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RESEARCH Open Access

Predicting the geographical distributions of
the macaque hosts and mosquito vectors
of Plasmodium knowlesi malaria in forested
and non-forested areas
Catherine L. Moyes1*, Freya M. Shearer1, Zhi Huang2, Antoinette Wiebe1, Harry S. Gibson2, Vincent Nijman3,

Jayasilan Mohd-Azlan4, Jedediah F. Brodie5,6, Suchinda Malaivijitnond7, Matthew Linkie8, Hiromitsu Samejima9,

Timothy G. O’Brien10, Colin R. Trainor11,12, Yuzuru Hamada13, Anthony J. Giordano14,15, Margaret F. Kinnaird10,

Iqbal R. F. Elyazar16, Marianne E. Sinka2, Indra Vythilingam17, Michael J. Bangs18,19, David M. Pigott20,

Daniel J. Weiss2, Nick Golding1 and Simon I. Hay20,21

Abstract

Background: Plasmodium knowlesi is a zoonotic pathogen, transmitted among macaques and to humans by

anopheline mosquitoes. Information on P. knowlesi malaria is lacking in most regions so the first step to understand the

geographical distribution of disease risk is to define the distributions of the reservoir and vector species.

Methods: We used macaque and mosquito species presence data, background data that captured sampling bias in

the presence data, a boosted regression tree model and environmental datasets, including annual data for land classes,

to predict the distributions of each vector and host species. We then compared the predicted distribution of each

species with cover of each land class.

Results: Fine-scale distribution maps were generated for three macaque host species (Macaca fascicularis, M. nemestrina

and M. leonina) and two mosquito vector complexes (the Dirus Complex and the Leucosphyrus Complex). The

Leucosphyrus Complex was predicted to occur in areas with disturbed, but not intact, forest cover (> 60 % tree cover)

whereas the Dirus Complex was predicted to occur in areas with 10–100 % tree cover as well as vegetation mosaics and

cropland. Of the macaque species, M. nemestrina was mainly predicted to occur in forested areas whereas M. fascicularis

was predicted to occur in vegetation mosaics, cropland, wetland and urban areas in addition to forested areas.

Conclusions: The predicted M. fascicularis distribution encompassed a wide range of habitats where humans are found.

This is of most significance in the northern part of its range where members of the Dirus Complex are the main

P. knowlesi vectors because these mosquitoes were also predicted to occur in a wider range of habitats. Our results

support the hypothesis that conversion of intact forest into disturbed forest (for example plantations or timber

concessions), or the creation of vegetation mosaics, will increase the probability that members of the Leucosphyrus

Complex occur at these locations, as well as bringing humans into these areas. An explicit analysis of disease risk itself

using infection data is required to explore this further. The species distributions generated here can now be included

in future analyses of P. knowlesi infection risk.
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Background
Approximately one million malaria cases were reported

by countries in the Indochinese Peninsula, Malay Peninsula

and insular southeast Asia in 2013, and the Plasmodium

knowlesi parasite was the most common cause of malaria

in Malaysia [1]. It is a zoonotic disease that can cause se-

vere symptoms and fatalities in humans [2], and is trans-

mitted among macaques and to humans by anopheline

mosquitoes [3]. Outside Malaysia, human cases have been

reported from a small number of dispersed locations [3, 4]

but the distribution of P. knowlesi in these countries is

largely unknown. There are far more reports of macaque

and mosquito populations, which provides an opportunity

to use these distributions to refine estimates of the geo-

graphical distribution of knowlesi malaria.

A World Health Organization consultation concluded

that this disease is a public health problem that is limited

to population groups that live, work in or visit forested

areas [5] and it is commonly cited as such [6–10]. No

study has, however, analysed the relationship between for-

est cover and the distributions of the primary P. knowlesi

host or vector species, across the ranges of these species,

limiting our ability to understand the risk factors for dis-

ease transmission.

