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Abstract. We present a novel methodology for predicting future
outcomes that uses small numbers of individuals participating in
an imperfect information market. By determining their risk at-
titudes and performing a nonlinear aggregation of their predic-
tions, we are able to assess the probability of the future outcome
of an uncertain event and compare it to both the objective prob-
ability of its occurrence and the performance of the market as a
whole. Experiments show that this nonlinear aggregation mech-
anism vastly outperforms both the imperfect market and the best
of the participants. We then extend the mechanism to prove robust
in the presence of public information.
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1. Introduction

The prediction of the future outcomes of uncertain sit-
uations is both an important problem and a guiding
force behind the search for the regularities that under-
lie natural and social phenomena. While in the physical
and biological sciences the discovery of strong laws
has enabled the prediction of future scenarios with un-
canny accuracy, in the social sphere no such accurate
laws are known. To complicate matters further, in so-
cial groups the information relevant to predictions is
often dispersed across people, making it hard to iden-
tify and aggregate it. Thus, while several methods are
presently used in forecasting, ranging from committees
and expert consultants to aggregation techniques such
as the Delphi method (Anderson and Holt, 1997), the
results obtained suffer in terms of accuracy and ease of
implementation.

In this paper, we propose and experimentally verify
a market-based method to aggregate scattered infor-
mation so as to produce reliable forecasts of uncertain
events. This method is based on the belief shared by
most economists that markets efficiently collect and
disseminate information (Hayek, 1945). In particular,

rational expectations theory tells us that markets have
the capacity not only to aggregate information held by
individuals, but also to convey it via the price and vol-
ume of assets associated with that information. There-
fore, a possible methodology for the prediction of fu-
ture outcomes is the construction of markets where the
asset is information rather than a physical good. Labo-
ratory experiments have determined that these markets
do indeed have the capacity to aggregate information in
this type of setting (Forsythe, Palfrey, and Plott, 1982;
O’Brien and Srivastava, 1991; Plott and Sunder, 1982,
1988).

Information markets generally involve the trad-
ing of state-contingent securities. If these markets
are large enough and properly designed, they can
be more accurate than other techniques for extract-
ing diffuse information, such as surveys and opin-
ions polls. There are problems however, with informa-
tion markets, as they tend to suffer from information
traps (Camerer and Weigelt, 1991; Noth, et al., 1999),
illiquidity (Sunder, 1992), manipulation (Forsythe and
Lundholm, 1990; N6th and Weber, 1998), and lack of
equilibrium (Anderson and Holt, 1997; Scharfstein and
Stein, 1990).! These problems are exacerbated when
the groups involved are small and not very experienced
at playing in these markets. Even when possible, proper
market design is very expensive, fragile, and context-
specific.

In spite of these obstacles, it is worth noting that cer-
tain participants in information markets can have either
superior knowledge of the information being sought,
or are better processors of the knowledge harnessed
by the information market itself. By keeping track of
the profits and final holdings of the members, one can
determine which participants have these talents, along
with their risk attitudes.

In this paper, we propose a method of harnessing
the distributed knowledge of a group of individuals by
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using a two-stage mechanism. In the first stage, an in-
formation market is run among members of the group
in order to extract risk attitudes from the participants,
as well as their ability at predicting a given outcome.
This information is used to construct a nonlinear aggre-
gation function that allows for collective predictions of
uncertain events. In the second stage, individuals are
simply asked to provide forecasts about an uncertain
event, and they are rewarded according the accuracy
of their forecasts. These individual forecasts are aggre-
gated using the nonlinear function and used to predict
the outcome. As we show empirically, this nonlinear
aggregation mechanism vastly outperforms both the
imperfect market and the best of the participants.

However, these results are achieved in a very partic-
ular environment, that of no public information. Public
information is bound to introduce strong correlations
in the knowledge possessed by members of the group,
correlations that are not explicitly taken into account
by the above-described aggregation algorithm. So, we
propose a set of suitable modifications that would al-
low the detection of the amount of public information
present in a group so as to subtract it. Assuming that
subjects can differentiate between the public and pri-
vate information they hold, that the private aspect of
their information is truly private (held only by one indi-
vidual), and that the public information is truly public
(held by at least two individuals), we create a coor-
dination variant of the mechanism which allows for
the identification of public information within a group
and its subtraction when aggregating individual pre-
dictions about uncertain outcomes. Experiments in the
laboratory show that this aggregation mechanism out-
performs the market, the best player in the group, and
the initially proposed aggregation mechanism.

2. Aggregation Mechanism Design

We consider first an environment in which a set of N
people have purely private information about a future
event. If all players had the same amount of informa-
tion about the event and were perfectly risk-neutral,
then it would be easy to compute the true posterior
probabilities using Bayes’ rule. If individuals receive
independent information conditioned on the true out-
come, their prior beliefs are uniform (no other infor-
mation is available other than the event sequence), and
they each report the true posterior probabilities given

their information, then the probability of an outcome
s, conditioned on all of their observed information I,
is given by:
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where p;; is the probability that individual
ii=1,...,N assigns to outcome s (please see
Appendix 1 for a discussion). This result allows us
simply to take the individual predictions, multiply
them together, and normalize them in order to get an
aggregate probability distribution. However, this will
only work under the extremely restrictive constraints
enumerated above. The first of these issues we will
consider is how to design a mechanism that elicits
truthful reporting from individuals. We demonstrate in
Appendix 2 that the following mechanism will induce
risk neutral utility maximizing individuals to report
their prior probabilities truthfully. We ask each player
to report a vector of perceived state-probabilities,
{q1, 9>, ...qn} with the constraint that the vector
sums to one. Then the true state x is revealed and each
player paid c¢; + ¢ x log(gy), where ¢; and c, are
positive numbers.

