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Abstract
Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as
gliomas. They proliferate and invade extensively and yield short life expectancies despite
aggressive treatment. Response to treatment is usually measured in terms of survival of groups of
patients treated similarly but this statistical approach misses the subgroups that may have
responded to or may have been injured by treatment. Such statistics offer scant reassurance to
individual patients who have suffered through these treatments. Furthermore, current imaging-
based treatment response metrics in individual patients ignore patient-specific differences in tumor
growth kinetics, which have been shown to vary widely across patients even within the same
histological diagnosis and, unfortunately, these metrics have shown only minimal success in
predicting patient outcome.

We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by
standard of care external beam radiation therapy (XRT). We present and apply a patient-specific,
biologically-based mathematical model for glioma growth that quantifies response to XRT in
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individual patients in vivo. The mathematical model uses net rates of proliferation and migration
of malignant tumor cells to characterize the tumor’s growth and invasion along with the linear-
quadratic model for the response to radiation therapy. Using only routinely available pre-treatment
MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation
response in these patients, quantified by both clinical and model-generated measures, could have
been predicted prior to treatment with high accuracy. Specifically, we find the net proliferation
rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a
predictive relationship that is tested with a leave-one-out cross validation technique. This
relationship predicts the tumor size post therapy to within inter-observer tumor volume
uncertainty.

The results of this study suggest that a mathematical model can create a virtual in silico tumor
with the same growth kinetics as a particular patient and can not only predict treatment response in
individual patients in vivo but also provide a basis for evaluation of response in each patient to any
given therapy.

Introduction
Glioblastomas are uniformly fatal primary brain tumors characterized by their extensive
diffuse invasion of the normal brain parenchyma and associated with a median survival of
10–12 months (Alvord and Shaw, 1991). These characteristics lead to aggressive treatment
strategies that most often include surgery, irradiation, and chemo-therapies. This somewhat
algorithmic approach to treatment leads to prompt action once the tumor is diagnosed.
Magnetic resonance imaging (MRI) is used to detect these tumors, and at the time of
operation a second MRI image is often acquired for surgical guidance. It is from these two
pre-treatment images that we are able to calculate kinetics of untreated tumor growth
(Harpold et al., 2007; Swanson et al., 2002b; Wang et al., 2009), specifically estimating net
rates of proliferation and invasion for the individual patient in vivo (Harpold et al., 2007).
When combining these rates with our biologically-based mathematical model for glioma
growth and invasion, the resultant in silico tumor accurately predicts subsequent untreated
tumor growth in individual patients so well that it is a prognostic indicator of durations of
survival before therapy even begins (Harpold et al., 2007; Wang et al., 2009). This study
extends our prior successes with in silico prediction of tumor growth to incorporate the
effects of external beam radiation therapy (XRT) in nine histologically diagnosed
glioblastoma patients.

Background and Original PI Glioma Model
Our biologically-based modeling efforts are based on the hypothesis that, from a clinical
standpoint, gliomas can be quantitatively characterized by two net rates: proliferation (ρ)
and invasion (D) (PI model) – e.g., see Harpold et al (Harpold et al., 2007) for a recent
review.

Equation 1

Equation 1 is a reaction-diffusion partial differential equation that describes the density of
glioma cancer cells (c) in terms of two net rates: proliferation (ρ) and invasion (D) (PI
model). c = c(x,t) is the tumor cell density at time t and location x in units cells/mm3. D is
the net invasion rate (mm2/year), ρ is the net proliferation rate (1/year), and k is the tumor
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cell carrying capacity of the tissue (108 cells/mm3), supposing a 10-μm diameter tumor cell
with logistic growth. We impose no-flux boundary conditions (n · ∇c = 0) to prevent tumor
cells from leaving the brain domain B at its boundary ∂B. This model is not cell-based but
describes the density of tumor cells and therefore reflects net measures of proliferation and
motility for the entire population of tumor cells, down-stream from individual-cell behavior.

