation, which used 100,000 data points, resulted in 98.876%

being within the 3-sigma bivariate ellipse. The shading in Figure 4.3 is due to the density

of points falling within the ellipse. The expected result was 98.889% based on the dis-

tribution. This is actually a very good result considering that the Monte Carlo simulation

was based upon the nonlinear solution, whereas the bivariate model used direct lineariza-

tion. This validation is important because DLM is much more efficient than Monte Carlo

simulations, and can be automated for use in computer software (Chase et al., 1995). For

mechanisms, where the position error is determined at multiple points over the range of

motion, it is essential that an efficient method be used. Figure 4.4 shows the 3-sigma max-

imum normal (perpendicular) position error evaluated at 100 crank positions using the

direct linearization method as discussed in section 4.1. The same analysis using Monte

Carlo Simulation would have taken at least 5000 times as long.
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Figure 4.4 Maximum normal (perpendicular) position error evaluated over a
complete crank cycle.
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4.4.3 Statistical vs. Deterministic Methods

Figure 4.5 compares the bivariate normal model to the deterministic models dis-

cussed earlier, with three contours of equal probability: , , and

sigma. The corresponding yield for these contours based upon the distribution would

be 98.889%, 99.996%, and 99.999998%. These results suggest that the 6-sigma bivariate

model could be an alternative approach to using the deterministic methods for worst-case

error analysis. Not only is it conservative, but it gives a better representation of the actual

error zone and can be used to solve for the maximum perpendicular variation.

An interesting result of comparing statistical to deterministic methods is that when

using direct linearization, the error introduced due to linearization is almost insignificant.

This is because the stack-up of tolerances reduces the probability of reaching the absolute

worst case. For example, for this mechanism evaluated at the given angle, the probability

of obtaining the absolute maximum found through optimization is about 1.1 in a trillion

corresponding to a sigma level of 7.42. Therefore, although there is some error in the

DLM worst-case method introduced through linearizing a set of nonlinear implicit equa-

tions, the significance of this error is statistically (and practically) zero.

n 3= n 4.5= n 6=

χ2
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4.5 Summary

The direct linearization method has been shown to be a valuable method for use in

kinematic error analysis. The method of obtaining the sensitivity matrix is very general

and can be used for almost any set of nonlinear implicit equations. The sensitivities can

then be used to estimate the worst-case, RSS, or bivariate normal error. There will be some

error introduced through linearization, especially for large tolerances, large kinematic

adjustments, and highly nonlinear equations, but this error is often statistically insignifi-

cant. The main difficulty in using this method is that finding the nominal position of the

Figure 4.5 Comparison of both deterministic and probabilistic method.
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mechanism requires the nonlinear solution of the set of equations. However, when inte-

grated with a kinematics software package, these dimensions and positions can be read

directly from the computer model.

When compared to Monte Carlo simulations, vertex analysis, and optimization, the

bivariate normal model has been shown to be the most efficient method of accurately rep-

resenting the position error. Although this chapter focused on a two-dimensional multi-

loop mechanism with one objective (position of one point), the DLM can be expanded to

include multiple dimensions, multiple loops, and multiple objectives, all solved simulta-

neously using the same sensitivity matrix. The ease with which the sensitivity matrix is

obtained for each nominal position makes it practical for use in determining the error

bands for the full motion of a kinematic linkage.
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CHAPTER 5 EXAMPLE OF DLM IN

COMPLIANT

MECHANISMS

The chapter will apply the direct linearization method (DLM) to the sensitivity

analysis of compliant mechanisms. By using the pseudo-rigid-body model and force-equi-

librium equations, the sensitivity of position and force error with respect to various design

parameters can be determined. A partially compliant parallel mechanism will be used as

an example.

5.1 Introduction

The direct linearization method is typically used to determine the effects of toler-

ances on assemblability or position error. However, it can be extended quite readily to

include the effects of variations in cross-sectional and material parameters on the reaction

forces in compliant mechanisms. As the previous chapter already explained how the sensi-

tivity matrix is used to determine worst-case or statistical variation, this chapter will only

focus on obtaining this matrix for mechanisms involving internal and external forces. The

complete set of nonlinear implicit equations will consist of three sets of equations:
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1. Kinematic equations that describe the position of the mechanism

2. Static force-equilibrium equations

3. Pseudo-rigid-body model relationships

In order to validate this approach for obtaining the sensitivity matrix, the results

will be compared to finite element analysis. A partially compliant parallel four-bar mecha-

nism will be used as an example.