While this very simple method might seem to ag-
gregate dispersed information well, it suffers from the
fact that, due to their risk attitude, most individuals
do not necessarily report their true posterior probabili-
ties conditioned on their information. In most realistic
situations, a risk averse person will report a probabil-
ity distribution that is flatter than her true beliefs as
she tends to spread her bets among all possible out-
comes. In the extreme case of risk aversion, an indi-
vidual will report a uniform probability distribution re-
gardless of her information. In this case, no predictive
information is revealed by her report. Conversely, a
risk-loving individual will tend to report a probabil-
ity distribution that is more sharply peaked around a
particular prediction, and in the extreme case of risk
loving behavior a subject’s optimal response will be to
put all his weight on the most probable state according
to his observations. In this case, his report will con-
tain some, but not all the information contained in his
observations.

In order to account for both the diverse levels of risk
aversion and information strengths, we add a stage to
the mechanism. Before individuals are asked to report
their beliefs, they participate in an information market
designed to elicit their risk attitudes and other rele-
vant behavioral information. This information market
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is driven by the same information structure in the
reporting game. We use information markets to cap-
ture the behavioral information that is needed to derive
the correct aggregation function. Note that, although
the participant pool is too small for the market to act
perfectly efficiently, it is a powerful enough mechanism
to help us illicit the needed information.

The nonlinear aggregation function that we con-
structed is of the form:
il ply
v PO PRy
where B; is the exponent assigned to individual i. The
role of B; is to help recover the true posterior proba-
bilities from individual i’s report. The value of 8 for a
risk neutral individual is one, as he should report the
true probabilities coming out of his information. For
a risk averse individual, §; is greater than one so as
to compensate for the flat distribution that he reports.
The reverse, namely §; smaller than one, applies to risk
loving individuals. In terms of both the market perfor-
mance and the individual holdings and risk behavior, a
simple functional form for B; is given by
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where r is a parameter that captures the risk attitude of
the whole market and is reflected in the market prices
of the assets, V; is the utility of individual i, and o;
is the variance of his holdings over time. We use ¢
as a normalization factor so thatif r = 1, ) ; equals
the number of individuals. Thus the problem lies in the
actual determination of both the risk attitudes of the
market as a whole and of the individual players.

To do so, notice that if the market is perfectly effi-
cient then the sum of the prices of the securities should
be exactly equal to the payoff of the winning security.
Howeyver, in the thin markets characterized here, this ef-
ficiency condition was rarely met. Moreover, although
prices that do not sum to the winning payoff indicate
an arbitrage opportunity, it was rarely possible to re-
alize this opportunity with a portfolio purchase (once
again, due to the thinness of the market). However, we
can use these facts to our advantage. If the sum of the
prices is below the winning payoff, then we can infer
that the market is risk-averse, while if the price is above
this payoff then the market exhibits risk-loving behav-
ior. Thus, the ratio of the winning payoff to the sum of
the prices provides a proxy for the risk attitude of the
market as a whole.

P(s|I) = ()
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The ratio of value to risk, (V;/o;), captures individ-
ual risk attitudes and predictive power. An individual’s
value V; is given by the market prices multiplied by his
holdings, summed over all the securities. As in portfo-
lio theory (Markowitz, 1959), his amount of risk can
be measured by the variance of his values using nor-
malized market prices as probabilities of the possible
outcomes.

3. Experimental Design for Private
Information Experiments

In order to test this mechanism we conducted a num-
ber of experiments at Hewlett-Packard Laboratories, in
Palo Alto, California. The subjects were undergraduate
and graduate students at Stanford University and knew
the experimental parameters discussed below, as they
were part of the instructions and training for the ses-
sions. The five sessions were run with eight to thirteen
subjects in each.

We implemented the two-stage mechanism in a lab-
oratory setting. Possible outcomes were referred to as
“states” in the experiments. There were 10 possible
states, A through J, in all the experiments. Each had an
Arrow-Debreu’ state security associated with it. The
information available to the subjects consisted of ob-
served sets of random draws from an urn with replace-
ment. After privately drawing the state for the ensuing
period, we filled the urn with one ball for each state,
plus an additional two balls for the just-drawn true state
security. Thus it is slightly more likely to observe a ball
for the true state than others.

We allowed subjects to observe different number of
draws from the urn in order to control the amount of
information given to the subjects. Three types of infor-
mation structures were used to ensure that the results
obtained were robust. In the first treatment, each subject
received three draws from the urn, with replacement. In
the second treatment, half of the subjects received five
draws with replacement, and the other half received
one. In a third treatment, half of the subjects received a
random number of draws (averaging three, and also set
such that the total number of draws in the community
was 3N) and the other half received three, again with
replacement.

The information market we constructed consists of
an artificial call market in which the securities are
traded. The states were equally likely and randomly
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drawn. If a state occurred, the associated state security
paid off at a value of 1,000 francs.? Hence, the expected
value of any given security, a priori, was 100 francs.
Subjects were provided with some securities and francs
at the beginning of each period.

Each period consists of six rounds, lasting
90 seconds each. At the end of each round, our sys-
tem gathers the bids and asks and determines market
price and volume. The transactions are then completed
and another call round began. At the end of six trad-
ing rounds the period is over, the true state security is
revealed, and subjects are paid according to the hold-
ings of that security. This procedure is then repeated in
the next period, with no correlation between the states
drawn in each period.

In the second-stage, every subject played under the
same information structure as in the first stage, al-
though the draws and the true states were independent
from those in the first. Each period they received their
draws from the urn and 100 tickets. They were asked
to distribute these tickets across the 10 states with the
constraint that all 100 tickets must be spent each pe-
riod and that at least one ticket is spent on each state.
Since the fraction of tickets spent determines py;, this

Table 1. Excerpt from payoff chart used in the second-stage games

implies that py; is never zero. The subjects were given a
chart that told them how many francs they would earn
upon the realization of the true state as a function of
the number of tickets spent on the true state security.
The payoff is a linear function of the log of the percent-
age of tickets placed in the winning state (Please see
Appendix 2 for a discussion of the payoff function).
The chart the subjects received showed the payoff for
every possible ticket expenditure, and an excerpt from
the chart is shown in Table 1.

We conducted a total of five experiments. The num-
ber of subjects in the experiments ranged from eight
to thirteen. The speed of the experiments depended
on how fast the subjects were making their decisions,
the length of the training sessions and a number of
other variables. Therefore, we have completed differ-
ent number of periods in different experiments. Table 2
provides a summary.