Plasmodium knowlesi parasites regularly infect Macaca

fascicularis and M. nemestrina macaques [11, 12] and de-

tailed molecular studies have shown that recent human

infections in Malaysia match two distinct populations of

parasites found in M. nemestrina and M. fascicularis re-

spectively [8, 13]. Macaca leonina is a close relative of M.

nemestrina that has only recently been classified as a

separate species [14, 15]. The distribution of M. leonina

extends further north than either M. fascicularis or M.

nemestrina to areas of north Myanmar where P. knowlesi

cases have been found [16, 17]. For this reason, M. leonina

has been included with M. nemestrina on previous maps

of P. knowlesi risk that display overlapping ranges of the

species involved [3] and is considered a putative host

species.

There is good evidence that P. knowlesi is transmitted

to humans by a number of mosquito species from the

Leucosphyrus Group: Anopheles dirus [18] and An. cracens

[19] in the Dirus Complex, and An. latens [20], An. balaba-

censis [21] and An. introlatus [22] from the Leucosphyrus

Complex. Earlier studies did not identify mosquitoes to the

species level using molecular methods but they add to the

body of evidence that members of the Leucosphyrus Group

transmit this malaria from monkeys to humans [23]. In-

deed, no mosquito species outside the Leucosphyrus

Group has so far been implicated by studies conducted

in the field.

Previous approaches that superimposed potential host

and vector species range maps [3, 4] do not provide

insight into the variation in P. knowlesi infection risk

within these ranges and do not provide an evidence base

for the potential link between forest cover and disease

risk. We used species distribution models to investigate

the distributions of each of the known and putative

hosts and vectors of P. knowlesi parasites, and to explore

their relationships with forest cover, forest use, and other

rarely considered but potentially influential environmental

variables. Our aim was to produce predicted species distri-

butions, based on empirical data, that could be used in

future studies, combined with what data there is on P.

knowlesi infections at different locations, to predict geo-

graphical variation in disease risk in future studies.

Methods

Summary

We used a boosted regression tree (BRT) species distri-

bution model, constructed in R, to examine the relation-

ship between the occurrence of each macaque and

mosquito species and 19 environmental covariates, and

to predict the relative probability of occurrence for each

species at every square (pixel) in a 5 × 5 km grid. The

data used by the model were (i) occurrence data points

for each species; (ii) survey location datasets that de-

scribed the sampling bias in the occurrence data; and

(iii) a suite of environmental variables. During the study

period (1990 to 2014), deforestation has led to dramatic

changes in forest cover so we constructed annual data

layers for each land cover class. Finally, the model out-

puts on the islands of the archipelago were masked by a

range defined for each species.

Species occurrence data collation

For each species investigated, we undertook a wide litera-

ture search for reports of occurrence and then applied

inclusion criteria to ensure the data quality met our mini-

mum standards.

For each macaque species, we conducted a Web of

Science bibliography search using the species name

(including common names: long tailed macaque, crab

eating macaque, kra macaque, pig tailed macaque). We

searched the resulting articles for (i) reports of the species

found at specific locations and (ii) citations for other

sources of occurrence data. We also wrote to the study

authors to request unpublished datasets. Finally, we asked

conservation organisations working in the region for their

unpublished data.

Inclusion criteria for the macaque occurrence data were

(i) reports from a specified date on or after 1 January 1990

and ideally on or after 1 January 1999 to match, as closely

as possible, the year ranges for the covariate data; (ii) re-

ports from a specific location representing an area not

greater than 5 × 5 km; (iii) individual species identified; and

(iv) reports of free-living macaques not captive animals.

Aggregated data from multiple time periods or multiple
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sites were disaggregated to single time periods and sites.

Duplicate records of the same species found at the same

site within the same year were removed, with a single rec-

ord for that year retained, in order to mitigate against over-

sampling at specific sites. An annual time period was

chosen to match the land cover data, which were generated

for every year.

Coordinates provided by data contributors were con-

verted into decimal degrees. Sites without coordinates

from the data provider were assigned coordinates by

identifying the site in at least two online gazetteers

(GeoNames, Google Earth, Google Maps, iTouchMap

and/or OpenStreetMap).

The mosquito data collation mirrored the process for

macaque data collation above and has been reported

previously [24]. Low volumes of data were available for

most species so we also collated data for the relevant

species complexes (the Leucosphyrus Complex and the

Dirus Complex). The previous mosquito data collec-

tion was extended to include reports published up to

November 2015.