5.2 Partially-Compliant Parallel Mechanism

Figure 5.1 shows a partially-compliant parallel mechanism in its initial and

deformed positions. The flexible members have lengths L2 = 200 µm and L4 = 200 µm

with cross-sectional dimensions of h2 = 3 µm, w2 = 2 µm and h4 = 3 µm, w4 = 2 µm,

respectively. Figure 5.2 shows the pseudo-rigid-body model with the corresponding vector

Figure 5.1 Partially compliant parallel mechanism in its (a) initial and (b) deformed
positions.
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model. Using a value of 0.85 for the characteristic radius factor, γ, gives a value of

µm for r2 and r4. To account for this change, the location of point P with

respect to link 3 is µm. The torsional spring constants are related to

the flexible member dimensions using the following relationship for a fixed-pinned seg-

ment:

(5.1)

Where and Young’s modulus is E = 162000 MPa.

Figure 5.2 (a) Pseudo-rigid-body model and (b) the corresponding vector
model.
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5.3 Constructing the Sensitivity Matrix using DLM

5.3.1 Kinematic Equations

The kinematic equations that describe the position of the pseudo-rigid mechanism

consist of two equations representing the sum of the vector components in the x and y

directions:

(5.2)

(5.3)

The position of the coupler point is then found from the following two equations:

(5.4)

(5.5)

5.3.2 Static Force-Equilibrium Equations

The pseudo-rigid-body model allows the static force-equilibrium equations to be

constructed using the free-body-diagram approach. Using the generalized four-bar model

hx r2 θ2cos r3 θ3cos r4 θ4cos r1 θ1cos––+ 0= =

hy r2 θ2sin r3 θsin 3 r4 θ4sin r1 θ1sin––+ 0= =

Px r2 θ2cos a3 θ3cos b3 θ3 90°+( )cos+ +=

Py r2 θ2sin a3 θ3sin b3 θ3 90°+( )sin+ +=

x

y r1

r2

r3

r4a3

b3

b4

a4

a
2
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P
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Figure 5.3 General four-bar vector model.
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shown in Figure 5.3, the links are separated and the equations of static equilibrium are

found for each individual link (Figure 5.4).

The equations for link 2 are:

(5.6)

(5.7)

(5.8)

The equations for link 3 are:

(5.9)

(5.10)

(5.11)

Figure 5.4 Free-body-diagrams for (a) link 2, (b) link 3, and (c) link 4.
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Fx∑ F12x F32x X2+ + 0= =

Fy∑ F12y F32y Y2+ + 0= =

MO1∑ T1 T2 M2 F32yr2 θ2cos F32xr2 θ2sin–+ + + +=

Y2 a2 θ2cos b2 θ2 90+( )cos+( ) X2 a2 θ2sin b2 θ2 90+( )sin+( )– 0=

Fx∑ F23x F43x X3+ + 0= =

Fy∑ F23y F43y Y3+ + 0= =

MA∑ T– 2 T3– M3 F43yr3 θ3cos F43xr3 θ3sin–+ + +=

Y3 a3 θ3cos b3 θ3 90+( )cos+( ) X3 a3 θ3sin b3 θ3 90+( )sin+( )– 0=
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The equations for link 4 are:

(5.12)

(5.13)

(5.14)

Including the reaction force relationships Fij = -Fji, there are a total of 13 equa-

tions, but using substitution can reduce this set to 9 equations:

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

Using this set of equations, there are 21 force or moment variables: 8 reaction

forces (Fij), 6 external forces (Xi,Yi), 3 external moments (Mi), and 4 torques due to tor-