Major Assumptions of the PI Model
The PI model assumes glioma cell invasion throughout the brain is a diffusion process with
diffusion coefficient D. The model also assumes logistic growth of the tumor cell
population, so that the net proliferation rate (ρ) is lower in regions of high cell density
(where c ≈ k) than in regions of low cell density (where c is much less than k). Our PI
model for glioma growth uses a “tip of the iceberg” view of clinical imaging, where post-
contrast T1-weighted (T1Gd) and T2-weighted MRI are associated with isosurfaces of
constant density, and are used to infer a gradient of tumor cells (Harpold et al., 2007). The
key consequences of this model (Equation 1) are 1) an approximately linear radial growth of

the abnormality seen on imaging, which approaches a constant velocity of  defined
by Fisher’s approximation (Fisher, 1937), and 2) a diffuse gradient of tumor cells peripheral
to the imaging abnormality, characterized by an invisibility index, which is the ratio of the
model parameters, D/ρ (Harpold et al., 2007; Swanson, 1999). A constant velocity of MR
imageable growth has been demonstrated for 27 untreated low grade gliomas (Mandonnet et
al., 2003) and for at least one untreated high grade glioma (Swanson and Alvord, 2002a;
Harpold et al., 2007; Swanson and Alvord, 2002b) computed from serial MRI observations.
Further, model-defined rates of biological aggressiveness (D and ρ) have been found to be
predictive of survival, even when controlling for the standard clinico-pathologic prognostic
parameters (Wang et al., 2009). The PI model has also been successfully applied to
quantifying the effects of surgical resection in glioblastoma patients (Swanson et al., 2008b).
Other modeling efforts have focused on non-clinical situations such as in vitro experiments
or are not patient-specific due to the large number of parameters to be estimated (Ribba et
al., 2006; Enderling et al., 2006; Stamatakos et al., 2006; Stamatakos et al., 2007).

Response to XRT is typically measured in terms of survival of groups of patients treated
similarly. Additionally response to XRT can be quantified in individual patients in terms of
changes in gross tumor volume (GTV) as observed on MRI and then classified according to
the response criteria for solid tumors (RECIST) or MacDonald criteria, which classify
response into one of four broad categories (Galanis et al., 2006; Padhani and Ollivier, 2001;
Therasse et al., 2006), as illustrated in Figure 1. Not only is there an absence of a more
quantitative measure of response, but currently there is no model for treatment delivery or
response for individual patients, in vivo, that can extend beyond statistical measures of
survival. We present and investigate an extension of a biologically-based mathematical
model for glioma growth that quantifies the delivery of and response to XRT in individual
patients, in vivo. Using the classic linear-quadratic model for radiation efficacy and
following Swanson et al (Swanson et al., 2000), we model untreated glioma growth as well
as XRT effects in individual glioma patients and consider patient-specific virtual controls to
investigate model-predicted survival assuming a fatal tumor burden defined by both T1GD
radius of 3.5 cm (Swanson et al., 2008a).

Materials and Methods
Radiation Therapy Model

We investigate an extension of the PI model (Equation 1) for untreated glioma growth to
include the effects of XRT using the classic linear-quadratic model for radiation efficacy.
Equation 2a is the well known linear-quadratic model for radiation efficacy (Hall, 1994) that
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relates the radiation Dose, defined in both space and time in units Gy (Gy = 1 J/kg), to a
unitless effective dose E. The coefficients α (Gy−1) and β (Gy−2) are the radiobiology
parameters and determine the relative contribution of each term in the sum toward the total
radiation effect and are sometimes interpreted biologically as repairable single and lethal
double strand breaks to the cell’s DNA respectively (Hall, 1994). The linear-quadratic
model is based on empirical dose-response data and is widely used in clinical applications.
The ratio of the parameters α/β represents the tissue response: for early effects the ratio α/β
is large and α dominates for small doses, for late effects, the ratio α/β is small and β
dominates at small doses. In our model simulations the ratio α/β is held constant throughout
the tumor, with α and the dose distribution determined by the individual patient data.
Equation 2b is the probability of survival of glioma cells after the administration of radiation
Dose such that the larger the dose, the smaller the probability of survival.