In total, we collated 1,116 occurrence records between

1999 and 2014 for M. fascicularis and 1,025 for M.

nemestrina. The inclusion criteria that locations should

not be greater than 5 × 5 km was relaxed for M. leonina

and we collated 450 records from 1992 to 2014, of which

33 were linked to locations representing areas > 25 km2.

The borders of each area > 25 km2 were defined in

ArcMap.

We collated 545 records for the Dirus Complex (in-

cluding 107 for An. dirus and 19 for An. cracens) and

49 for the Leucosphyrus Complex (including 21 for An.

balabacensis, 11 for An. latens, and 9 for An. introlatus)

from 1982 to 2013.

Collectively the surveys used did not sample a repre-

sentative set of environments at the same frequency that

each environment occurs within the study area, for ex-

ample camera traps used by conservationists are rarely

set up in urban areas or impenetrable jungle. Our aim

when collating the background datasets was to account

for as much of the sampling bias in the presence data as

possible by selecting datasets that used the same methods

(e.g. camera traps and direct observations from transect

walks) to record similar species (primates and other mam-

mals). The surveys that provided presence data for the

macaque and anopheline species frequently reported more

than one species and met our criteria for background data

of using the same methods to record similar species.

We obtained the locations of all mammal surveys held by

the Global Biodiversity Information Facility (www.gbif.org)

that were conducted on a specified date from 1990 on-

wards, at a specified location and within our area of study.

We also used the records from the other two macaque spe-

cies to generate additional background data for the species

being modelled. Each background dataset was restricted to

the range (plus a 300 km buffer to allow for uncertainty in

the ranges) of the species being modelled.

To account for the sampling bias in the anopheline data-

sets, we used a database of all published malaria vector sur-

veys held by the Malaria Atlas Project (www.map.ox.ac.uk/

explorer). Each background dataset was restricted to the

range (plus a 300 km buffer to allow for uncertainty in the

ranges) of the species, complex or group being modelled.

Table 1 provides the total number of presence and

background data points available for each macaque and

mosquito species and complex. The full distributions of

these datasets, in space and time, are shown in Additional

file 1.

Covariate data surface construction

Nineteen environmental and human population variables

were tested in the species distribution models and are

summarised in Additional file 2. The process of con-

structing environmental data layers from MODIS satel-

lite data has been described previously [25] and was

extended from Africa to the rest of the world, covering

the period 2000 to 2014. In addition, to include season-

ality in temperature and moisture/vegetation indices, the

standard deviation of the monthly values at each loca-

tion was calculated. Of the 19 land cover classes, six that

were not relevant to the study area were excluded. For-

est data layers were constructed separately (see below)

and the urban class was excluded because we used human

population density data, leaving a total of seven classes

(open shrubland, woody savannah, savannah, grassland,

permanent wetlands, cropland, and cropland-natural vege-

tation mosaic).

Annual intact and disturbed forest data surface

construction

Total forest cover was defined annually from 2001 to

2012 by combining the five forest classes available in the

International Geosphere and Biosphere Programme (IGBP)

land cover dataset produced using MODIS satellite im-

agery (MCD12Q1) [26]. We divided the aggregated forest

cover data into two sub-classes defined previously by forest

Table 1 Number of data points used in each model

No. presence points No. background points

M. fascicularis 1, 116 2, 267

M. nemestrina 1, 025 608

M. leonina 450 1, 041

An dirus 107 447

Dirus Complex 545 881

Leuco. Complex 49 913

Leuco. Group 615 1, 802
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landscape researchers [27]; intact forest and disturbed

forest. The Intact Forest Landscape (IFL) map for the year

2000 is a publicly available vector dataset encompassing

areas defined as ‘an unbroken expanse of forest showing

no signs of human activity and having an area of at least

500 km2
’ [27], which we converted to a 500 m spatial reso-

lution raster dataset. The IGBP forest cover data for 2001

was divided between the two sub-classes using the IFL

dataset. The IGBP forest cover data for subsequent years

was then used to reclassify any cells in the preceding year

that had been considered forest (intact or disturbed) to

non-forest, if the corresponding IGBP cell showed a transi-

tion from forested to non-forested land cover from one

year to the next. If the IGBP data showed a transition from

non-forest to forest, the cell was defined as disturbed forest

in our data layers based on the assumption that new forest

regrowth would not meet the criteria for intact forest

within this time period. The annual products were pro-

duced sequentially, with results from the preceding year

used to create those for the subsequent year, thus pro-

ducing output that tracked the decline in forest cover

and any areas of regrowth. Once produced, the 500 m

categorical results for each year were converted to frac-

tional (i.e. continuous) products at a 5 km resolution, with

values ranging from 0.0 (no forest cover) to 1.0 (complete

forest cover) for the proportion of each 5 × 5 km classified

as each forest type. Further details on the construction

and validation of the forest covariate data surfaces are pro-

vided in Additional file 2.