4. Analysis

Notice that if the aggregation mechanism were perfect,
the probability distribution of the states would be as

Number of Possible payoff Possible payoff Number Possible payoff Possible payoff
tickets in MYBB game in AK game of tickets in MYBB game in AK game
1 33 —1244 50 854 1515
10 516 388 60 893 1642
20 662 873 70 925 1750
30 747 1157 80 953 1844
40 808 1359 90 978 1926
Table 2. Summary of private information experiments
Experimental structure Kullback-Liebler values (Standard deviation)
Number No Market Best Simple Original
Expt of players Private info info prediction player IAM 1AM
1 13 3 draws for all 1.977 1.222 0.844 1.105 0.553
(0.312) (0.650) (0.599) (2.331) (1.057)
2 9 3 draws for all 1.501 1.112 1.128 0.207 0.214
(0.618) (0.594) (0.389) (0.215) (0.195)
3 11 1h:5 draws 1.689 1.053 0.876 0.489 0414
1/: 1 draw (0.576) (1.083) (0.646) (0.754) (0.404)
4 8 1h: 5 draws 1.635 1.136 1.074 0.253 0413
15: 1 draw (0.570) (0.193) (0.462) (0.325) (0.260)
5 10 15 3 draws 1.640 1.371 1.164 0.478 0.395
15: varied draws (0.598) (0.661) (0.944) (0.568) (0.407)




if one person had seen all of the information available
to the community. Therefore, we can use the proba-
bility distribution conditioned on all the information
as a benchmark to which we can compare alternative
aggregation mechanisms. In order to compute this om-
niscient probability distribution, recall that there are
twelve balls in the information urn, three for the true
state and one for each of the other nine states. Using
Bayes’ rule one obtains the omniscient probability dis-
tribution, i.e.
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where s denotes the states, O is a string of observa-
tions, #(s) is the number of draws of the state s in the
string, and #(5) is the number of draws of all other
states.

Once we have this benchmark, the next step is to
find a measure by which we can compare it to the
probabilities provided by different aggregation mech-
anisms against this benchmark. The obvious measure
to use is the Kullback-Leibler measure, also known as
the relative entropy (Kullback and Leibler, 1952). The
Kullback-Leibler measure of two probability distribu-
tions pand ¢ is given by:

KL(p,q)=E, <log (g)) )

where p is the “true” distribution (in our case, the om-
niscient probability distribution). In the case of finite
number of discrete states, the above Eq. (5) can be
rewritten as:

KL(p.q)= Y _ p,log (Z—) ©)

It can be shown that KL(p, g) =0 if and only if the
distribution p and g are identical, and that KL(p, g) >0
for all probability distributions p and ¢g. Therefore,
a smaller Kullback-Leibler number indicates that two
probabilities are closer to each other. Furthermore, the
Kullback-Leibler measure of the joint distribution of
multiple independent events is the sum of the Kullback-
Leibler measures of the individual events. Since peri-
ods within an experiment were independent events, the
sum or average (across periods) of Kullback-Leibler
measures is a good summary statistics of the whole
experiment.

P(s|O) =
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5. Results

We compare three information aggregation mecha-
nisms to the benchmark distribution given by Eq. (4)
by using the Kullback-Leibler measure. The first of
the three information aggregation mechanisms is the
market prediction. The market prediction is calculated
using the last traded prices of the assets. We used the
last traded prices rather than the current round’s price
because sometimes there was no trade in a given asset
in a given round. From these prices, we infer a probabil-
ity distribution on the states. The second and the third
mechanisms are the simple aggregation function given
by the risk neutral formula in Eq. (1), and the market-
based nonlinear aggregation function in Eq. (2).

In addition, we also report the Kullback-Leibler
measures of the no information prediction (uniform
distribution over all the possible states) and the pre-
dictions from the best individual. The no information
prediction serves as the first baseline to determine if any
information is contained in the predictions of the mech-
anisms. Further, if a mechanism is really aggregating
information, then it should be doing at least as well as
the best individual. So, the predictions of the best indi-
vidual serve as the second baseline, which helps us to
determine if information aggregation indeed occurred
in the experiments.

The results are shown in Table 2. The entries are the
average values and standard deviations (in parenthe-
ses) of the Kullback-Leibler number, which was used
to characterize the difference between the probability
distributions resulting from a given mechanism and that
of the omniscient probability.

As can easily be seen, the nonlinear aggregation
function worked extremely well in all the experiments.
Itresulted in significantly lower Kullback-Leibler num-
bers than the no information case, the market predic-
tion, and the best a single player could do. In fact, it
performed almost three times as well as the informa-
tion market. Furthermore, the nonlinear aggregation
function exhibited a smaller standard deviation than
the market prediction, which indicates that the quality
of its predictions is more consistent than that of the
market. In three of five cases, it also offered substantial
improvements over the simple aggregation function.

The results displayed in the second column show
that the market was not sufficiently liquid to aggre-
gate information properly, and it was only marginally
better than the a priori no information case. In almost
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Fig. 1. Accuracy of prediction, by mechanism.

all cases, the best player in the reporting game con-
veyed more information about the probability distribu-
tion than the market did. However, even in situations
where the market performs quite poorly, it does pro-
vide some information, enough to help us construct an
aggregation function with appropriate exponents.

These results are illustrated in Fig. 1, where we show
the probability distributions generated by the market
mechanisms, the best individual in a typical experi-
ment, the nonlinear aggregation function, as well as
the omniscient probability distribution generated by
Eq. (4).* Notice that the nonlinear aggregation func-
tion exhibits a functional form very similar to the om-
niscient probability, and with low variance compared
to the other mechanisms. This is to be contrasted with
the market prediction, which exhibits an information
trap at state F and a much larger variance.