Fx∑ F14x F34x X4+ + 0= =

Fy∑ F14y F34y Y4+ + 0= =

MO2∑ T3 T4 M4 F34yr4 θ4cos F34xr4 θ4sin–+ + + +=

Y4 a4 θ4cos b4 θ4 90–( )cos+( ) X4 a4 θ4sin b4 θ4 90–( )sin+( )– 0=

f1 F12x F23x X2+– 0= =

f2 F12y F23y Y2+– 0= =

f3 F23x F34x X3+– 0= =

f4 F23y F34y Y3+– 0= =

f5 F14x F34x X4+ + 0= =

f6 F14y F34y Y4+ + 0= =

f7 T1 T2 M2 F23yr2 θ2cos– F23xr2 θ2sin+ + + +=

Y2 a2 θ2cos b2 θ2 90+( )cos+( ) X2 a2 θ2sin b2 θ2 90+( )sin+( )– 0=

f8 T– 2 T3– M3 F34yr3 θ3cos– F34xr3 θ3sin+ + +=

Y3 a3 θ3cos b3 θ3 90+( )cos+( ) X3 a3 θ3sin b3 θ3 90+( )sin+( )– 0=

f9 T3 T4 M4 F34yr4 θ4cos F34xr4 θ4sin–+ + + +=

Y4 a4 θ4cos b4 θ4 90–( )cos+( ) X4 a4 θ4sin b4 θ4 90–( )sin+( )– 0=
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sional springs (Ti). Using 9 equations, only 9 unknowns can be solved for. Since the reac-

tion forces are generally unknown, this set of equations can be used to find one unknown

external force or moment if the rest of the external forces, moments, and torques are

known. The benefit of using this generalized set of equations is that the partial derivatives

can also be determined without having to re-derive the equations for different loading con-

ditions.

5.3.3 Pseudo-Rigid-Body Model Relations

The final set of equations to derive before constructing the overall sensitivity

matrix are those equations that relate the link lengths in the pseudo-rigid-body model (ri)

to the compliant model (Li), and those equations that define the torsion in the springs (Ti).

For the example problem, this requires four equations:

(5.24)

(5.25)

(5.26)

(5.27)

5.3.4 Constructing the Sensitivity Matrix

The nonlinear implicit set of equations used to find the sensitivity matrix consists

of the kinematic equations (5.2) through (5.3), the static equilibrium equations (5.15)

c1 r2– γL2+ 0= =

c2 r4– γL4+ 0= =

c3 T2 γKΘE
w2h2

3

12L2
-------------- θ2 θ2o–( ) θ3 θ3o–( )–[ ]+ 0= =

c4 T3 γKΘE
w4h4

3

12L4
-------------- θ4 θ4o–( ) θ3 θ3o–( )–[ ]+ 0= =
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through (5.23), and the pseudo-rigid-body model relations (5.24) through (5.27). For an

applied displacement on the coupler point in the x direction, the vector of unknown vari-

ables is:

(5.28)

Following the steps of the DLM method, the sensitivity of any of the unknown

variables with respect to a known variable can be determined by constructing the [-B-1A]

matrix. For the sensitivity of the position of point P with respect to the primary variables,

the [C-EB-1A] matrix is constructed. For this example, the vector of primary variables is:

(5.29)

5.3.5 Results

For a displacement of ∆Px = 10 µm, and values for σi shown in Table 3.1 for the

micro force gauge example, Table 5.1 shows the sensitivity and variance of the reaction

force and coupler point position with respect to the above primary variables. This analysis

shows that using the pseudo-rigid-body model, the position variation is extremely sensi-

tive to the characteristic radius factor, γ (a few orders of magnitude larger than any of the

U{ } θ 3 θ4 X3 F12x F12y F23x F23y F14x F14y F34x F34y r2 r4 T2 T4, , , , , , , , , , , , , ,{ }=

X{ } r1 L2 r3 L4 a3 b3 w2 h2 w4 h4 E γ KΘ, , , , , , , , , , , ,{ }=

TABLE 5.1 Sensitivities and variances for force and position determined by DLM.

Force, Fx r 1 L 2 r 3 L 4 a 3 b 3 w 2 h 2 w 4 h 4 E γ KΘ

Sensitivity: -0.217 -0.422 0.217 0.365 0.000 0.000 1.402 2.805 1.402 2.805 3.5E-05 0.000 2.149

% Variance: 7.4% 1.4% 0.4% 1.0% 0.0% 0.0% 5.5% 15.4% 5.5% 15.4% 47.9%

Position, Py r 1 L 2 r 3 L 4 a 3 b 3 w 2 h 2 w 4 h 4 E γ KΘ

Sensitivity: 0.029 0.423 -0.029 0.426 0.000 1.000 0.000 0.000 0.000 0.000 0.000 199.654 0.000

% Variance: 1.3% 13.0% 0.1% 13.2% 0.0% 72.6% 0.0% 0.0% 0.0% 0.0% 0.0%
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other sensitivities). In addition, the sensitivity of the force with respect to the stiffness

coefficient, KΘ, is on the same order of magnitude as a few of the other sensitivities. For

this example, γ and KΘ are assumed to be exact, so they contribute no variance to force or

position. However, these parameters are not always constant, resulting in structural error

in the model.