Model

The boosted regression trees method used here is a

variant of the model used in previous analyses of malaria

vector species [24] and diseases such as dengue [28].

Boosted regression tree modelling combines both regres-

sion trees (which build a set of decision rules on the pre-

dictor variables by portioning the data into successively

smaller groups with binary splits) and boosting (which

selects sets of trees that minimise the loss of function)

to best capture the variables that define the distribution

of the input data [29–31]. The core setup used in the

current study has been described previously [28]. The

changes made to the method for this study allowed

temporal changes in land cover to be incorporated and

improved the way absence data and sampling bias were

handled. Our methods for handling polygon data also

varied from those used previously.

The previous approaches [24, 28] used synoptic covariate

values that covered a period of several years. In this study,

we incorporated temporal covariate data for the land cover

classes so that the year of occurrence was taken into ac-

count. We were able to construct covariate data layers for

each year from 2001 to 2012 but the species data available

for this period did not cover all of the geographical regions

for which we had data. To test the impact of using species

data that could not be matched to the corresponding an-

nual land cover layers we constructed two test datasets for

M. leonina and the Dirus Complex for the time period

2001 to 2012 only. We ran the model as described below

twice on each dataset; once linking the species data to an-

nual covariate layers and once linking the species data to

the 2012 covariate layers only. The results provided in

Additional file 3 show that the outputs from the two model

versions were similar but the version using annual covari-

ates performed slightly better. We therefore used the full

dataset for the final model runs, including data outside the

2001 to 2012 year range, in order to maximise the spread

of species data used, and we linked species data from 2001

to 2012 to covariate values for the relevant year in order to

improve the predictions where possible. For all occurrences

prior to 2001, covariate values for 2001 were used, and for

any data collected after 2012, covariate values for 2012

were used. Model predictions were made to the most con-

temporary covariate data available.

The boosted regression trees method requires both

presence and absence data. Pseudo-absence data, also

known as background data, are generated when true ab-

sence data is not available. The vast majority of species

occurrence datasets are subject to spatial bias, for ex-

ample, areas near roads and paths may be more likely to

be surveyed than other sites. If unaccounted for, this sur-

vey bias can translate into environmental bias in the fitted

model. One approach for coping with biased occurrence

data is to select background data that reflect the same

survey bias as the occurrence data. The resulting model

should identify suitable environments for the species

within the sampled space, rather than just areas that are

more heavily sampled. This approach does not eliminate

sampling bias issues entirely but improved model per-

formance has been demonstrated when compared to the

use of randomly selected background data [32]. For the

work presented here, mammal and malaria vector occur-

rence records from within the study area were used as

pseudo-absence data for the macaque and vector models,

respectively. These background datasets were chosen be-

cause the sampling methods were the same as those used

for the target species.

For each species, we fitted 120 submodels each trained

to a randomly selected bootstrap of the presence/back-

ground dataset. Each bootstrap contained a minimum of

five presence and five background points. To account

for uncertainty in the geographic location of occurrences

linked to polygon locations > 25 km2 in the M. leonina

dataset, one 5 × 5 km pixel within each polygon was

randomly selected for each bootstrap. Each of the sub-

models generated a predicted value for the relative

probability of species occurrence at every 5 × 5 km pixel

and together the submodels generated a distribution of

Moyes et al. Parasites & Vectors  (2016) 9:242 Page 4 of 12

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



predicted values for every pixel. We generated maps dis-

playing the mean, 0.025 quantile and 0.975 quantile

values from these distributions for each pixel.