Equation 2a

Equation 2b

For each point in space and time, an effective dose and probability of cell survival can be
calculated that corresponds uniquely to the individual patient’s treatment plan and
radiobiology parameter (α). Increasing α decreases the probability of cells surviving, S, and
therefore increases the probability of external beam radiation therapy (XRT) induced cell
death.

Equation

3

where 

Equation 3 is a straight-forward extension of the PI model (Equation 1) to include the effects
of XRT, represented by the coefficient R in the loss term. The effect of XRT is incorporated
into model Equation 1 by considering the loss of cells due to XRT in terms of a death
probability from Equation 2b. R represents the effect of XRT on the tumor cell population at
a location x and time t where the effect is given by the probability of death (one minus the
probability of survival) from the linear-quadratic model of radiation efficacy. Methodology
and structure are detailed in Rockne et al (Rockne et al., 2009) and summarized in the
supplementary material. The death probability is a function of the linear-quadratic model
parameters α (Gy−1) and β (Gy−2) and the radiation dose distribution (Dose(x, t) ) and is
only applied during therapy. Similar to Equation 1, the model for radiation effect R is a net
measure and considers the random damage, repair, and delivery of radiation to be upstream
from the net deterministic measure of survival probability, although the linear-quadratic
model can be derived from stochastic principles (Sachs et al., 2001).

Model assumptions—We assume XRT and its effect to be instantaneous, deterministic,
and estimated by the linear-quadratic model and its corresponding probability of cellular
survival/death. For low cell densities, the effect of XRT is manifest as a fraction of cells
killed as a result of XRT. However, at large cell densities, it is assumed that the effect
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saturates in the same manner that the net proliferation saturates. Thus, the radiation effect R
has the effect of mediating the net proliferation of the glioma cells to mimic a net slowing of
proliferation in those regions occurring as a result of cell crowding and depletion of the
microenvironment. This assumption is consistent with the classic radiobiological
understanding that cells actively undergoing mitosis are more susceptible to DNA damage
(Hall, 1994), which the linear-quadratic model for radiation efficacy assumes to be the
mechanism for radiation-induced cell death (Sachs et al., 1997; Sachs et al., 2001; Cunningh
and Niederer, 1972). For simplicity in our initial investigation, with the dose distribution and
treatment schedule fixed, we regard α as our sole radiation efficacy parameter and leave α/β
fixed at 10 Gy to approximate the radio-responsiveness of early responding tissue such as
proliferating tumor cells (Hall, 1994; Sachs et al., 2001; Jones and Dale, 1995; Enderling et
al., 2006; Jones and Dale, 1999; Lee et al., 1995; Garcia et al., 2006). An explicit model for
the delivery of and response to chemotherapy is beyond the scope of this investigation,
however, we assume that the effect of concurrent chemotherapy is included in the net
response parameter α.

Patient Population
Three females and six males, with a mean and median age of 58 and 56 years, respectively,
at the time of histologically diagnosed glioblastoma multiforme (WHO grade IV) (Kleihues
et al., 2002) consented to this study approved by our local institutional review board. In
addition to XRT details, recursive partitioning analysis (RPA) (Shaw et al., 2003) and extent
of resection (EOR) were recorded for each patient (Table 1). All nine patients received XRT
and had at least two pre-treatment and one post-XRT pair of T1Gd and T2 MRI
observations.

MRI Segmentation
Gross tumor volumes (GTV) were calculated for each T1GD and T2 imaging pair through a
semi-automated technique based on background subtraction, which allows a user to select
only those voxels that contain tumor-related abnormal signal (Ridler and Calvard, 1978).
Each segmented volume is translated to a mean radius by supposing the 4 3 geometry of a

sphere with equivalent volume: .

We averaged the GTV found by at least two independent observers for each image. Pre-
treatment GTV measurements included regions of central necrosis (i.e. visible as hypo-
intense on T1Gd). Post-operative scans also included regions of necrosis but excluded the
resection bed from the GTV calculation, as the tumor cells are prevented from diffusing into
that brain space, which hypothetically contains no tumor cells, dead or alive.

