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ABSTRACT

As large-scale re-sequencing of genomes reveals

many protein mutations, especially in human

cancer tissues, prediction of their likely functional

impact becomes important practical goal. Here, we

introduce a new functional impact score (FIS) for

amino acid residue changes using evolutionary

conservation patterns. The information in these

patterns is derived from aligned families and

sub-families of sequence homologs within and

between species using combinatorial entropy

formalism. The score performs well on a large set

of human protein mutations in separating disease-

associated variants (�19200), assumed to be

strongly functional, from common polymorphisms

(�35600), assumed to be weakly functional (area

under the receiver operating characteristic curve

of �0.86). In cancer, using recurrence, multiplicity

and annotation for �10000 mutations in the

COSMIC database, the method does well in assign-

ing higher scores to more likely functional mutations

(‘drivers’). To guide experimental prioritization,

we report a list of about 1000 top human cancer

genes frequently mutated in one or more cancer

types ranked by likely functional impact; and, an

additional 1000 candidate cancer genes with rare

but likely functional mutations. In addition, we

estimate that at least 5% of cancer-relevant

mutations involve switch of function, rather than

simply loss or gain of function.

INTRODUCTION

The importance of amino acid variation and mutations as
genetic factors of human diseases has been known for
many years. Mutations can affect protein folding and
stability (1–6), protein function (7,8) and protein–protein
interactions (9–12), as well as protein expression and
subcellular localization (13,14). Mutations in proteins

have a major role in the onset and development of
cancer (15,16). The special role of mutations is determined
by the diversity of their impact on molecular function. The
mutations observed in cancer cells comprise both appar-
ently random (‘sporadic’) mutations followed by somatic
selection, and pre-existing mutations in the germline
(17,18). Mutations can contribute to cancer by activating
protein function, as in oncogenes (19), or inactivating
function, as in tumor suppressors (20). Realizing the
central role of mutations in cancer and exploiting recent
advances in sequencing technology, the scientific commu-
nity began systematic massive screening of cancer samples
for mutations (21–28). Multiple re-sequencing projects
have yielded thousands of cancer-associated protein
mutations per year and many thousands more will likely
be discovered in the near future. A common, probably
simplistic, model view defines two classes of mutations,
‘driver’ mutations, i.e. mutations that give a cancer cell a
particular selective advantage, and functionally irrelevant
‘passenger’ mutations. Discovering functionally important
mutations, including clear ‘drivers’ is one goal of genome
re-sequencing efforts. To understand the functional con-
tribution of molecular alterations to oncogenesis, response
to therapy and evolution of resistance to therapy it is
important to have tools that predict the functional impli-
cations of mutations as early in the discovery process as
possible.
Several methods for assessing the effects of mutation

on protein function have been developed over the years
(29–32). To assess a mutational effect, such methods
typically use the physico-chemical properties of amino
acids, as well as information about the role of amino
acid side chains in protein structure. These methods can
be conventionally classified as ‘machine learning’ or
‘direct’. The machine learning methods (33–36) combine
all essential properties of both the original and substituted
residues (e.g. size, polarity), structural information
(e.g. surface accessibility, hydrogen bonding) and evolu-
tionary conservation, and then are trained to distinguish
between known functionally deleterious variants (positive
set) and presumably neutral variants (negative control
set). The direct methods (30,37–43) assess a mutation
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effect by a phenomenological score computed based on a
particular theoretical model. Most of these computational
approaches are validated on variants with pronounced
phenotypic effects, e.g. functionally deleterious and
disease-related variants. Such variants usually involve
loss of function of a mutated gene.
However, causative mutations in cancer are not limited

to those causing loss of function. There are three particu-
larly important types of mutations that contribute to
cancer progression: (i) ‘gain of function’ or activating
mutations that convert normal genes into oncogenes
(e.g. activating mutations in EGFR, KRAS, BRAF);
(ii) ‘loss of function’ mutations that inactivate tumor sup-
pressors (e.g. mutations in TP53, RB1, PTEN); and
(iii) ‘drug resistance’ mutations (e.g. mutations in PI3K,
EGFR, BCR-ABL) that overcome the (usually) inhibitory
effect of a drug on the targeted protein. Here, we also
consider a fourth type, ‘switch of function’, intermediate
between (i) and (ii), such as the recently much studied
mutations in IDH1 in glioblastoma and AML (44).
In general it is not sufficient to assess the functional

impact of mutations at the level of protein function
alone. Mutations have an effect on cancer as a tissue in
an organism in the complicated context of the typically
numerous alteration in a given tumor (45) and the host
background. It is therefore desirable to be able to com-
plement information about mutations in proteins with
information on gene expression and genetic alteration of
related genes, e.g. in oncogenic pathways.
The direct prediction of a mutation’s impact on

molecular function based on first principles is currently
impossible for a number of reasons: e.g. lack of data
(3D structures and complexes) and lack of accurate and
efficient approaches for de novo modeling of protein
structure and function on the molecular level. However,
evolutionary analysis does provide a powerful tool, as
natural selection of a particular sequence variant by
definition reflects the aggregate effect of molecular
changes on cell, tissue and organ physiology. We therefore
base this method development on phenomenological
analysis that extracts information from protein family
alignments of large numbers of homologous sequences
grouped into aligned sets (families and subfamilies) and
exploits 3D structures of sequence homologs. We use this
rich evolutionary information for the prediction of the
functional impact of mutations in general and in cancer
in particular (Figure 1).
Our use of evolutionary information for this purpose is

novel in that it includes a refined class of evolutionarily
conserved residues—specificity residues—which are
determined by clustering multiple sequence alignments of
homologous sequences into subfamilies to analyze func-
tional specificity on the background of conservation of
overall function (46). The specificity residues are predom-
inantly located on protein surfaces in known or predicted
binding interfaces and often directly linked to protein
functional interactions (46). In addition, based on our
analysis of mutations that affect predicted specificity
residues, we propose a new type of functional impact
that results in a ‘switch of function’—a switch from one
set to an alternative set of specific interactors of the

mutated protein and, consequently, an altered biological
function that is not necessarily simply strengthened (gain)
or weakened (loss).