These experiments confirm the utility of our nonlin-
ear aggregation mechanism for making good forecasts
of uncertain outcomes. This nonlinear function applies
the predictions of a group of people whose individual
risk attitudes can be extracted by making them par-
ticipate in an information market. Equally important,
our results show that many of the shortcomings asso-
ciated with information markets can be bypassed by
this two-stage method, without having to resort to de-
signing complicated market games. In this context it
is worth pointing out that even with such small groups
we were able to obtain information whose accuracy,
measured by Kullback-Leibler, surpasses by a factor
of seven even more complicated institutions such as
pari-mutuel games (Plott, Wit, and Yang, 1997).

Lastly, unlike the standard information aggregation
implied by the Condorcet theorem, our mechanism al-
lows us to extract probability distributions rather than
the validity of a discrete choice obtained via a majority

vote. Moreover, our mechanism provides a signal even
in situations when an overall system itself does not con-
tain accurate information as to the outcome. Equally
important, unlike Condorcet our two-stage mechanism
does not demand risk neutrality and access to the same
information by all participants in the system.

6. Distilling Public Information

As we discussed earlier, the above results are not robust
to the presence of public information. Nevertheless, the
success of our two-stage forecasting mechanism with
private information leads us to search for suitable mod-
ifications that would allow the detection of the amount
of public information present in a group so as to sub-
tract it. In this section, we will propose a method for the
identification of public information within a group and
its subtraction when aggregating individual predictions
about uncertain outcomes. In the following sections, we
will present our methodology for aggregating the in-
formation resulting from our mechanism, and then the
results of experiments in the laboratory that show that
this aggregation mechanism outperforms the market,
the best player in the group, and the above-described
aggregation mechanism.

The introduction of public information implies that
the probabilities that enter into Egs. (1) and (2) are no
longer independent of each other, and therefore they
are no longer aggregated correctly. Equations (1) and
(2) over count information that is observed by more
than one individual since they add (in the probability
space) probabilities without regard to whether the re-
ports are coming from the same information source.
Thus the mechanism has to incorporate a feature that
distinguishes the public information from the private,
so that it can be suitably subtracted when aggregating
the individual predictions. We achieve this by using a
coordination game in the second stage, which incents
players to reveal what they believe others will reveal.
This coordination game is similar to the Battle of the
Sexes game.

In the Battle of the Sexes, a couple enjoys spending
time together, but each member would rather do so
while engaged in his or her preferred activity. As an
example, a payoff matrix is shown for an instance in
which he’d like them both to go to the baseball game
(upper-left), and she’d prefer they went to the opera
together (lower-right). If they disagree, no one goes
anywhere and no one is happy (off-diagonals).
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This game has multiple mixed-strategy Nash equi-
libria, in which both players mix with the goal of
landing in the upper-left and lower-right quadrants of
the payoff matrix. Notice that with these payoffs each
member of the couple is incented to reveal the infor-
mation that they believe the other will.

In much the same way, our matching game asks
players that, in addition to making their best bet
(MYBB), they reveal what they believe they all know
(AK). The first half, MYBB, works as in the original
experiments. That is, players report a vector of bets
on the possible states, and are paid according to a log
function of these bets. In the AK game however, the
subjects try to guess the bets placed by someone else
in the room, and these bets are then matched to an-
other player whose bets are most similar to theirs. The
payout from this part of the game is a function of both
their matching level and the possible payout from the
number of tickets allocated by the other member of the
pair. The payoffs are constructed such that participants
have the incentive to match their peers in their public
reports. The design of this game is discussed further in
the Experimental Design section.

In order to design a payoff function that induces
both truthful revelation and maximal matching, we
assume that: (A1) the public and private information
held by an individual are independent of one another,
(A2) that private information is independent across in-
dividuals, (A3) that public information is truly pub-
lic (observed by more than one individual), and (A4)
that an given individual can distinguish between the
public and the private information he holds. In other
words:

For each individual i with observed information O;,
there exists information O™ and O "® Such that:

(Al) P(s|0y) = P(s|0f”iv)P(s|0f“h) foralli,s

(AZ) P(s|0ipr1u and ijriv) — P(S|Ol{mv)
P(s|0jP™) for all i, j, s

(A3) There exists a j for every i such that O
ijub

(A4) Allindividualsknow P(s|0"™)and P(s|O"")

pub _
=
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So, in the second stage, each player i is asked to report
two probability distributions, p; = {pi1, pi2, ..., Pin}
(fromMYBB)and §; = {qi1, gi2, . . . , gin} (from AK),
by allocating a set of tickets to each of the possible
states. Let x be the true outcome. The payoff function
for each player i is given by the following expression:

P =c|+ ¢ x log(pix) + f(qi. qj)
x (¢4 + 5 x log(g;x)) @)

where ¢y, c3, ¢3 and ¢4 are positive constants, j is cho-
sen in sucha way that f(q;,q;) > f(g:, gx) for all k,
and the function f(-) is given by:

2
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In words, subjects are paid according to a log function
of their reports in the MYBB game, plus a payment
from the AK game. This payment is a function of the
player with whom he has a maximal match, and is the
product of the matching level and a scaled log function
of the matched player’s report in the AK game. This
match level is given by the second term of Eq. (7) and
is detailed in Eq. (8) above.

As shown earlier, the first part of the payoff function
in Eq. (7), ¢1 + ¢ x log(p;,), will induce risk neu-
tral subjects who maximize their expected utility to
report their true belief, conditioned on both their pri-
vate and public information. Concerning the last term
of Eq. (7), we first note that player i can only affect
it through his matching level, which is given by the
function f(g;,q;). Since f(x,x) > f(y,X)for all y,
player i’s best response is to report g; = ¢ ;. Further,
since j is chosen such that f(¢;, ;) > (g, qx) for
all k, player i only needs to co-ordinate his g; with only
one other individual in the group to achieve an opti-
mal payoff. Additionally, it is easy to show that this
part of the game has multiple Nash equilibria, since
any common report vector ¢ reported by both play-
ers i and j is a potential Nash equilibrium. Therefore,
we designed the payoff function given by in Eqgs. (7)
and (8) to encourage individuals to coordinate on the
probability distribution induced by the public informa-
tion. Lastly, the third piece of the payoff function for
player i, ¢4 + ¢5 x log(g;,) induces a different payoff
for each Nash equilibrium ¢ on which the two individ-
uals coordinate. Since this factor depends on the strat-
egy of player i’s partner j, no one player can directly
affect it. This is crucial to preserve the equilibrium
structure.
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We thus designed the payoff such that the more
information revealed in the reports ¢, the higher the
potential payoff to the subjects involved, which implies
an information-rich equilibrium. Additionally, since
private information is independent across individuals
(it is truly private), the best equilibrium on which indi-
viduals can coordinate on is the probability distribution
induced by using the public information only. There-
fore, this mechanism will induce individuals to report
both their true beliefs (p;) and their public information
(¢:)- Once these vectors are reported, we still need to
aggregate them, which we discuss in the next section.