As expected, the force is sensitive to variation in the cross-sectional dimensions of

the flexible beams. What is not intuitive is that the force appears to be twice as sensitive to

changes in height than changes in width. The torsional spring constants involve a cubed

height term and a linear width term, so the linear relationship between the sensitivities is

not expected.

The sensitivities are independent of the actual amount of variation (σi), therefore,

it is very important to consider scaling and units. For example, the sensitivity of force with

respect to Young’s modulus is 3.46E-05. In this example, the units for Young’s modulus

are MPa and the units for force are µN, so this sensitivity indicates that for an increase in

E of 1 MPa, the force will increase by 3.46E-5 µN. However, the variation in E for poly-

silicon is around 2000 MPa. The presents a scaling problem when comparing the different

sensitivities. For this reason, a common means of comparing sensitivities is by using per-

cent variance contributions. These are shown in Table 5.1 along with the sensitivities. The

important point to remember here is that just because a sensitivity is small does not mean

the overall contribution of the variation will also be small.
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5.4 Comparison to FEA

In order to validate the direct linearization method using the pseudo-rigid-body

model, the sensitivities were compared to those found through finite element analysis.

5.4.1 The FEA model

Appendix B includes the batch file used to run an ANSYS® finite element analysis

of the parallel mechanism. Figure 5.5 shows an example of the model where all the param-

eters are set to their nominal values and the beams are divided into elements. The flexible

segments (links 2 and 4) were divided into 50 nonlinear beam elements. The sensitivities

Figure 5.5 Finite element model of the example parallel mechanism.
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were found using a central difference derivative approach. For example, to determine the

sensitivity of the reaction force with respect to variation in link two, a separate finite ele-

ment analysis is performed after adjusting the link length in the positive and negative

directions. The sensitivity is found using:

(5.30)

The variation used for each parameter was chosen to be either 0.1 µm or 2000 MPa. The

analysis was run again using much smaller variations (0.001 µm and 1 MPa) to verify that

the derivatives were accurate even though the problem involved nonlinearities.

Setting up the finite element model is not trivial. Care must be taken to ensure that

if only one parameter is perturbed, the other parameters are not. This is important, because

varying a link length will change the assembled configuration of the mechanism. There

will be some initial stress and displacement caused by the link length variations, if the

positions of the ground pins are held constant. To properly model this in ANSYS®, an

additional load step was used to represent the assembly of the mechanism. First, the mech-

anism was modeled using the grounded pin of link 2 as the origin. The first load step was

then to displace the other pin to the proper ground position. The resulting configuration

represented the assembled state of the mechanism. Additional load steps were then used to

find the reaction force at the coupler point, given various displacements in the x direction.

These additional load steps also were required to update the stiffness matrix so as to con-

verge to the correct solution.

∂F
∂L2
---------

F L2 L2∆+( ) F L2 L2∆–( )–

2 L2∆
------------------------------------------------------------------≈
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5.4.2 Comparison of DLM and FEA results

For a displacement of ∆Px = 10 µm, Table 5.2 shows the sensitivity of the reaction

force and coupler point position and rotation. Considering that the pseudo-rigid-body

model is only an approximation, and the system of equations was linearized using DLM,

the sensitivities are very close to those found through FEA. These results suggest that just

as the pseudo-rigid-body model is a good initial approximation of forces and position of a

compliant mechanisms, it can also be used to determine approximate sensitivities through

the use of DLM.

5.5 Summary

This chapter demonstrated how to use the direct linearization method to determine

the sensitivities of a compliant mechanism with respect to geometric dimensions and

material properties. In order to further validate this approach, more configurations and

loading conditions ought to be investigated. The results of this research found that using

TABLE 5.2 Comparison of sensitivities found through DLM and FEA.