We calibrated and tested the scoring function by its
ability to separate large sets of disease-associated
variants from common polymorphisms presumed to be
mostly function-neutral. We applied the approach
further to assess the functional impact of amino acid
changing (‘missense’) cancer mutations collected in the
COSMIC database (28) and ranked mutated genes by
their likely significance in cancer. In the context of
large-scale cancer genome projects such as The Cancer
Genome Atlas (TCGA) project or projects in the
International Cancer Genome Consortium (ICGC)
ranked lists of mutations reported in various tumor
types can facilitate more efficient subsequent computa-
tional or experimental investigations or therapeutic
development.

MATERIALS AND METHODS

A protein sequence is subject to mutations in natural
evolution as well as in somatic development, especially
in cancer tissues. The direct effect of a mutation on
a protein can be an effect on protein function by
a number of different mechanisms. These include
(i) changes in protein stability, e.g. destabilization
leading to higher degradation rates, and, in the steady
state, altered protein concentration and (ii) change in the
interaction of the protein with other biomolecules, such as
other proteins or DNA or RNA or lipids, or change in the
interaction with ligands, such as enzyme substrates.
Changes in the molecular function of a protein can
affect the phenotype cells, tissues and the organism.
Mutations that decrease replicative fitness below a
certain threshold are eliminated from a population
(of organism or of cells). Conversely, mutations can be
fixed in a population, if they significantly increase replica-
tion rates. Thus, variability of protein sequences is
restricted affected by natural selection, whether germ
line or somatic. These restrictions are apparent in
residue conservation in certain positions of aligned
proteins in a protein family. One can use the analysis of
sequence conservation to derive numerical estimates of
the functional impact of mutation.

We make numerical estimates of the functional impact
of a mutation assuming that protein family sequences
reflect continuity of functional constraints and can be
treated as a statistical ensemble, i.e. can be represented
by a statistical model that expresses the likelihood that
any particular sequence belongs to the family. In other
words, we assume that many mutations were tried in
evolution in each sequence position sufficiently often
such that the observed distributions of residues in
aligned positions of homologous sequences reflect the
functional constraints on these residues. Thus, evolution-
arily unfavorable (for whatever reason) residues are not
observed or observed less frequently than neutral or
critically important residues, while critically important
residues are conserved in diverse evolutionary settings

e118 Nucleic Acids Research, 2011, Vol. 39, No. 17 PAGE 2 OF 14

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/1

7
/e

1
1
8
/2

4
1
1
2
7
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



(paralogs or orthologs). These assumptions provide
the basis for converting the observed frequencies into
a numerical estimate of the functional impact of a
mutation. We also assume that the distribution of
residues in any (aligned) sequence position of a protein
family can be treated independently of other positions
(Supplementary Data S6).

With these assumptions, we use the entropy of the
residue distribution in an alignment column as a
measure of residue conservation (47) and estimate the
mutation impact using the difference of the entropy
caused by the mutation.

The entropy of an alignment column i is defined as:

Si ¼ ln
N!

Q

� nið�Þ!
ð1Þ

with N! ¼ 1�2�3 . . . �N, and, by definition, 0! ¼ 1; � is
a residue type (�=1,2, . . . ,21 indexing 20 residues types
and gaps); nið�Þ is the number of residues of type a in an
alignment column i; N is the total number of residues in a
column (

P

� nið�Þ ¼ N), i.e. the number of proteins in the
family alignment.
The entropy difference caused by a mutation of a

residue of type � to a residue of type � then becomes:

�Sið� ! �Þ ¼ ln
N!

½nið�Þ � 1�!½nið�Þ+1�!
Q

� 6¼�,� nið�Þ!

� ln
N!

nið�Þ!nið�Þ!
Q

� 6¼�,� nið�Þ!

¼ � ln
nið�Þ+1

nið�Þ

ð2Þ

Figure 1. Schematic of the method and validation tests. The functional impact score (FIS) is derived from multiple sequence alignments of sequence
homologs. The score is based on the evolutionary conservation of a mutated residue in a protein family and, separately, in each of its subfamilies.
Larger scores indicate more likely functional impact of a mutation.
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We interpret this entropy difference as a measure of the
impact of a mutation (conservation score).

�Sc
i ð� ! �Þ ¼ � ln

nið�Þ+1

nið�Þ
ð3Þ

The value of the entropy difference in Equation (3) is large
when nið�Þ << nið�Þ i.e. when the mutated residue of type
a in position i is conserved across many sequences in the
protein family and residues of type b rarely or never
occurs in this position. We therefore call the mutation
impact term of Equation (3) ‘the conservation score’
(superscript ‘c’) to underline that it takes into account
conservation across the entire family.
The conservation score of Equation (3) depends both on

the types of the original and the mutated residues, and on
the position of the altered residue in the protein family
alignment. To what extent does this entropy term reflect
physical effects, such as the change in residue–residue
interactions in a protein? Assuming that physical
constraints dictate the nature of residues at particular pos-
itions and that functional constraints require the approxi-
mate satisfaction of these physical constraints, we argue
that evaluation of the entropy change also takes into
account the change in the physico-chemical nature of the
amino acid as a result of the mutation � to �, albeit
indirectly.
The actual numerical value of the impact term of