Velocity of Growth
Radial velocity of tumor growth was estimated using the slope of a line of best fit (linear
regression) between the pre-treatment radii obtained from both T1Gd and T2 MRI GTVs.
Mean and median T1Gd pre-treatment velocity for the population were 62 and 51 mm/year,
respectively, with mean and median of 43 and 21 days between pretreatment scans. Mean
and median velocity on T2 were 17 and 21 mm/year. We selected patients with a minimum
of five days between pre-treatment images and/or at least a 1 mm increase in tumor radius
on T1Gd in order to detect a significant non-zero velocity of growth. Fisher’s approximation
for the velocity of radial growth provides a relationship between the model parameters (D,

ρ) and the measured velocity,  (Fisher, 1937; Murray, 2003). Table 1 tabulates the
patient characteristics.
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Calculation of Patient-Specific Untreated PI Model Parameters
As established by us elsewhere (Harpold et al., 2007) the T1Gd MRI abnormality is
associated with increased vascularity and “solid tumor,” while the T2 abnormality is
associated with a low density of diffuse invasion (Harpold et al., 2007), from which a tumor

cell gradient (D/ρ) is inferred. With the ratio D/ρ and velocity ( ), both model
parameters D and ρ can be calculated for each patient, uniquely characterizing that glioma’s
untreated growth kinetics (Table 1).

Model Simulations
Three-dimensional simulations of untreated and XR-treated growth (Equation 3) supposing
spherical symmetry were performed for each patient using the function pdepe in MATLAB
(Skeel and Berzins, 1990). A small, Gaussian distribution of 220 cells, or almost 1 mm3 of
initial tumor cells, is used to seed the tumor growth and is necessary to prevent gliomatosis
cerebri, which is a diffuse saturation of malignant cells throughout the brain without the
formation of a focal neoplasm (Rockne et al., 2009). With patient-specific PI model
parameter values estimated (as above), a virtual tumor was created for each patient that
matched the kinetics of that individual’s tumor. For each virtual patient, “clinical day zero”
was defined to be the time point at which the simulated tumor volume matched the measured
GTV from the first T1Gd observation. Resection to whatever extent applicable was then
modeled by truncating the computational domain such that the simulated T1Gd radius
matched that measured on the post-operative MRI observation, with boundary conditions
adjusted accordingly to prevent tumor cells from migrating into the virtual resection cavity,
following Woodward et al (1996) (Woodward et al., 1996) and Swanson et al (2003)
(Swanson et al., 2003). Because of the assumption of spherical symmetry, only glioma
patients receiving a biopsy or less than 25% resection of their pre-operative GTV were
selected. For those patients with sub-total resections (STR), the spatial effect of surgical
resection was minimal and assumed to take place at the center of the spherically symmetric
tumor by matching the corresponding decrease in the measureable GTV. Patients receiving
biopsy only were not considered to have had a significant surgical intervention and therefore
no surgery was modeled.

Radiation Therapy Plan Details and Dose Distribution
XRT protocols and prescriptions were available for each patient. Six of the patients in the
study received XRT at the University of Washington Medical Center (UWMC). The
remaining three patients were treated at the University of California in Los Angeles. In
accordance with the current standard of care at the UWMC, patients received 50.4 Gy to the
T2-defined abnormality with a 2.5-cm margin, in equal doses of 1.8 Gy/day for six weeks
for a dose of 54 Gy, followed by a boost defined by the T1Gd abnormality plus a 2-cm
margin to a total of 59.4–61.2 Gy, in equal doses of 1.8 Gy/day for one week, with treatment
administered on weekdays only. Spherically symmetric dose distributions were defined
spatially by the UWMC protocol unless otherwise specified by prescription (see
Supplemental Material, Rockne et al (Rockne et al., 2009) for methodology). Each
simulated tumor received exactly the radiation dose and plan clinically prescribed, in both
space and time.