DLM FEA DLM FEA DLM FEA
r 1 -0.22 -0.20 0.03 0.03 0.02 0.02
L 2 -0.42 -0.65 0.42 0.52 -0.24 -0.29
r 3 0.22 0.20 -0.03 -0.03 -0.02 -0.02
L 4 0.37 0.56 0.43 0.48 0.24 0.29
a 3 0.00 0.00 0.00 0.00 0.00 0.00
b 3 0.00 0.00 1.00 1.00 0.00 0.00
w 2 1.40 1.37 0.00 0.00 0.00 0.00
h 2 2.80 2.74 0.00 0.00 0.00 0.00
w 4 1.40 1.37 0.00 0.00 0.00 0.00
h 4 2.80 2.74 0.00 0.00 0.00 0.00
E 3.46E-05 3.38E-05 0.00 0.00 0.00 0.00

F x Sensitivity P Y Sensitivity θθθθ3 Sensitivity
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the pseudo-rigid-body model to construct the set of nonlinear implicit equations was feasi-

ble. However, the position variation is highly sensitive to the characteristic radius factor, γ.

This implies that in order to obtain accurate results, the value of gamma must be known

precisely. For some compliant mechanisms, an average or estimated value of gamma is

often used. It is these cases that ought to be investigated to determine the validity of using

the direct linearization method to obtain sensitivities.

This thesis has focused on the use of sensitivities to obtain the position error in

mechanisms. However, these sensitivities are very important for many other applications.

For example, the sensitivities can be used in optimization routines to find more robust or

lower cost designs.



70



71

CHAPTER 6 CONTRIBUTIONS AND

RECOMMENDATIONS

6.1 Contributions

Previous to the research presented in this thesis, very little had been done to model

the effects of tolerances and clearances in micro-electro-mechanical systems (MEMS) and

compliant mechanisms in general. The main contribution of this thesis was the demonstra-

tion of the plausibility of using direct linearization for determining these effects. The spe-

cific contributions of this thesis are listed below:

• Characterization of the types of variation common in micro-mechanisms.

• Method for simplifying large-deflection equations for determining

mechanical error in flexible beams.

• Design of micro force gauges including an estimate of the expected resolu-

tion based upon uncertainty analysis.

• Comparison of deterministic and probabilistic methods for analyzing the

position error in kinematic linkages.
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• Demonstration of the use of the direct linearization method for estimating

the mechanical error in kinematic linkages.

• Extension of the direct linearization method to include force-equilibrium

equations and pseudo-rigid-body relationships.

• Demonstration of the plausibility of using direct linearization in the sensi-

tivity analysis of compliant mechanisms through a comparison of the

pseudo-rigid-body model and finite element analysis.

6.2 Conclusions

The main purpose of this thesis was to develop a method for determining the

effects of tolerances on the mechanical error in compliant mechanisms. This thesis dem-

onstrated that this is possible using the pseudo-rigid-body model for compliant mecha-

nisms and applying the direct linearization method to obtain sensitivities. The use of these

sensitivities in determining both worst-case and statistical results was validated by com-

parison with other deterministic and probabilistic methods. One of the main benefits of the

direct linearization approach coupled with the pseudo-rigid-body model is the computa-

tional efficiency of the method and its potential of automation. Also, in applications such

as micro mechanisms, where it is difficult to obtain accurate material properties and

dimensional variations, the error analysis methods discussed in this thesis can be a great

aid in designing more robust mechanical systems.
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6.3 Recommendations for Further Research

The analysis methods discussed in this thesis were limited in order to provide a

firm basis for further research in the sensitivity analysis of compliant mechanisms. How-

ever, this research has led to many other interesting research possibilities, some of which

are listed below:

1. Application of DLM to three-dimensional kinematic linkages.

2. Use of DLM in combination with mechanism synthesis.

3. Extension of these methods to include dynamic responses.

4. Use of sensitivity analysis as a tool for determining how robust the pseudo-

rigid-body model is for specific mechanisms. The sensitivity of the model with

respect to the characteristic radius factor, γ, and the stiffness coefficient, KΘ,

may be an indication of robustness.

5. Improvement in the accuracy of the PRBM by including the relationship

between γ and KΘ and the direction of the reaction forces (n). Both of these

PRBM parameters are calculated in terms of n, so instead of using a constant

value for each, the force equilibrium equations may be used to solve for the

values of γ and KΘ.
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6. Further investigation into the nonlinearities involved in compliant mechanisms

and the ability of the PRBM to account for these nonlinearities. This can be

studied by additional comparisons between the PRBM and FEA.