Equation (3) is determined by the particular frequencies
of residues in an alignment column. Equation (3) is also
defined for cases in which ni(�) is equal to 0, i.e. the
mutated residue has never been observed in this column.
However, columns for which no family sequence align-
ment is available are outside the scope of this formulation
and they are not scored in the current implementation
of the method.
The impact term of Equation (3) is the same for all

residues of the same type aligned in the same sequence
position (Supplementary Data S6). More precisely, the
mutation impact is the same for all sequences of
a protein family, for which a residue of type � in a
position i is mutated to a residue of type �.
To refine the assessment of conservation patterns, we

proceed to consider patterns of a subtler type, in which the
evolutionary constraint on a residue type in a particular
position is not constant in the entire family, but only
appears to operate in a protein subfamily, e.g. because
of different interaction partners or substrates on the
background of similar, conserved biochemical or cellular
function.
Among available approaches to quantify subfamily con-

servation patterns (48–54), we use our own combinatorial
entropy approach, which simultaneously determines
protein subfamilies, by clustering, and residues, called
specificity residues, which characteristically differ
between these subfamilies (46). The clustering algorithm
groups the sequences of a protein family alignment into
distinct subfamilies, so as to minimize the sequence
diversity within subfamilies and to maximize the overall
difference between subfamilies at a select number of
‘specificity’ positions. Evolutionary constraints can then

be inferred from the patterns of residue conservation in
the protein subfamilies (46). The objective function
minimized in the process of determining optimally
distinct subfamilies quantifies the extent of order in the
M subfamilies compared to an even residue distribution
over subfamilies (46):

�S ¼
XL

i¼1

XM

m¼1
�Sm

i , ð4Þ

where L ‘is a number of columns in a protein family
alignment, M is a number of subfamilies and

�Sm
i ¼ ln

Nm
!

Q

� n
m
i ð�Þ!

� ln
Nm

!
Q

� nmi ð�Þ
� �

!
ð5Þ

is the difference of the entropy of the residue distribution
in column i of subfamily m and the entropy of the refer-
ence (uniform) distribution of residues in column i (46).
Note that m is and index, not an exponent. Here, nmi ð�Þ
and nmi ð�Þ

� �

¼ nið�ÞN
m=N are, respectively, the actual

(observed) and the expected (uniform distribution)
number of residues of type a in position i of subfamily
m; Nm is the number of sequences in subfamily m; nið�Þ is
the number of residues of type a in a column i.

The larger the absolute value of the (negative) entropy
difference �Si ¼

PM
m¼1 �Sm

i , the bigger is the difference
between the observed and the uniform distribution of
residues in a column i. Larger absolute values of �Si

correspond to evolutionarily selected specificity residues,
i.e. residue distributions constrained at the level of one
or more subfamilies.

To quantify the entropy difference resulting from
a mutation that affects conserved residue patterns in
protein subfamilies, we (i) determine distinct sequence
subfamilies from protein family alignments using
Equation (4) (46) and (ii) compute a specificity conserva-
tion score in analogy to the family conservation score
of Equation (3). We define the specificity score (super-
script s) as:

�Ss
i ð� ! �Þ ¼ � ln

n
p
i ð�Þ+1

n
p
i ð�Þ

ð6Þ

where the index p refers to the particular subfamily to
which the mutated sequence is assigned as the result of
clustering and n

p
i ð�Þ and n

p
i ð�Þ are, respectively, the

numbers of residues of types a and b in sequence
position i of subfamily p.

The conservation [Equation (3)] and the specificity
[Equation (6)] scores are complementary measures of
evolutionary conservation; therefore, a combination of
these scores should provide more information about the
potential functional impact of a mutation. In general, a
good mathematical model for combining two scores with
effective relative weights would be derived from a compre-
hensive statistical model, e.g. derived from an optimiza-
tion procedure (as in machine learning) involving
cross-validation tests of predictive power. Here, for sim-
plicity, we tested two simple forms of combining the two
scores: (i) the maximal value of the conservation and the
specificity scores; and (ii) the average of both scores
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(details in Supplementary Table S1). The simple averaging
(or a sum) of the two scores gave the higher prediction
accuracy in the validation tests.

The combined score for the functional impact of
changing an amino acid residue of type a to one of type
b in sequence position i, as assessed in the context of
evolutionary patterns in a multiple sequence family
alignment, as used in this study, is therefore defined as
follows:

�ið� ! �Þ ¼ ½�Sc
i ð�,�Þ+�Ss

i ð�,�Þ�=2 ð7Þ

In the current implementation, multiple sequence align-
ments were derived using the BLAST program (60)
retrieving up to 700 homologous sequences at an
E-value threshold of 0.05 from the Uniprot sequence
database (61); the resulting hits were then aligned using
the MUSCLE program (62). In place of �ið� ! �Þ we also
use the notation FIS (functional impact score based on
evolutionary information) or simply the word ‘score’ in
tables and computer output. (Details of derivation of the
score are in Supplementary Data S6).

RESULTS

Validation test

To test the ability of the FIS score to predict the function-
al impact of a mutation, we applied the computational
protocol to known ‘disease-associated’ and ‘common
polymorphism’ variants and mutations as annotated in
UniProt (HUMSAVAR, release 2010_08). Comparing
the FIS scores for disease-associated and common
polymorphic variants, we tested the hypothesis that
disease-associated variants and mutations typically have
a negative effect on protein function and are therefore
more likely to be observed in positions with low rates of
mutation fixation, i.e. in conserved positions, while func-
tionally neutral or weakly deleterious polymorphic

variants are more likely to be observed in evolutionarily
promiscuous positions. We therefore require that the
evolutionary conservation score distinguishes between
disease-associated and polymorphic variants and can be
used as a measure of functional impact of mutations.
To explore how to best satisfy this requirement, we
tested 1000 discrete thresholds in FIS and counted the
number of disease-associated and polymorphic variants
on either side of the threshold. The recognition
accuracy, defined as the percentage of correctly assigned
variants is 79% when false positives and false negatives
are balanced (equal fractions) (Figure 2). The summary
results of the validation tests and a calibration curve of
the functional score are in Figures 2 and 3 and in the
Supplementary Data (Supplementary Table S1).