Calculation of Patient-Specific Radiation Response Parameter
After the establishment of clinical day zero within the simulation, surgery to whatever extent
was modeled, then XRT was simulated to precisely follow the patient’s individual treatment
plan and time course relative to clinical day zero. Additionally, the day of the week on
which treatment began was recorded in order to simulate therapy taking place only on
weekdays. In order to estimate the value of radiation model parameter α (Gy−1) (equation
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2a) for each patient, a range of values for α are chosen and XRT is simulated for each, with
the difference between the simulated T1Gd and T2 radii and the observed recorded for each
patient (Figure 2). The first post-XRT MRI is considered the “XRT target date,” with its
associated “target radius.” Increasing α decreases the probability of glioma cells surviving,
S (equation 2b), and therefore increases the probability of XRT-induced glioma cell death.
Therefore, for fixed growth kinetics D and ρ, simulations using a large α correspond to a
large “effect,” or deviation from model-predicted untreated growth, while values of α near
zero correspond to minimal to no deviation from the model-predicted untreated pattern of
growth. We therefore consider α as a quantification of the degree of response to XRT. Since
the relationship between D, ρ, and α is non-linear and spatially variable according to the
patient-specific dose distribution and schedule, XRT was simulated several times, with a
wide range of α values, yielding a relationship between α and the simulated imageable XRT
response unique to the patient. Regression was then performed to yield a value of α that
minimized the difference between the simulated and actual target radius, the accuracy of
which is limited only by the resolution of the in silico computational grid, which is 0.12 mm
—far beyond the most highly resolved MRIs considered in this study. To determine if there
was any bias in choosing either of the MRI-defined abnormalities as the target, optimal
values for α were found using both T1Gd and T2 post-XRT target radii and are denoted
αT1Gd and αT2, respectively.

Patients that were unable to meet the T1Gd or T2 post-XRT target radius for any
nonnegative value of α were tabulated as having an α value of zero (see Table 1 and
Supplemental Material). These patients had a velocity of growth during treatment greater
than that measured prior to treatment. These patients were unable to meet the post-therapy
target radius without an accelerating effect of XRT on the tumor growth, (α < 0), which we
assumed not to exist.

Error and Uncertainty Analysis
Latin hypercube sampling (Helton and Davis, 2002) was used to test the sensitivity of model
outcomes to perturbations in the original PI model parameters. A leave-one-out cross-
validation (LOOCV) (Shao, 1993) was performed on the relationship between model
parameters ρ and α to validate and assess the accuracy of our patient-specific XRT model
outcome predictions. Each patient was systematically removed from the population and a
new regression was established between α and ρ. Based on the new line of regression, a
value for α was computed for the patient removed and XRT simulated. The difference
between the simulated post XRT tumor size and the data was defined to be the error in the
prediction. The median radial error for T1Gd and T2 post XRT tumor sizes were 2.4 mm
and 4.5 mm respectively. By iterating through all nine patients in the population, error bars
were determined for each patient by taking the maximum and minimum values of the range
of the nine values of α determined by the leave-one-out process.

Metrics of Response
Glioma response to therapy is multivariate, with the additive, compounding effects of
surgical resection and concurrent chemo-therapy influencing T1Gd and T2 abnormalities
and GTVs, respectively. We considered several metrics for quantifying response to XRT in
order to investigate their relationship to the radiation model parameter α.

• Last observation effect (LOE) is similar to that used for the response evaluation
criteria in solid tumors (RECIST) (Galanis et al., 2006; Padhani and Ollivier, 2001;
Therasse et al., 2006): the percent change in radius from the last pre-XRT
observation to the first post-XRT observation.
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• Cell kill (CK) is defined as the model-predicted ratio of the total number of
simulated cells at the start to that at the end of therapy.

Patient-Specific Virtual Controls
Following our previous work modeling XRT in individual gliomas patients (Swanson et al.,
2008a), we considered a fatal tumor burden (FTB) defined in terms of radius and compared
actual survival relative to the first MRI observation to that predicted by the attainment of a
FTB if left untreated using the patient’s specific model parameters and data.

Results and Discussion
Simulations of XRT on nine patients with histologically diagnosed glioblastoma multiforme
(WHO grade IV) suggest that response to therapy, measured by changes in gross tumor
volume observed on T1Gd and T2-weighted MRI, can be predicted and quantified based on
relationships between model parameters and various measures of XRT response and effect.