7. Inclusion of these analysis methods in software packages that already perform

kinematics and static equilibrium. User input to characterize pseudo-body-

model relationships would allow greater flexibility.
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APPENDIX A SOLUTION TO

EXAMPLE PROBLEM IN

CHAPTER 4

The following are the loop equations that describe this model:

r6

θ6

x

y

r1

r2 r3

r4

r5

r8

r7

P

a3

b3
B

C

DA

r1 2.36 cm= r2 AB 1.33 cm= = r3 5.08 cm= r4 3.94 cm=

r4 3.94 cm= r5 1.00 cm= r6 0.45 cm= r7 1.50 cm=

r8 1.00 cm= a3 6.00 cm= b3 0.50 cm=

Figure A.1Double-rocker four-bar mechanism with driving crank.

h1() r2 θ2cos r3 θ3cos r4 θ4cos r1––+ 0= =

h2() r2 θ2sin r3 θ3sin r4 θ4sin–+ 0= =
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The following are the matrices used to calculate the final sensitivity matrix for the

mechanism used as an example in this paper:

Independent Variable Vector:

Dependent Variable Vector:

Matrices Used to Determine Sensitivities:

h3() r6 θ6cos r7 θ7cos r8 θ2cos r5––+ 0= =

h4() r6 θ6sin r7 θ7sin r8 θ2sin–+ 0= =

X[ ] r1 r2 r3 r4 r5 r6 r7 r8 a3 b3, , , , , , , , ,{ }=

U[ ] θ 2 θ3 θ4 θ7, , ,{ }=

A[ ] ∂ hi( ) ∂Xj( )⁄= =

∂h1

∂r1
--------

∂h1

∂r2
--------

∂h1

∂r3
--------

∂h1

∂r4
--------

∂h1

∂r5
--------

∂h1

∂r6
--------

∂h1

∂r7
--------

∂h1

∂r8
--------

∂h1

∂a3
--------

∂h1

∂b3
--------

∂h2

∂r1
--------

∂h2

∂r2
--------

∂h2

∂r3
--------

∂h2

∂r4
--------

∂h2

∂r5
--------

∂h2

∂r6
--------

∂h2

∂r7
--------

∂h2

∂r8
--------

∂h2

∂a3
--------

∂h2

∂b3
--------

∂h3

∂r1
--------

∂h3

∂r2
--------

∂h3

∂r3
--------

∂h3

∂r4
--------

∂h3

∂r5
--------

∂h3

∂r6
--------

∂h3

∂r7
--------

∂h3

∂r8
--------

∂h3

∂a3
--------

∂h3

∂b3
--------

∂h4

∂r1
--------

∂h4

∂r2
--------

∂h4

∂r3
--------

∂h4

∂r4
--------

∂h4

∂r5
--------

∂h4

∂r6
--------

∂h4

∂r7
--------

∂h4

∂r8
--------

∂h4

∂a3
--------

∂h4

∂b3
--------

=

1– θ2cos θ3cos θ4cos– 0 0 0 0 0 0

0 θ2sin θ3sin θ4sin– 0 0 0 0 0 0

0 0 0 0 1– θ6cos θ7cos θ2cos– 0 0

0 0 0 0 0 θ6sin θ7sin θ2sin– 0 0
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B[ ] ∂ hi( ) ∂Uj( )⁄= =