Robustness analysis

A significant fraction of polymorphic variants falls in
regions with low coverage of sequence homologs
(Figure 2). Out of the total �55K variants, �10.5K
variants fall into regions of low homology coverage
(MSA has <10 sequences). Among these variants, �90%
were polymorphic variants and only �10% were
disease-associated variants. By definition, variants with
low homology coverage get low score values. How does
the uneven distribution of variants with low homology
coverage affect the overall accuracy of separation
between disease-associated and polymorphic variants?
How does the accuracy of separation between disease-
associated and polymorphic variants depend on the size
of a multiple sequence alignment? To answer these ques-
tions, we compared the score distributions for
disease-associated and polymorphic variants that have
homology coverage from 1 to up to 600 or more sequences
in a family alignment. We found that the enrichment of
low-homology polymorphic variants disappears, when
the minimal alignment size exceeds 75 sequences per
family. With coverage of 75 or more sequences, �14K

A B
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100

15

20

25

Polymorphic (36.5K)

60

80

Disease-associated (19.2K)

Polymorphic (36.5K)

variants of low 

0

5

10

15

0

20

40

sequence homology 

coverage

0

-4 -2 0 2 4

Functional impact score (FIS)

0

-4 -2 0 2 4

Functional impact score (FIS)

Figure 2. Separation of disease-associated and polymorphic variants by functional impact score. (A) Normalized smoothed distributions of the
values of the functional score as computed for 19 179 known ‘disease-associated’ and 35 608 ‘common polymorphism’ variants and mutations
annotated in UniProt (HUMSAVAR, release 2010_08; http://www.uniprot.org/docs/humsavar). (B) The cumulative distributions of the score
values computed for disease-associated and polymorphic variants, same data as in (A). An equally balanced separation (79%) between the two
variant classes is achieved at a score threshold of FIS�1.9. At this threshold, �79% of all disease associated variants are scored higher than this
threshold and �79% of all polymorphic variants are scored lower. The maximal separation (�80.3%) between the two classes is achieved at the
threshold value of 2.26; at this threshold, �70% of disease-associated variants are scored higher and 86% of polymorphic variants are scored lower.
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disease-associated and 14K polymorphic variants
(�1/2 of all tested mutations) are separated with an
accuracy of better than 76% and an AUC in ROC
analysis 0.83 (Figure 3). We repeated this test taking
larger sizes of the minimal alignment. The accuracy of
separation between disease-associated and polymorphic
variants remained the same, when the minimal alignment
size varied from 30 to up to 350 sequences. Thus, the
observed enrichment of polymorphic variants in regions
of low homology coverage in practice does not affect the
discrimination of disease-associated and polymorphic
variants. Additional details of the recognition tests at
different alignment sizes are given in at Supplementary
Table S1.

Validation of the FI score on experimentally tested
TP53 mutations

Cases in which the predicted functional impact of
mutations can be compared to direct measurements of
functional activity are of special interest for validation
of the method. Therefore we tested the FI score on data
obtained from experimental studies of the functional
impact of TP53 mutations as collected in the IARC
TP53 database (55). TP53 mutants in cancer can result
in both ‘loss of function’ and, in some cases, ‘gain of
function’ (56). Although the biological effects of TP53
mutations in cancer are affected by a various post-
transcriptional factors (56), direct measurements of tran-
scriptional activity of mutant TP53 are very useful for
assessment of the impact of TP53 mutations in cancer.
For each of the 2314 mutations, the

‘TP53MUTfunction2R15’ table of IARC TP53 database

gives eight promoter-specific transcriptional activities
measured in yeast functional assays and expressed as
percent of wild-type activity. Although these eight
normalized activities are correlated across all studied
mutants, the individual activities measured for a particular
TP53 mutant can vary significantly. In particular, the
average value of the standard deviation of eight activities
is �25%. To reduce the mutation impact divergences and
experimental error, we computed average values of tran-
scriptional activities and compared the FIS distributions
for mutations, of which the average activities fell into eight
distinct bins: [0–20], [20–40], [40–60], [60–80], [80–100],
[100–120], [120–140], [140–250] (Figure 4). The activity
of the normal TP53 is equal to 100.

Obviously, mutations in bins [0–20] and [80–100] differ
significantly by their functional impact. Mutations in bin
[0–20] strikingly reduce transcriptional activity of TP53,
while mutations in bin [80–100] are close to normal. The
difference between two mutation classes is clearly depicted
by the corresponding FIS distributions. The mutations of
bin [0–20] are scoring significantly higher than mutations
of bin [80–100]. The area under the receiver–operating–
characteristic curve for two–class distinction between
mutations of bin [0–20] and mutations of bin [80–100] is
close to 0.93. The FIS distributions of bins [20–40], [40–60]
and [60–80] are shifted from the higher to the lower values,
which is in agreement with increase of transcriptional
activity of TP53. The FIS distributions in bins [100–120],
[120–140], [140–250] are shifted from lower values to