7. Aggregating Public and Private
Information

Once we have a mechanism for extracting public beliefs
from private ones, it is straightforward to add a public
information generalization to Eq. (2). By dividing the
perceived probability distributions of the players by the
distributions induced by the public information only,
we develop what we call a General Public Information
Mechanism (GPIC), which is given by

(5) () ()"
qs1 qs2 qsN
m () @) ()

S\ gs1 qs2 qsN
where the g, are extracted from individuals’ reports
before they are aggregated. This correction allows us
to isolate the private information from the individual
reports.

While this mechanism is quite general, and outper-
forms both the market prediction and that of our orig-
inal IAM, there are potential improvements to it that
can be implemented. Thus, we developed modifica-
tions to the aggregation function to address issues of
uncertain information structures and multiple equilib-
ria. In theory, knowledge of the individuals’ reports
pi ={pi1, pi2, ..., pin} and ¢; = {qi1, Gi2, - - . . Gin }s
should make information aggregation straightforward
since for a given individual i, his probability assign-
ment to state s, with respect to private information,
should be proportional to py;/qs;. To more efficiently
add in public information, we aggregate the individual
reports of public information ¢; = {g;1, gi2, - . ., gin}
into a single vector ¢ = {q1, g2, . .., qn}. Inorder to do
this, we employ one additional assumption, that every

PGs|I)=
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individual observes the same public information, OP*?.
We then aggregate by averaging the reports, weighted
by each individual’s 8, thus:

gs = ZlNzl ﬂiqsi
s N
Yim Bi

Once we have completed this aggregation process,
we can use the new vector ¢ in place of g;in the origi-
nal function in Eq. (9). If § is derived correctly, it will
resolve the matter of parsing the private information
from the public. Furthermore, in much the same way
that some people process their private signals better
than others, there are some individuals that report pub-
lic information more accurately than others. If one can
identify these individuals, one can recover public in-
formation more efficiently than by taking a weighted
average of everyone’s report. Thus, instead of using
the whole group to recover public information, as in
Eq. (10), we use a limited set J, a subset of the whole

group:

(10)

= Yicy Bidsi
s — N
Zi:l Bi

The resultant forecast is then determined by a mod-
ification of the GPIC in Eq. (9). It uses a small subset
of players to determine the public information so as
to parse it from the private. While this mechanism is
quite efficient, it only applies to the special case where
the public information is completely public and iden-
tical. Therefore, we refer to it as the Special Public
Information Correction Mechanism, or SPIC.

p (&)ﬂl (&)ﬂz.”(m)m
P(S | 1) — § qs qs qs
DPsi1 b Ps2 P PsN Pw
Sua (2) (2) (5

(10a)

an

8. Experimental Design for Public
Information Experiments

As in the private information experiments, all sessions
were conducted at Hewlett-Packard Laboratories in
Palo Alto, California, with a similar cohort to those
in the private information sessions. The information
structure was also identical to that of the private infor-
mation experiments, as was the first-stage call market.
The only difference was in the second stage, which we
will now describe.



In the second-stage, every subject played under the
same information structure as in the first stage, al-
though the draws and the true states were independent
from those in the first. There are two parts to this game,
described in the Identifying Public Information section
above, which were referred to as the ”What Do We All
Know” (AK) and the "Make Your Best Bet” (MYBB)
games. Each period, the subjects received their draws of
information, as in the market game. They also received
two sets of 100 tickets each, one set for AK, and one
for MYBB. We will discuss these two games in turn.

The MYBB game is identical to the second stage
played in the private information game. That is, in
MYBB, the subjects were asked to distribute their tick-
ets across the ten states with the constraint that all 100
tickets must be spent each period and that at least one
ticket is spent on each state. Since the fraction of tick-
ets spent determines pj;, this implies that py; is never
zero. The subjects were given a chart that told them
how many francs they would earn upon the realization
of the true state as a function of the number of tickets
spent on the true state security. The payoff was a linear
function of the log of the percentage of tickets placed
in the winning state as given by the first half of Eq. (7).
The chart the subjects received showed the payoff for
every possible ticket expenditure, and was identical to
that shown in Table 1.

We also played the matching game in this stage,
known as AK. In this stage, subjects received 100 tick-
ets, but with a different goal. They tried to guess the
bets placed by someone else in the room. After they
placed the bets, they were matched to another player,
one whose bets were most similar to theirs. The more
similar the bets were to their nearest match, the higher
the reported ’Percent Match with Partner.” The payoffs
for any given ticket expenditure were higher in the AK
game than the MYBB game, and are detailed in Table 1.

Fig. 2 shows a screenshot from the second stage of
the game, which displays the bets placed in a sample
Period 1. As shown on the upper right, the true state
was F. Following down the items reported in the upper
right of the screen, we see that this player bet 20 tickets
on F in the MYBB game, which has corresponds to a
Possible Payout of 662 francs. He was matched with a
partner whose AK distribution of tickets matched his at
a 49% level. This partner bet enough tickets to have a
Possible Payout of 178 francs. Our sample player thus
earned 662 francs for the 20 tickets bet in the MYBB
game, plus 0.49 x 178 =87 francs for the AK game,
for a total of 749 francs.
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9. Experimental Results

We compare five information aggregation mechanisms
to the benchmark distributions. In addition, we also
report the Kullback-Leibler measures of the no infor-
mation prediction (uniform distribution over all the
possible states) and the best (most accurate) individ-
ual’s predictions. The first two information aggregation
mechanisms we evaluate are the market prediction and
the original private information mechanism in Eq. (2).