∂h1

∂θ2
--------

∂h1

∂θ3
--------

∂h1

∂θ4
--------

∂h1

∂θ7
--------

∂h2

∂θ2
--------

∂h2

∂θ3
--------

∂h2

∂θ4
--------

∂h2

∂θ7
--------

∂h3

∂θ2
--------

∂h3

∂θ3
--------

∂h3

∂θ4
--------

∂h3

∂θ7
--------

∂h4

∂θ2
--------

∂h4

∂θ3
--------

∂h4

∂θ4
--------

∂h4

∂θ7
--------

r2– θ2sin r3– θ3sin r4 θ4sin 0

r2 θ2cos r3 θ3cos r– 4 θ4cos 0

r8 θ2sin 0 0 r7– θ7sin

r8– θ2cos 0 0 r7 θ7cos

=

C[ ] ∂ Pi( ) ∂Xj( )⁄= =

∂Px

∂r1
---------

∂Px

∂r2
---------

∂Px

∂r3
---------

∂Px

∂r4
---------

∂Px

∂r5
---------

∂Px

∂r6
---------

∂Px

∂r7
---------

∂Px

∂r8
---------

∂Px

∂a3
---------

∂Px

∂b3
---------

∂Py

∂r1
---------

∂Py

∂r2
---------

∂Py

∂r3
---------

∂Py

∂r4
---------

∂Py

∂r5
---------

∂Py

∂r6
---------

∂Py

∂r7
---------

∂Py

∂r8
---------

∂Py

∂a3
---------

∂Py

∂b3
---------

=

0 θ2cos 0 0 0 0 0 0 θ3cos θ3 90+( )cos

0 θ2sin 0 0 0 0 0 0 θ3sin θ3 90+( )sin

D[ ] ∂ Pi( ) ∂Uj( )⁄= =

∂Px

∂θ2
---------

∂Px

∂θ3
---------

∂Px

∂θ4
---------

∂Px

∂θ7
---------

∂Py

∂θ2
---------

∂Py

∂θ3
---------

∂Py

∂θ4
---------

∂Py

∂θ7
---------

r2– θ2sin a3– θ3sin b3 θ3 90+( )sin–( ) 0 0

r2 θ2cos a3 θ3cos b3 θ3 90+( )cos+( ) 0 0
=
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For an input crank angle of 120 degrees, the following sensitivity matrix is

obtained:

S[ ] C EB
1–
A–[ ]= =

0.641– 0.936 0.826 0.947– 3.616– 0.444– 3.944 2.100– 0.950 0.312–

1.512 0.866– 1.951– 2.235 3.332 0.409 3.634– 1.935 0.312 0.950
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APPENDIX B BATCH FILE FOR

FINITE ELEMENT

MODEL

!INPUT FILE FOR ANSYS (R)
!Filename: ParallelMech.inp
!Date: June 15, 2001

!**************BEGIN PREPROCESSOR STEPS******************
/TITLE,Analysis of Compliant Young Mechanism
/PREP7

!**************SET UP MODEL VARIABLES********************
R1=200 !*** Link 1 length
L2=200 !*** Link 2 length
Theta2o=90 !*** Initial Angle of link 2 (Degrees)
L3=200 !*** Link 3 length
Theta3o=0 !*** Intiial Angle of link 3 (Degrees)
L4=200 !*** Link 4 length
Theta4o=90 !*** Initial Angle of link 4 (Degrees)
La3=100 !*** Length of a3
Lb3=20 !*** Length of b3

!*********Maximum INPUT DISPLACEMENT********
DelXMax=100

!*************VARIATION/TOLERANCES****************
VarR1=0
VarL2=0
VarL3=0
VarL4=0
VarLa3=0
VarLb3=0
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VarH2=0
VarH4=0
VarW2=0
VarW4=0
VarE=0

!************CROSS SECTIONAL DIMENSIONS***********
h2=3+VarH2 !*** height of flexible link 2
h3=40 !*** height of rigid link 3
h4=3+VarH4 !*** height of flexible link 4
t2=2+VarW2 !*** thickness of flexible link 2
t3=30 !*** thickness of rigid link 3
t4=2+VarW4 !*** thickness of flexible link 4
Eyoung=162000+VarE !*** Young’s modulus

PI=acos(-1.)

!***Angles in Radians***************
q2o=Theta2o*PI/180
q3o=Theta3o*PI/180
q4o=Theta4o*PI/180

!***ADD VARIATION TO THE LINK LENGTHS*******
R1=R1+VarR1
L2=L2+VarL2
L3=L3+VarL3
L4=L4+VarL4
La3=La3+VarLa3
Lb3=Lb3+VarLb3

!***Coordinates of Key Points************
K1x=0
K1y=0
K2x=(L2)*cos(q2o)
K2y=(L2)*sin(q2o)
K3x=K2x+(L3)*cos(q3o)
K3y=K2y+(L3)*sin(q3o)
K4x=K3x-(L4)*cos(q4o)
K4y=K3y-(L4)*sin(q4o)
K1000x=K2x+(La3)*cos(q3o)+(Lb3)*cos(q3o+PI/2)
K1000y=K2y+(La3)*sin(q3o)+(Lb3)*sin(q3o+PI/2)

!***INITIAL DISPLACEMENT of POINT 4*********
delK4x=K4x-R1
delK4y=K4y
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!***Area Properties
I2=t2*h2*h2*h2/12 !*** Moment of Inertia
I3=t3*h3*h3*h3/12
I4=t4*h4*h4*h4/12
A2=t2*h2 !*** Cross-Sectional Area
A3=t3*h3
A4=t4*h4