To our knowledge, this is the first model for estimating radiobiologic parameters for
individual patients, in humans, in vivo. Other models presented by Stamatakos, Enderling,
Ribba and others (Enderling et al., 2007; Enderling et al., 2006; Ribba et al., 2006;
Stamatakos et al., 2006; Stamatakos et al., 2007; Bauman et al., 1999b; Bauman et al.,
1999a) either deal with tumor spheroids in vitro, or have yet to be applied to a patient
population, and often rely on several parameters that cannot be tailored to the individual or
calculated in vivo.

Patient-Specific Net Rate of Proliferation (ρ) and Radiobiologic Response Parameter (α)
are Correlated

Each patient’s radiation response parameter α is strongly correlated to the pre-treatment net
proliferation rate ρ (Figure 3, r = 0.89, p = 0.0007), suggesting that α can be predicted from
ρ for any individual patient pre-treatment (Figure 3). From a mathematical perspective, this
correlation is not surprising, since the model extension effectively varies only the
proliferation rate through the probability of cell death (1 – S) as determined via the linear-
quadratic model for radiation efficacy. However, the combination of spatial and temporal
heterogeneity of the administered dose adds formal complexity to what might otherwise be
considered a straight-forward relationship between the two parameters. Moreover, the
relationship between α and ρ is an observed outcome from the data, which could easily have
yielded a non-linear relationship between the model parameters. From a radiation oncology
perspective, the relationship between proliferation rate and XRT response makes sense:
actively proliferating cells are more susceptible and have greater response to XRT (Wilson
et al., 2006). Moreover, our computed values for α lie within published ranges (Garcia et al.,
2006; Qi et al., 2006; Yang et al., 1990) that use a variety of estimation methods, none of
which are based upon clinical imaging. This suggests not only that this model provides a
novel technique for assessing the untreated rate of invasion and proliferation of gliomas, but
also that the classically defined XRT response parameter α can be estimated from clinical
imaging and can potentially be predicted in vivo, prior to treatment.

Treatment Response can be Predicted in Individual Patients from Pre-Treatment Imaging
Our ability to predict α from ρ prior to treatment was confirmed with a leave-one-out cross-
validation technique (LOOCV) (Shao, 1993; Martens and Dardenne, 1998) that, when
translated to the difference in radius between the simulation and actual imaging data, gives a
median error for T1Gd and T2 post XRT tumor sizes were 2.4 mm and 4.5 mm,
respectively. We have estimated our inter-observer error tumor radius computed from the
measurement of GTV to be ± 1 mm. This suggests that the predictive relationship between α
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and ρ is at least greater than the error expected in our data collection methodology and at the
same time precise, given the limited number of patients in the study. The LOOCV technique
also demonstrates the robustness of the prediction accuracy to outlying data points, such as
patient #5. Although it is not surprising that a LOOCV technique is able to re-capitulate
results of a fitted parameter, what is significant is that the model parameter ρ can be assessed
prior to treatment. We can use pre-treatment kinetics to stratify, in a quantitative manner,
patients into those more or less likely to respond to therapy prior to treatment.

Surprisingly, the radiation parameter α is not correlated to the rate of invasion D (r = −0.35),
suggesting that tumor response may be independent of the degree of invasiveness, although
the contribution of cells that lie below the threshold of detection cannot be underestimated.

Standard Treatment Response Metrics Do Not Correlate with Model Measures of
Radiosensitivity

In order to compare our simulations to classical metrics of treatment response such as the
RECIST (Padhani and Ollivier, 2001) or MacDonald (MacDonald et al., 1990) criteria,
which rely on changes in GTV prior to and immediately following therapy, we considered
alternative novel metrics of response. A less tangible, model-defined metric of cell kill
provides a model-specific perspective on radiation efficacy and is correlated to α, which
follows the interpretation of the linear-quadratic model as it relates to log cell kill. Table 2
summarizes the correlations between radiobiological model parameter α and response
metrics.