The FIS distributions are correlated with transcriptional activity of mutated 

TP53

Loss of function Gain of function 

Figure 4. FIS distributions of mutations in TP53 binned into eight
classes based on mutational impact. The normalized transcriptional
activities of 2314 TP53 mutants were averaged and, depending on the
average activity value, the mutations were binned into eight classes; the
ranges of the average transcriptional activity are given below the bin
marks. The FIS distributions are presented by the box plots; thick
black lines show the medians of the distributions; each of the boxes
is drawn between the lower and upper quartiles of the distributions; the
dotted lines extend to the minimum and maximum values of the dis-
tributions. The mutations with larger functional impact, i.e. higher or
lower than normal transcriptional activity (‘loss of function’ or ‘gain of
function’) tend to have the higher values of the FIS score.
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Figure 3. ROC analysis of classification between disease-associated and
polymorphic variants. The observed score range (�6, 6) was divided
into 1000 discrete thresholds, and for each of the thresholds, percent-
ages of disease-associated and polymorphic variants above and below
the score threshold were determined. The percentage of disease
associated variants above the score threshold is defined as ‘true posi-
tives’, while the percentage of polymorphic variants above the score
threshold is defined as ‘false positives’. The ROC curves are built for
two test sets: in the first set, all available �55.7K variants (�19.2K
disease-associated and �36.5K polymorphic) were used; the scores of
the variants that fall on regions with no sequence homology were taken
equal to zero; in the second set, the scores for a reduced set of �27.4K
variants (�13.7K disease-associated and �13.6K polymorphic) were
computed using alignments of 75 or more sequences.
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higher values, also in agreement with increase of the
transcriptional activity of TP53. Thus, the functional
impact score is correlated with experimentally measured
functional impact of mutations: the score is higher
for mutations that result in ‘loss of function’ and in
‘gain of function’ of TP53. More details on the FIS
distributions of TP53 mutations are given in
Supplementary Data S4.

Functional mutations in the COSMIC database

There are currently �10.7K non-synonymous point
mutations in various tumors listed in the Catalog of
Somatic Mutations in Cancer (COSMIC, v49). Many of
these mutations have been studied experimentally and
their functional impact and role in cancer are fairly well
characterized. However, for the majority of mutations,
their functional impact and role in cancer remains
unknown.

Cancer mutations can be ranked by the number of
occurrences of particular mutations; similarly, the genes
implicated in cancer can be ranked by the total number of
mutations detected for a particular gene. Obviously,
particular numbers of mutations depend on sampling.
However, in general, mutations that promote cancer will
be selected more frequently than neutral mutations, and
therefore, recurrent mutations and recurrently mutated
genes are likely to play a key role in cancer. Thus,
mutations of frequently mutated genes are likely to be
functional.

In this study, we ranked mutations and mutated genes
by their potential role in cancer by combining several
factors: the predicted impact of a mutation on protein
function, the occurrence of an individual mutation in
different tumors, the total numbers of mutations
detected for a particular gene and the gene’s role in
cancer (tumor suppressor or oncogene) provided by a
Cancer Gene resource at MSKCC (57).

To substantiate ranking of mutations and genes, we
conducted three computational tests. In the first test,
we tested the hypothesis that recurrently observed cancer
mutations are significantly enriched by mutations of
predicted high functional impact and therefore can be
differentiated from single mutations, many of which are
passenger mutations with low functional impact. In the
second test, we tested a similar hypothesis that is
mutations of frequently mutated genes are enriched by
predicted functional mutations as compared to mutations
of solitary mutated genes. In the third test, the scores of
mutations in tumor suppressors (TS) or oncogenes (OG)
were compared to the scores of mutations in the genes
non-annotated as TS or OG. We tested the hypothesis
that mutations in primary cancer genes (TS and OG) are
enriched by high scoring functional mutations as
compared to the mutations of non-cancer genes and there-
fore can be differentiated from all other mutations.

The ‘case and control’ sets of mutations used in these
tests are not completely independent because many of
recurrent mutations affect multiply mutated genes with
key roles in cancer (TS or OG). However, conducted
together, these tests give a more complete presentation

of the distribution of functional mutations in cancer
than each of the tests conducted individually.
The results of the tests are in Figures 5 and 6.
The FIS score distributions of Figure 5 show that

cancer mutations collected in COSMIC are more signifi-
cantly enriched in high score mutations than are
polymorphic variants. Interestingly, recurrent mutations
(observed in two or more samples) have a score dis-
tribution very close to the score distribution of
disease-associated variants, while highly recurrent muta-
tions (observed in five or more samples) are even more
significantly enriched in high-score mutations than
disease-associated variants (Figure 5). We also found
that mutations of singly mutated genes in COSMIC are
two times more enriched in high scoring mutations than
are polymorphic mutations.
These results confirm the hypothesis that recurrent

mutations are likely to be functional mutations and can
be differentiated from single mutations by the evolution-
ary derived functional impact score.
The score distributions of Figures 6 and 7 also confirm

that mutations of multiply mutated gene and mutations in
annotated tumor suppressors and oncogenes are enriched
in functional mutations: multiply mutated genes (mutated
two or more times) are more enriched in high score
mutations than singly mutated genes and polymorphisms.
We found that the more mutations are observed in a

gene, the bigger the fraction of high scoring mutations in
this gene (Figure 6). However, the portion of high-scoring
mutations in multiply mutated genes is smaller than in
disease-associated variants or in recurrent individual
mutations. We found similar results for mutations
detected in key cancer genes—tumor suppressors and
oncogenes (Figure 7). Mutations in TSs and OGs are
scoring significantly higher than mutations in genes
non-annotated as TSs or OGs. However a fraction of
high-scoring mutations in TSs and OGs is less, than in
a reference set of disease-associated mutations. Taking
into account that the score generally correctly distinguish
functional and non-functional mutations (Figures 2–5),
this difference emphasizes the fact that not all mutations
in multiply mutated genes or in known cancer genes are
automatically functional and, hence, not all of them play
role in cancer. Thus, a functional analysis of mutations
is necessary to narrow down a list of potential driver
mutations.