The third mechanism is our proposed improvement,
referred to as the General Public Information Correc-
tion (GPIC) mechanism, given by Eq. (9). It uses both
individuals’ reports of public information regarding
outcomes as well as the individuals’ perceived proba-
bilities of these outcomes. If this mechanism is working
as predicted by the theory, it should provide a superior
outcome to that of the original IAM.

As an additional benchmark the fourth mechanism,
referred to as the Perfect Public Info Correction (PPIC),
replaces individuals’ reports of public information with
the true public information that they have observed. Ob-
viously, this is not possible in a realistic environment,
since we do not know the true public information (or,
this exercise would be pointless). However, it allows
us to validate the behavioral assumptions we make in
the design of the mechanism. Our model implicitly as-
sumes that individuals aggregate their public and pri-
vate information by a modified version of Bayes’ rule
to arrive at their reports, and we can use this benchmark
to validate this assumption.

Lastly, we address the special case in which the ex-
perimenter knows that every individual receives the
same public information. This fifth mechanism, re-
ferred to as the Special Public Info Correction mecha-
nism (SPIC), recovers the public information by using
the reports of only the best two individuals to correct
the public information bias in all participants’ reports.

As is shown in Tables 3 and 4, once even a small
amount of public information is introduced into the sys-
tem (Experiments la through 5a), the performance of
the original IAM decreases dramatically. In Fig. 3 we
illustrate the double counting issue before the GPIC
modification. In this figure, we plot the probability
distributions generated by omniscience, the prediction
from the original TAM and the available public informa-
tion from a sample period (Experiment 3a, period 9).
As one can see, using the original IAM results in a
false peak at state H, which is the state on which public
information was available. In some cases, the double
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Possible
States: A To ] Period 1
Drawing from a urn with replacement containing: State F
3 balls for the true state Total ITickets on this State 20
1 ball for each false state Payoff Percent Match with Partner [49
111 Private Information 749 Maximal Payoff from Partner{178
>>> Public Information Payoff 749
MAKE YOUR BEST BET WHAT DO WE ALL KNOW? My Information
Number of [Possible Number of
State Tickets Payout ITickets State |Count
A 20 662 10 A 1 11
B 3 264 5 B 0
© 3 264 5 < 0
D 3 264 5 D 0
E 20 662 25 E 1 >>>
F 20 662 10 F 1 11
G 3 264 5 G 0
H 3 264 5 H 0
I 20 662 25 I 1 >>>
J 5 371 5 J 0
ITotal Ticket Total Tickets
Spent 100 Spent 100

Fig. 2. Sample page from stage two of the experiment.

counting issue is so severe that the results are worse
than that of the no information measure (see, for exam-
ple, Experiments 1a, 2a and 3a). Thus, this verifies the
necessity to derive a method correcting for the biases
introduced by public information.

In Table 3 we summarizes the relative performance,
in terms Kullback-Leibler measures, of all of the bench-
marks mechanisms enumerated above. Table 4 reports
the same results in terms of the percentage relative to
the no information Kullback-Leibler measure (indicat-
ing the level of improvement over this benchmark).
Note that the amount of aggregate information avail-
able in an experiment varied across the treatments. Be-
cause the pure KL measure reported in Table 3 is af-
fected by the amount of underlying information, the

percentage measurement in Table 4 are more useful
when comparing results across experiments.

The GPIC mechanism (Eq. (9)) outperforms the best
single individual’s guesses reports in all five experi-
ments. It also outperforms the market prediction in four
out of five experiments. The GPIC mechanism uses the
reports of public information of individuals to perform
the correction. As expected, this mechanism recovers
enough public information to perform well compared
to an information market. However, there is room for
improvement compared to the case where the true pub-
lic information is used.

To understand this inefficiency, let us assume that
the information aggregator knows the true public in-
formation seen by every individual and applies the



Table 3. Summary of public information experiments
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Experimental structure

Kullback-Liebler values (Standard deviation)

General Perfect Special
Number Market Best Original public info public info public info
Expt of players Private info Public info Noinfo prediction player IAM correction  correction  correction
la 10 2 draws for all 2 draws for all 1.332 0.847 0.932 2.095 0.825 0.279 0.327
(0.595) (0.312) (0.566)  (.196)  (0.549) (0.254) (0.247)
2a 9 2 draws for all 2 draws for all 1.420 0.979 0.919 2911 0.798 0.258 0.463
0.424) (0.573) (0.481) (2.776)  (0.532) (0.212) (0.492)
3a 11 3 draws for all 1 draws for all 1.668 1.349 1.033 2.531 0.718 0.366 0.669
(0.554)  (0.348) (0.612) (1.920) (0.817) (0.455) (0.682)
4a 10 3 draws forall 14 : Idraw 1.596 0.851 1.072  0.951 0.798 0.704 0.793
(0.603) (0.324) (0.604) (1.049)  (0.580) (0.691) (0.706)
5a 10 3 draws for all 1 draws for all 1.528 0.798 1.174  0.886 1.015 0.472 0.770
2 sets of public info  (0.600)  (0.451) (0.652) (0.763)  (0.751) (0.397) (0.638)
Table 4. Percentage of no-info Kullback-Leibler numbers (Public information)
Experimental structure Kullback-Liebler values, as a percent of the no info case
General Perfect Special
Number Market Best Original public info  public info  public info
Expt of players Private info Public info Noinfo prediction player IAM correction  correction  correction
la 10 2 draws for all 2 draws for all 100% 63.6% 70.0% 157.3% 61.94% 20.94% 24.53%
2a 9 2 draws for all 2 draws for all 100% 69.0% 64.7% 205.0%  56.2% 18.2% 32.6%
3a 11 3 draws for all 1 draws for all 100% 80.9% 61.9% 151.7%  43.0% 22.0% 40.1%
4a 10 3 draws forall 15 : Idraw 100% 53.3% 67.1%  59.6% 50.0% 44.1% 49.7%
S5a 10 3 draws for all 1 draws for all 100% 52.2% 76.9%  579%  66.4% 30.9% 50.4%

2 sets of public info

algorithm in Eq. (11). The accuracy of the results ob-
tained (Perfect Public Info Correction, or PPIC) are
almost as good as the performance of the original IAM
mechanism in the private information case. Further-
more, this method outperforms any other method by
a large margin. Although this is not an implementable
mechanism, since no one knows the true public infor-
mation, it does show the correctness of our behavioral
model as to how people mix private and public infor-
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,3'? 1]~ ®- publicinfo |\ -
£ o6 L l—m—originaram| J \ X
205 I\ I\
B 04 ‘f \ P :
o
: / \ BN
—
H 1 1

Fig. 3. Illustration of the double counting issue.

mation is correct. Therefore, there is validity in our
approach to teasing out this public information in the
GPIC.