These novel and patient-specific metrics of response stand in stark contrast to the current
schemes provided by the RECIST (Padhani and Ollivier, 2001) and MacDonald
(MacDonald et al., 1990) criteria, which group patients into broad categories from stable
disease to complete response with very little grey area between them. In light of the
generally poor response seen in this patient population across all response metrics, combined
with the overall poor response of high grade gliomas to any treatment whatever, a more
highly resolved response scale is not only appropriate but could prove necessary in the
future of glioma treatment. Our model of glioma growth and response to XRT provides an
opportunity to develop response metrics that take into account invasive glioma cells that lie
beneath the threshold of detection for standard clinical imaging techniques such as T1Gd
and T2 MRI and to provide a more complete picture of disease response than those provided
by the RECIST or MacDonald criteria, which are based solely on MRI abnormality defined
volumes. Moreover, the last observation effect is not correlated with either ρ or α,
suggesting that our definition and quantification of treatment response is not essentially
equivalent to already established response metrics.

Metrics of Glioma Growth and Treatment Response are Robust to Uncertainty in GTV
We performed Latin hypercube sampling (LHS) uncertainty analysis on all model
parameters: D, ρ, and α. Specifically, we performed LHS on the parameter ranges resulting
from a ± 1 mm deviation in radius to our model parameter estimation. Unlike standard
sensitivity analysis for which only one parameter is typically varied, in LHS all parameters
(D, ρ, α) are allowed to vary at the same time. We applied LHS specifically to patient 6,
with a sample size of 100, in which each simulation is a manifestation of randomly sampling
parameter values from each respective parameter’s associated confidence interval. We
assumed the parameter values to be normally distributed. The resulting collection of virtual
tumors showed an amplifying uncertainty in our result as the virtual tumor progressed
through simulated XRT. However, the magnitude of even the largest variation from either
the mean or median of the simulation remained within our LOOCV envelope of 1.8 mm,
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suggesting that our model is robust to variations in both the untreated (D, ρ) model
parameters as well as our radio-biological response parameter (α).

Effects of concurrent chemo-therapy and other medicines, including steroids prior to and
during treatment were considered to be incorporated into the radiation parameter α, and
therefore the value of α may be overestimated relative to XRT administered without chemo-
therapy. We acknowledge the role chemo-therapy can and surely does play in tumor
response to therapy, but at this time we do not explicitly incorporate its effects into the
model. Swanson et al have previously investigated the role of steroids on the estimation of
the ratio of PI model D/ρ and showed no statistical difference between two populations of
patients, one receiving steroids and the other not (Swanson et al., 2002a).

XRT Response Metric is Robust to Choice of MRI Modality
Because T1Gd MRI is thought to represent the location of the bulk tumor mass as
characterized by the leaky vasculature, it can be considered an indicator of tumor growth. It
may not, however, be adequate at representing response to therapy, particularly XRT, as the
XRT damage may not cause rapid shrinkage of the T1Gd abnormality. It is nevertheless
used as a clinical indicator (MacDonald et al., 1990; Padhani and Ollivier, 2001) with some
debate as to its true relationship to response (de Wit et al., 2004; Tsien et al., 2007).
Similarly, increased signal from radiation-induced inflammation on T2-weighted MRI may
be mistaken for actual disease-related edema. Interestingly, our values for radiation
parameter α computed using T1Gd and T2 target radii were highly correlated, somewhat
mitigating concern over which modality to select as a target. Regardless of the interpretation
of T1Gd and T2 as indicators of response, this modeling approach connects the cell gradient
(represented by the ratio of untreated model parameters ρ/D) to T1Gd and T2 MR imaging
modalities. Therefore any change in GTV pre- to post-therapy is related to a corresponding
change in the local cell density. Response rates as measured with T1Gd radius as target
versus using T2 are highly correlated with r = 0.89, p = 0.0006. The T1Gd response
parameter was also highly correlated with the net proliferation rate, r = 0.89, p = 0.0007.