Ranked list of cancer mutations and cancer genes

Ranking mutations by a functional impact score makes
possible the determination of mutation sets that are
enriched by either functional or non-functional mutations.
Obviously, there is no strict value of the score that can
definitely separate functional and non-functional muta-
tions. However there is a score threshold that separates
sets of likely functional and likely non-functional muta-
tions. Using this threshold, one can assess a number of
functional mutations in a given set of mutations.
Using available sequence data, the automated proced-

ure could assess a functional impact of �10K unique
mutations of the total �10.7K unique mutations of
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COSMIC database (release 49). Based on the computed
scores and the optimal separation threshold (Figure 4), a
portion of mutations of high and medium impact can be
estimated as �51%. A summary of functional analysis of

missense mutations from COSMIC database is given in
Table 1 and Figure 8. Note significant enrichment of
predicted functional mutations in recurrent mutations,
cancer genes (TS or OG) and in genes with multiple
mutations.

In Supplementary Table SM1, we present a list of
COSMIC mutations (10 005) for which the functional
impact score was computed. For each of the mutations,
the table provides its sequence and genomic coordinates,
the functional impact characteristics of the mutation, the
characteristics of the protein domain family, the statistics
of cancer mutations in a gene and the basic oncogenic
annotations, the URL links presenting mutation in
context of MSA and homologous 3D structures of PDB.

We used our assessments of mutation impact to rank
genes by their significance for cancer. To that end, we
divided all genes into four categories taking into account
the presence or absence of predicted functional mutations
in a gene and gene’s known associations with cancer.
Genes annotated as TS or OG and genes interacting
with TS or OG genes were defined as associated with
cancer; gene interactions were taken from the PIANA
database (58); cancer annotations were taken from the
Cancer Gene resource at MSKCC (57).

Genes were classified into the following categories:
(i) genes with functional mutations and known cancer
association; (ii) genes with functional mutations and no
available associations with cancer; (iii) genes with no func-
tional mutations and with known cancer association; and
(iv) genes with no functional mutations and no available
associations with cancer. It is reasonable to assume that
the more unique mutations are detected in a gene, and the
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Figure 5. Cumulative score distributions computed for recurrent cancer mutations in the COSMIC database (release 49, September, 2010), the scores
were computed for 10 005 unique non-synonymous point mutations affecting 3630 genes. Recurrent cancer mutations observed two or more times
(1828) and highly recurrent mutations observed five or more times (712) are scoring significantly higher compared to mutations observed only once
(8177); the ROC analysis (not shown) of separation of recurrent mutations from one-time-observed mutations gives AUC=0.75; the accuracy of
separation is �69%, when a percentage of false positives is equal to a percentage of false negatives.
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Figure 6. Cumulative score distributions computed for mutations of
multiply mutated genes in the COSMIC database; mutations in
COSMIC are distributed non-uniformly across genes: one mutation
per gene is detected in 1349 genes; two or more mutations are
detected in 620 genes, three or more—in 265 genes, five or more in
96 genes, 10 or more—in 51 genes, 19 or more—in 37 genes. Multiply
mutated genes (mutated two or more times) are enriched in high score
mutations compared to single mutated genes and polymorphisms.
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more cancer types are affected by these mutations, the
more important this gene is for development of cancer.
Therefore we used as a gene ranking score the product
of the ‘number of unique mutations’ and the ‘number of
different cancer types’ affected by these mutations. Note
that truncating mutations, i.e. premature stop codons
(so-called non-sense mutations) are not taken into
account.

The ranked list of 3629 genes is given in Supplementary
Table SM2. Distributions of the gene ranking scores are in
Figure 8. Genes with multiple mutations and genes with
cancer associations are at the top of the list. Based on this
ranking, we nominated �957 genes as genes with very
likely cancer implications (Figure 8). These genes are of
primary interest for experimental cancer genomics
projects. The specific oncogenic roles of many of the

Mutations of tumor suppressors and oncogenes tend to have higher FIS
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Figure 7. Cumulative score distributions computed for mutations in genes annotated as tumor suppressors and oncogenes in the COSMIC database;
4413 mutations in tumor suppressors and oncogenes are enriched in high-scoring mutations compared to 5592 mutations in genes non-annotated as
TS and OG. The ROC analysis (not shown) of separation of recurrent mutations from one-time-observed mutations gives AUC=0.6745; accuracy
of separation is 64%, when the percentage of false positives is equal to the percentage of false negatives.

Table 1. Prediction of the functional impact of mutations observed in cancer (COSMIC databasea)

Mutations/Genes All scored
(taken as
100%) n

Scored
(FIS� 0.8)
neutral
impactb, n (%)

Scored
(0.8<FIS� 1.9)
low impact,
n (%)

Scored
(1.9<FIS� 3.5)
medium impact,
n (%)

Scored
(FIS> 3.5)
high impact,
n (%)

Mutations total 10 005 2049 (20) 2814 (28) 3748 (37.5) 1349 (13.5)
Mutations observed �2 times 1828 89 (5) 254 (14) 862 (47.2) 623 (34.1)
Mutations observed 1 time 8177 1960 (24) 2560 (31) 2886 (35.3) 771 (9.4)
Mutations in one-time-mutated genes not annotated as TSc or OGc 2324 699 (30) 777 (33) 693 (29.8) 155 (6.7)
Mutations in genes mutated �5 times 5174 616 (12) 1198 (23) 2314 (44.7) 1046 (20.2)
Mutations in TS or OG 4413 477 (11) 996 (23) 2000 (45.3) 940 (21.3)
Mutations in genes not annotated as TS or OG 5592 1572 (28) 1818 (33) 1748 (31.3) 454 (8.1)
Genes totald 3629 841 (23) 1115 (31) 1268 (34.9) 405 (11)
Genes annotated as TS or OG 338 50 (15) 124 (37) 92 (27.2) 72 (21)
Genes mutated �5 times 188 2 (1) 9 (5) 96 (51.1) 81 (43)