Fig. 4 illustrates the efficacy of the GPIC. In this
figure, once again, the results from Experiment 3a, pe-
riod 9 are plotted. The GPIC mechanism eliminates the
false peak shown in Fig. 3. However, the correction is
not perfect. There is still some residual positive proba-
bility being placed on state H, the site of the false peak.

1
0.9 | g O nicience A
0.87- - public Info I\

> 0.7 +

£ g —m—GPIC h\\

8 0 ll—e- ppic A

2 A

g
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Fig. 4. Information aggregation with public information correction.
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When the PPIC is used to perform the correction, the
false peak is completely eliminated.

It is important to realize that while algorithms that
explicitly aggregate private and public information are
sensitive to the underlying information structures, mar-
kets are not. In all the experiments, including the ones
with only private information, the performance of the
market, measured as a percentage of the no information
KL, is fairly consistent, albeit somewhat inaccurate.

It is interesting to note that if we assume that every
individual receives the same public information, we
may not need to use everyone’s report to recover pub-
lic information, as described in the SPIC mechanism
By searching for pairs with the best performance, we
can achieve improvements over our GPIC. However,
these pairs were found ex post. That is, we calculate
the performance for every pair and then choose the
best. So, this extension shows merely the possibility
of using pairs (or larger subgroups) to recover pub-
lic information. Simple intuitive ad hoc rules, such as
choosing the pairs that are closest together in the KL
sense, can find good pairs in some experiments. We in-
clude the results from such an attempt in Tables 3 and 4
as the Special Public Information Correction, or SPIC.
The issue of identifying subgroups to recover either
public, or for that matter, private information is subject
of future research.

10. Conclusions

Accurate predictions are essential to individuals and
organizations. For large communities, information rel-
evant to forecasts is often dispersed across people, fre-
quently in different geographical areas. Examples in-
clude forecasting sales of a product, aggregating the
financial predictions of the venture capital community,
and public opinion polls. The methodology described
in this paper addresses many of the needs to aggre-
gate this information accurately and with the correct
incentives. One can take past predictive performance of
participants in information markets and create weight-
ing schemes that will help predict future events, even
if they are not the same event on which the perfor-
mance was measured. Furthermore, our two-stage ap-
proach can improve upon predictions by harnessing
distributed knowledge in a manner that alleviates prob-
lems with low levels of participation. The typical busi-
ness forecast cycle also lends itself to this approach.
Since forecasts cycles in organizations typically in-

volve the prediction of similar events on a periodic
basis, it is possible to set up an initial market to obtain
consistent measures of skills and risk attitudes and then
use the reporting mechanism to extract and aggregate
information in the future.

Obviously, this approach can also be extended to
work across organizations. One possible use is to aggre-
gate and create consensus estimates in the financial an-
alyst community. Another one is to provide the venture
capital community a way of forming predictions about
the viability of new ventures. The Hollywood Stock
Exchange has shown that information markets can be
used to predict movie ticket sales, which are tremen-
dously important to studio executives. In the same vein,
our methodology can be used with smaller groups of
movie screen test subjects to create forecasts before a
movieis released. One can imagine a world in which fo-
cus groups are no longer run solely on survey questions
and discussions, but where each member has a financial
stake in the information coming out of the focus group.

The rapid advances of information technologies
and the understanding of information economics have
opened up many new possibilities for applying mech-
anism design to gather and analyze information. This
paper discusses one such design and provides empir-
ical evidence about its validity. Although the results
we presented are particular to events with finite num-
ber of outcomes, they can be generalized to a contin-
uous state space. We are currently pursuing these ex-
tensions. Equally intriguing is the possibility of having
this mechanism in the context of the Web, thus enabling
information aggregation over large geographical areas,
perhaps asynchronously. This leads to issues of infor-
mation cascades and the optimal time to keep an ag-
gregation market open, which we will explore in turn.

Appendices

Appendix 1: Conditional probabilities and products
of reports

Lemma. If O; through O, are independent obser-
vations conditioned on a given state and the a priori
beliefs of the probabilities of the states are uniform

[T PGs10)
2 [l PGT10D

In other words, if N people observe independent infor-
mation about the likelihood of a given state and they

Then P(s| Oy, Os, ..., 0,) =



report those probabilities, one can find the probability
conditioned on all of their observations by multiplying
their reported probabilities and then normalizing the
results.

Proof: For any observation O,
P(s)P(O|s)
> P6HP(O|s")
Because O; through O, are independent observa-
tions conditioned on a given state, P(Oy, ..., O, |s) =

P(Oy]s),..., P(O,|s). So, applying Bayes’ Rule
again,

P(s]0) =

(Bayes’ Rule)

P(s)P(Oy, ..., O,
P10y ... 0) = PO )
>, Ps)P(O1, ..., 045
__ PGPO]), ..., P(Onls)
> P(HP(O|s), ..., P(O,]s)
Because the a priori beliefs of the probabilities of the
states are uniform, P(s) is a constant independent of s.