Treatment Response and Pseudo Progression
In order to address concerns regarding robustness of our results to “pseudo-progression” (de
Wit et al., 2004; Taal et al., 2008) of disease induced by therapy, we performed our analysis
using the second post-XRT MRI observation (instead of the first) as our target for
calculating α. The second MRI observation post XRT generally occurred 50–60 days after
the end of therapy. This simply resulted in a translation of the range of α values, leaving all
results intact (data not shown). This suggests that the value of α depends on the target
observation time relative to the end of therapy and calls for a more detailed modeling
approach that incorporates delayed radiation effects. Nevertheless, the robustness of the
results relative to the time of the target observation suggests that the model remains useful as
a predictor of response, as long as the limitations of the model prediction beyond the target
date are kept in mind.

Efficacy of Radiotherapy is Predictable in Individual Glioblastoma Patients in vivo
This pilot study establishes a methodology that can be readily translated into a full three-
dimensional, anatomically accurate, patient-specific simulation of virtual tumor growth and
response to XRT. Further model development will include focal XRT resistance in the form
of an oxygen enhancement ratio (OER) addition to the linear-quadratic model based on
regions of hypoxia as defined by the 18F-Flouromisonidazole (FMISO) radiotracer used in
PET imaging (Spence et al., 2008). Additionally, model extensions to incorporate normal
tissue toxicity and delayed treatment effects will be investigated with the use of three-
dimensional XRT dose plans and patient-specific tissue segmentation and anatomy.
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Optimization of treatment through altered fractionation and/or treatment field design can be
investigated and compared to virtual controls, either untreated or with the conventional
therapy course.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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General Summary

Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors
known as gliomas. They proliferate and invade extensively and yield short life
expectancies despite aggressive treatment. Response to treatment is usually measured in
terms of survival of groups of patients treated similarly. Furthermore, current imaging-
based treatment response metrics in individual patients ignore patient-specific differences
in tumor growth kinetics, which have been shown to vary widely across patients even
within the same histological diagnosis and, unfortunately, these metrics have shown only
minimal success in predicting patient outcome.

We present a patient-specific, biologically-based mathematical model for glioma growth
that quantifies response to external beam radiation therapy in individual patients in vivo.
Using only routinely available pre-treatment MRIs to inform the patient-specific bio-
mathematical model simulations, we find that radiation response in these patients,
quantified by both clinical and model-generated measures, could have been predicted
prior to treatment with high accuracy.
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Figure 1.
Response to therapy is conventionally assessed by determining changes in gross tumor
volume (GTV) on MRI prior to and after the administration of therapy. Post-contrast T1-
weighted MRI images are shown for two glioblastoma patients that would typically be
separated into generic groups: responder and stable disease. Radiation response parameter α
gives an additional quantification of radiation response for each patient.
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Figure 2.
Spherically symmetric, radial tumor growth and XRT for patient #7 for six values of α
ranging from zero (no effect) to 0.018/Gy (high effect) in 0.003/Gy increments, with XRT
interval denoted by thick black lines (~day 30 – day 75). We see the optimal value of α on
T2 lies between the fourth and fifth curves from the top. Two pre-XRT and one post-XRT
observations are shown. The asterisk indicates data point used to calculate an optimal value
for α using a regression with α and the error between simulated and actual target radius.
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Figure 3.
Relationship between radiation response and tumor proliferation rate parameters α (Gy−1)
and ρ (1/year), respectively, with α calculated relative to changes in T2 GTV post therapy r
= 0.89, p = 0.0007 N = 9. Error bars on ρ are calculated by propagation of error in pre-
treatment GTV as assessed by inter-observer variability of ± 1 mm in equivalent spherical
radius. Error bars in α are computed by taking the maximum and minimum values of α in a
leave-one-out cross-validation (LOOCV) technique.
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Table 2

Pearson correlation coefficient squared (r2) and p value for relationships between model radiation parameter α
and measures of effect. Significant correlations are in bold.

Variable 1 Variable 2 r^2 P value

α (/Gy) D (mm^2/year) 0.08 0.468

α (/Gy) Last Observation Effect 0.25 0.166

α (/Gy) Total Cells Effect 0.71 0.002
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