aOf the total 10716 missense mutations in COSMIC 45, 10 005 mutations were mapped on sequences of UniProt, and determined as unique
non-synonymous.
bApproximately 50% of polymorphic variants and �7% of disease-associated variants got FIS score <0.8; �27% of polymorphic variants and
�14% of disease-associated variants got FIS score between 0.8 and 1.9; �17% of polymorphic variants and �50% of disease-associated variants got
FIS score between 1.9 and 3.5; �21% of polymorphic variants and �79% of disease-associated variants got FIS score >1.9; �3% of polymorphic
variants and �30% of disease-associated variants got FIS score >3.5.
cTS and OG stand, respectively, for tumor suppressor and oncogene.
dA gene is scored according to the highest FIS bin of any of its mutations.
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top-scoring mutated genes are known or being studied.
However, there are many genes of ‘moderate significance’,
i.e. mutated approximately two times in approximately
two cancers, for which the specific oncogenic roles in
cancer is not yet well determined. A particularly interest-
ing set of genes (Figure 8, bottom left) are those that have
been observed just once, as reported in the COSMIC
database, but contain a mutation predicted to be func-
tional. Such genes may be rare, but functionally signifi-
cant, contributors to oncogenesis and are good candidates
for experimental follow-up.

Switch-of-function: a new type of functional impact?

The effect of a functional mutation can be described as
a change of the specificity (selectivity) of interactions
between a mutated protein and its specific interactors—
proteins, nucleic acids or small molecules. One can
imagine a set of free energies of interactions between a
given protein and all other proteins and ligands. As a
result of a mutation, the native spectrum of the binding
free energies will change. An extreme example of a strong
functional impact of a mutation is a destabilization of a
protein globule resulting in the complete loss of the speci-
ficity, i.e. a ‘loss of function’ (LOF). The opposite example
of a functional impact is a ‘gain of function’ (GOF), which
can result from a change in the specificity of particular

protein-substrate interactions or a change in the specificity
of interactions with regulatory proteins. Both LOF and
GOF mutations assume changes of free energies of
interaction with native binders.

However, a mutation impact can also result in a ‘switch
of function’ (SOF), which is an acquisition of new specific
interactors and, consequently, a new biological function.
A mutation in a protein-binding site can result in new
specific interactions. One mutation in a binding site of
isocitrate dehydrogenase 1 (IDH1) that resulted in a
switch of molecular function was recently discovered in
glioma (44). Mutations of R132 to C, H, L or S alter the
activity of IDH1, such that isocitrate is no longer
converted to alpha-ketoglutarate, but, instead, alpha-
ketoglutarate is converted to R(-)-2-hydroxyglutarate,
which elevates the risk of brain tumors (44). The affected
position, R132 is highly conserved in the protein family
alignment and all the above mutations get a high FIS score.

In cells, there are many families of homologous proteins
(and protein domains); each protein in such a family
has its own specific function and specific interactors.
Mutations can switch the specific interaction between a
protein family members resulting in a drastic impact on
the phenotype. Mutations in evolutionarily selected speci-
ficity residues are likely candidates for SOF. Switch of
the specific signaling of Rho GTPases caused by

Frequently mutated genes with high scoring mutations

are nominated as significant for cancer
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Figure 8. Ranking mutated genes by significance for cancer. The cancer gene ranking score (Rs), derived from information reported in the COSMIC
database, is defined as Rs=log2(Nm*Nc), where Nm is a number of unique cancer-associated mutations reported in the gene, and Nc is a number of
different cancer types with mutations in this gene. All analyzed 3629 genes were divided into four categories depending on presence or absence of
predicted functional mutations and known association to cancer (gene is considered as cancer associated, if it is annotated as TS or OG, or it
interacts with one or more of TS or OG). Cancer associated genes are enriched with predicted functional mutations (P< 10�20 in two-tail Fisher test)
compared to genes with unknown cancer association. Using a reasonable cutoff, one nominates a list of 957 genes with significance for cancer
(arrow). A gene is above the cut either because it is observed to be multiply mutated (Rs> 1, three or more mutations) or, for Rs=1 (two
mutations), if at least one of the mutations in the gene is predicted as functional. Detailed statistical information on mutated genes is in
Supplementary Table SM2. The higher proportion of genes with at least one predicted functional mutation (orange or brown) in frequently
mutated genes (peak at left) is not surprising—in fact, a fair number of these mutations have been functionally validated in the literature.
A particularly interesting set of genes (998, bottom left) are those that (so far) have been observed just once (Rs=0) but contain a mutation
predicted to be functional. Such genes may be rare, but functionally significant, contributors to oncogenesis and are good candidates for experimental
follow-up.

e118 Nucleic Acids Research, 2011, Vol. 39, No. 17 PAGE 10 OF 14

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/1

7
/e

1
1
8
/2

4
1
1
2
7
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://nar.oxfordjournals.org/cgi/content/full/gkr407/DC1


mutations was studied experimentally Heo and Meyer
(59). All of the experimentally studied functional muta-
tions reported in (59) have a high specificity component
of the FIS score. In Figure 9, we show the multiple
sequence alignment and the 3D position of one the key
mutations that switch the Rac1-signaling phenotype
(lamellipodia) to the Cdc42-signaling phenotype
(filopodia) (59). This mutation affects one of the key pre-
dicted specificity positions of Rho family.