That is, if there are K possible states of the world,
P(s) =1/K forall s in K. So,

P(s)P(Oy,..., Oy |s)
P(s| Oy, ..., O0p) ¥ PGHPOLS), .. P(Os 15D

n N P(s)P(0; | s)

[Tiei PGs100) [li=1 s P60 99

_ P®)POO,..., O 1) [Tz 2oy PGNHP(O: 1)
[Tzt PGYP(O; 1) Xy PHP(OL ]S, ..., P(Onls")

_ POy, ..., 0, 19T, 3y P(s)P(O; |5)
Py~ TTiZ, P(Oil$) Yy P(sHP(O1]s)), ..., P(Oy, |s")

- [Ti2 Xy PGHPO: | s))
P(s)r—! ZJ, P(s")P(O1|s'), ..., P(O,|s")

We can now call this right hand side A, which is
only related to observations O; to O, and is therefore
independent of the state s. Now, we simply need to
rearrange and solve.

Rearranging, we have

P(s|0,...,0,) = x[ [ P(s10), with
i=1

_ [T, Xy PGHPO;1s)
P(sy=1>", P(s"P(O1|5), ..., P(O,|s)

We know that ), P(s'| Oy, ..., O,) = 1, so that

Y PE01.....00)=2) [[Pe'10n=1

s i=1

1

= A= _
2y [1izy P(s"100)
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Therefore,
n
P(s|0y.....00) =1 P(s 1 O)
i=1

1
- PG00

X ﬁ P(s| 0O))
i=1

_ I, PGs10)
2o [l PGs7100)

Appendix 2: Risk neutrality and log payoff functions
in the reporting game
Consider the following game:

¢ There are N possible states of the world.

® A player is given information about the state of the
world x € {1, 2, ..., N}. His belief on the probabil-
ities of these states of the world, conditioned on his
information, are P;,i € {1,2,..., N}.

¢ Theplayerisaskedtoreportavector{qi, q2, ..., gn}
with the constraint Y | ¢; = 1. Then the true state
x is revealed and he is paid f(gy).

Lemma. I[ftheplayerisriskneutraland f(y) = ¢ +
cylog(y), then q; = P; for all i. That is, players will
report their true beliefs on the probabilities.

Proof: The player’s maximization problem is:

N

Max » Pi(ci + ¢z log(g;))
{ai} # ;

i=

N
S.L. Zq, =1
i=1

This is equivalent to Max,, Z,N=1 P;log(gi) s.t
Zf\': . ¢i = 1 for all positive ¢; and c,.
The Langrangian for this problem is

N N
L= ; Pilog(gi) — A (Z;Qi - 1)

The first order condition is: ﬂf = Aforalli=>P; = Ag;
Summing over all i,1=AXA. Thus ¢;=P; for
all i. | |



60 Chen, Fine and Huberman

Appendix 3: The stage-two coordination game
Consider the following scenario:

® N possible states of the world.

® M players indexedbyi =1--- M.

® Player i is given information about the state of the
worldx € {1,2,..., N}.

— His beliefs as to the probabilities of the states of
the world conditioned on his information are P;,.

— Some of player i’s information is observed by at
least one other player j. Let Q;, be the probability
conditioned on i’s public information only (does
not consider his private information).

® Each player i is asked to report two probabil-
ity distributions p; = {pi1, pi2, ..., pin} and q; =
{gi1, gi2. - . ., gin} With the constraints Zivzl pis =1

and Zﬁvzl qis = L.
® The true state x is revealed and he is paid

i, qi,q-i | x).

Assumptions:

(a) Players are risk neutral utility maximizers, and

() f(pi.gi-q-i1x)=c1+ c2log(pi) + H(g(gi, q)),
10g(g;2)).

(c) g:q x g—>Nis any real function of two probabil-
ity distribution such that y = Max, g(x, y).

(d) H(x, y)isincreasing both in x and y.

(e) j is determined by: j = arg max,c(y...uy 8(qi, qi)-

Lemmal. {p; = P, q; = Q, foralli}’ isaBayesian
Nash equilibrium. That is, each player will report his
true conditional probability beliefs and the beliefs con-
ditioned solely on his public information.

Proof: Assuming all players but i are playing an
equilibrium strategy, player i’s maximization problem
is

N

}\[/}% Pi{c1 +calog(p;) + H(g(g;, Oi), log(Q;)}
M e—1

N N
S.t. lei.s‘ = 1 and Zlqis = 1
§= S=

There will be at least one other player j that plays
qj = Qi since at least one player other than i observes
the same public information and arrives at the same
distribution Q;.

The resultant Langrangian is

N
L =" Pifer +elog(py) + H(g(g;, 01), 1og(Q;))

s=1

N N
—A Zpis_l - K Zqis_l

i=1 i=1

The first order condition is 7= = 4 forall i=> P;, =
)‘pis-

Summing over both sides, we get 1 = A. Thus p;; =
P, for all i.

Recalling assumption (c), g; = Q; maximizes
g(gi, Q;). Since H is increasing in g, it also maximizes
H(g(gi» q),10g(gjx)). 0

Lemma2. Thereare multiple equilibria to this game.

The same proof applies to { p; = P; foralli; g;, = %
for all 7, x} or for that matter, any set of g; on which
players coordinate.

Notes

1. Notable exceptions: The Iowa Electronic Market (http://www.biz.
uidwa.edu/iem) has shown that political events can be accurately
predicted using markets when they are large enough. Their predic-
tions have consistently been more accurate than those resulting
from major news polls. Additionally, recent work by Pennock,
et al. (2000) show that the Hollywood Stock Exchange (HSX)
does a remarkable job of predicting box office revenues and Oscar
winners. However, both of these institutions have many traders,
while we focus on systems with small number of participants
(fewer than 15).

2. These securities have lottery-like properties, and they pay off one
unit contingent on the positive outcome of an event linked to that
security, and zero otherwise.

3. An experimental currency, exchanged for dollars at the end of the
experiment according to an announced exchange rate.

4. While different, independent events are used for the market stage
and the reporting stage, we found one period in both stages that
contained the exact same information. Thus, we can compare
results from these two periods in this figure.

5. Notice that p; and g; are probability distributions. Therefore, the
statement is equivalent to {p;, = Pj, for all i, x; gix = Qjy for all
i, x}.
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