!********** Create the KEY POINTS ************
K,1,K1x,K1y,0
K,2,K2x,K2y,0
K,3,K3x,K3y,0
K,4,K4x,K4y,0
K,5,K5x,K5y,0
K,1000,K1000x,K1000y,0

!********* Create the LINES between the KEYPOINTS *******
L,1,2
LESIZE,1,,,50
L,3,4
LESIZE,2,,,50
l,2,3
LESIZE,3,,,5
l,1,5
LESIZE,4,,,5
l,2,1000
LESIZE,5,,,5
l,3,1000
LESIZE,6,,,5

!***** Display Lines *****
LPLOT
!***** Fit to Screen *****
/AUTO,1

!******* Declare the ELEMENT TYPE: Beam 3 (2D Elastic) *****
ET,1,BEAM3

!************* SET CONSTANTS ****************
! Set 1: Link 2 (flexible)
! Set 2: Link 3 (Rigid)
! Set 3: Link 4 (flexible)
! Assume no shearz, no prestrain, no mass properties
R,1,A2,I2,h2,0,0,0
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R,2,A3,I3,h3,0,0,0
R,3,A4,I4,h4,0,0,0

!******** Set Material Properties on Material 1 *******
MP,EX,1,Eyoung

!********* MESH: LMESH{NL1,NL2,NINC} or LMESH,ALL
real,1
type,1
mat,1
LMESH,1
real,3
lmesh,2
real,2
lmesh,3,6

!*********GET NODES ASSOCIATED WITH KEY POINTS **********
ksel,s,kp,,5
nslk,s
*get,nkp5,node,0,num,max
nsel,all
ksel,all

ksel,s,kp,,4
nslk,s
*get,nkp4,node,0,num,max
nsel,all
ksel,all

ksel,s,kp,,1000
nslk,s
*get,nkp1000,node,0,num,max
nsel,all
ksel,all

ksel,s,kp,,2
nslk,s
*get,nkp2,node,0,num,max
nsel,all
ksel,all

FINISH

!***************BEGIN SOLUTION STEPS******************
/SOLU
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!********** Set to Nonlinear Deflection Analysis
NLGEOM,1

!********** Set Analysis Type to Static (0)
ANTYPE,0
!************************* LOAD STEPS *********************
! Constrain Node 1 & 4 in X & Y Directions
DK,1, ,0, , , ,UX,UY, , , ,
DK,4,UX,R1-K4x
DK,4,UY,-K4y
lswrite,1
! INPUT DISPLACEMENT
! Constrain Node 5 in the X direction
DK,1000, ,DelXMax/10, , , ,UX, , , , ,
lswrite,2
DK,1000, ,DelXMax*2/10, , , ,UX, , , , ,
lswrite,3
DK,1000, ,DelXMax*3/10, , , ,UX, , , , ,
lswrite,4
DK,1000, ,DelXMax*4/10, , , ,UX, , , , ,
lswrite,5
DK,1000, ,DelXMax*5/10, , , ,UX, , , , ,
lswrite,6
DK,1000, ,DelXMax*6/10, , , ,UX, , , , ,
lswrite,7
DK,1000, ,DelXMax*7/10, , , ,UX, , , , ,
lswrite,8
DK,1000, ,DelXMax*8/10, , , ,UX, , , , ,
lswrite,9
DK,1000, ,DelXMax*9/10, , , ,UX, , , , ,
lswrite,10
DK,1000, ,DelXMax*10/10, , , ,UX, , , , ,
lswrite,11
lssolve,1,11

FINISH

!*****Store Nodal Solutions ********
/POST26
NSOL,2,nkp1000,U,X,DelP3x
NSOL,3,nkp1000,U,Y,DelP3y
NSOL,4,nkp1000,ROT,Z,DelP3q
RFORCE,5,nkp1000,F,X,FxOut
/output,output
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prvar,2,3,4,5
/output

FINISH

!*************** GET STRESSES and MOMENTS ****************
/POST1
SET,LAST
ETABLE,smxi,NMIS,1
ETABLE,smxj,NMIS,3
ETABLE,smni,NMIS,2
ETABLE,smnj,NMIS,4
ETABLE,mmozi,SMIS,6
ETABLE,mmozj,SMIS,12
FINISH

/eof
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