The mutation-caused rewiring of protein interaction
network is of the high interest in cancer, where missense
mutations are one of the common factors of oncogenesis.
Currently, it is impossible to determine such mutations by
direct de novomodeling. However, one can narrow down a
list of potential SOF mutations by determining mutations
in binding sites that change the identity of an amino acid
residue located in one of the functional evolutionarily
selected (predicted specificity) positions, and, especially
by determining mutations that change amino acid
identities between already existing groups (classes) of
residue specificity. We estimated a number of such muta-
tions by identifying mutations that fall into binding sites
and that have high specificity score and low conservation
score. Among �10K mutations of COSMIC, 3631 affect
annotated functional regions and binding sites, and,
among those, 554 mutations (�5%) have a specificity

score >2.5 (top 25%) and a conservation score less than
the specificity score. This set of mutations is enriched in
potential SOF mutations. A few examples of putative
SOF mutation are given in Supplementary Data S5.

DISCUSSION AND CONCLUSION

Here, we introduced and tested a new computational
approach for predicting the functional impact of protein
mutation on protein function and, by implication, for
providing a rough estimate of the probability that the
mutation has a phenotypic consequence at the level of
the organism. The principal strength of the approach is
that it uses information based on the analysis of evolu-
tionary conservation patterns in protein family multiple
sequence alignments which are subject to selective forces
at the level of the ability of the organism to survive and
reproduce. Strong selection patterns across an entire
protein family or within protein subfamilies are very
likely the result of strong selection that disfavors amino
acid residues not consistent with the conservation pattern,
no matter what the precise mechanism of de-selection of
unfavorable variants might be. In other words, evolution-
ary conservation patterns effectively integrate information
from any effect of residue changes, without the need to

A
specificity

B

Figure 9. Functional mutation in a predicted specificity position of RAC1 (Ras-related C3 botulinum toxin substrate 1). (A) The mutation affects a
residue that is conserved as A (Ala) in subfamily #1 (top sequences, close homologues of RAC1) and as E (Glu) in subfamily #2 (bottom sequences,
close homologues of CDC42); Uniprot name, species identifier, residues number range and subfamily number are in left columns. The sequence
subfamilies and specificity scores (vertical bars at top) were computed from a non-redundant MSA (multiple sequence alignment) of 274 sequences
using CEO clustering. The mutation A95E of RAC1 has a high specificity score in RAC1. (B) The position affected by the mutation is in the binding
interface of RAC1 in contact with the T-lymphoma invasion and metastasis factor 1 (Tiam1); (PDB code 1foe).

PAGE 11 OF 14 Nucleic Acids Research, 2011, Vol. 39, No. 17 e118

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/n
a
r/a

rtic
le

/3
9
/1

7
/e

1
1
8
/2

4
1
1
2
7
8
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2

http://nar.oxfordjournals.org/cgi/content/full/gkr407/DC1


dissect them into separate contributing factors, such as
effects on protein stability or protein–protein interactions.
The computational protocol performs the analysis as

follows: given a mutated protein name and a mutated
residue position, it searches for sequence homologs,
builds a multiple sequence alignment, clusters sequences
into subfamilies and scores a mutation by global and
sub-family specific conservation patterns. Mutations
affecting either type of conserved residue are likely to be
functional.
The functional impact score was tested on a large set of

disease-associated and polymorphic variants, with the
adjustment of only a single threshold parameter (optimal
sensitivity �79% at a score threshold �2).
We applied the approach to evaluate the functional

impact of amino-acid changing cancer mutations in
the curated catalog of somatic mutations in cancer,
the COSMIC database. Mutations in this database are
distributed non-uniformly across genes. In spite of poten-
tial investigator bias, this non-uniform distribution
plausibly reflects clonal selection of cancer mutations,
i.e. functional mutations in key proteins give selective
advantage to cancer cells and are thus observed more
frequently than others in cancer genome re-sequencing.
Therefore, the COSMIC list of cancer mutations is a
useful positive test set for testing the predictive power of
methods to assess the functional impact of protein muta-
tions. We conducted three comparisons of the functional
impact score in pairs of sets of mutations in which one
would expect higher functional impact in the first set
compared to the second set: (i) mutations recurrent in
many samples versus mutations observed only in one
sample; (ii) mutations in multiply mutated genes versus
mutations in genes reported only once as mutated; and
(iii) mutations of genes annotated as cancer genes versus
mutations of genes without such annotation. The tests
indeed showed that (i) recurrent mutations; (ii) mutations
of multiply mutated genes; and (iii) known cancer genes
on average have higher functional impact scores, confirm-
ing that the score reflects likely functional impact to a
non-trivial extent.
Based on this analysis of COSMIC mutations, we are

making three experimentally testable predictions: we
predict a non-negligible fraction of non-functional muta-
tions in well known cancer genes. If such mutations are in
fact non-functional, then a simple detection of a non-
synonymous mutation in an oncogene cannot be automat-
ically interpreted as a cancer-causative event. One would
need to assess the functional impact of a mutation experi-
mentally to confidently take it into account in molecular
diagnostics or choice of therapy. We also predict that a
non-negligible fraction of mutations in one-time mutated
genes are functional, in spite of their (currently observed)
low recurrence. What is a role of these mutations? Should
these mutations be ignored as ‘not significant’ as is
commonly done as the result of applying simple statistical
models of recurrence in a set of samples? And, we
introduce a new type of functional impact of mutations
in cancer—involving a ‘switch of specificity’—that may
account for �5% of predicted functional mutations.

We conclude that the functional impact score based on
evolutionary information (FIS) is useful for ranking
mutations by likely functional impact, especially for
understanding the role of mutated proteins in cancer, for
nominating newly discovered mutations contributing
to cancer and for prioritizing mutations for further
analyses and experiments involving these alterations.
Our computational protocol is fully automated and
implemented as a publicly available server (http://
mutationassessor.org) for use in cancer research.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR Online.
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