To evaluate the ensemble’s predictive performance, we

calculated, for each submodel, the area under the receiver

operator curve (AUC), i.e. the area under a plot of the true

positive rate versus the false positive rate, reflecting the

ability to discriminate between presence and background

records, whilst marginalising the arbitrary choice of a clas-

sification threshold [33]. For each submodel, we reported

the mean AUC under fivefold cross-validation using a

pairwise distance sampling procedure to remove spatial

sorting bias in the model validation [34]. We then com-

bined these submodel validation statistics to obtain an

overall estimate of predictive performance in the ensem-

ble, and uncertainty in this estimate.

There were insufficient presence data for An. cracens,

An. balabacensis, An. latens, or An. introlatus to model

these species individually so members of the Dirus and

Leucosphyrus Complexes were modelled collectively to

predict the relative probability of one or more of the

species within a complex occurring.

Covariate density plots

To illustrate the relationships between the coverage of

each land cover class and predicted species occurrence,

we plotted the relative density of pixels at each percentage

coverage for all pixels where the relative probability of

species occurrence was greater than 0.75. This threshold

was selected in order to identify pixels with a high prob-

ability of occurrence rather than simply those with a rela-

tive probability greater than 50 %. The density values were

calculated from the ratio of the number of pixels where

the relative probability of species occurrence was greater

than 0.75 to the total number of pixels in the study area.

Masks

The model outputs for each species were restricted to

the islands within its known range, using the range maps

developed for this project. For the macaque species,

range maps were obtained from the International Union

for the Conservation of Nature [35]. These ranges did

not incorporate all new data or introduced populations.

We therefore used our occurrence dataset to adjust the

range for each species by either dragging the range out

to encompass new reports next to the existing range or

by identifying the borders of any confirmed population

that was not contiguous with the existing range. For this

exercise, data did not need to meet the criteria of repre-

senting an area < 25 km2. For the mosquito species/

complexes, we used range maps previously published by

three groups [24, 36, 37] and updated these in the same

way as the macaque ranges. In places where the three

ranges differed for a particular species, we selected the

broadest of the available options.

Results
Macaque and mosquito distributions

The mean model outputs, masked out on islands out-

side the species range, were used to generate predicted

species distribution maps (Figs. 1 and 2). The AUC

values ± standard error for the predicted macaques dis-

tributions were 0.858 ± 0.001 for the M. fascicularis

map, 0.821 ± 0.003 for the M. nemestrina map and 0.830 ±

0.002 for the M. leonina map. The AUC values ± standard

error for the predicted mosquito distributions were 0.860 ±

0.005 for the An. dirus map, 0.885 ± 0.002 for the Dirus

Complex map, 0.842 ± 0.009 for the Leucophyrus Complex

map and 0.883 ± 0.001 for the Leucophyrus Group map.

The Leucosphyrus Complex predictions should be inter-

preted with caution because the data volume for this

Complex was low and the data was sparse. The model did

not predict many areas with a high probability of occur-

rence outside the current macaque ranges, indicating that

each species has largely realised its predicted niche,

excluding islands that have not yet been populated

(Fig. 1).

The 0.025 and 0.975 quantile from the model ensemble,

and the top predictors for each species together with

values for their relative influence on the model, are pro-

vided in Additional files 4 and 5.

Density plots illustrating the ratio of proportional land

cover in areas with high predicted probability of occur-

rence (predictions of 0.75 and above) to proportional

land cover in all areas are given in Additional file 6. If all

land cover proportions (for example high, low and no

coverage of grassland) were equally likely to be suitable

(a null distribution), each of these density plots would be

flat. High or low regions of the density plots therefore

indicate proportional land cover values which are pre-

dicted to be more or less suitable for occurrence of the

species in question. These plots should not be inter-

preted as providing robust evidence for any specific rela-

tionship between each land cover class and species

presence, in part because each plot is influenced by the

relationships between species occurrence and all of the

other covariates that went into the model for the locations

where we had data. The purpose of these plots is solely to

provide an extra visualisation of the predicted species dis-

tribution results and supplement the information that can

be visualised directly on the maps in Figs. 1 and 2.

Data availability

All data used and generated by the project are publicly

available. The vector occurrence data used in our models

are available from http://www.map.ox.ac.uk/explorer/#Enti

tyPlace:Anopheline. The macaque occurrence datasets used
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in each model are provided in Additional files 7, 8 and 9.

The GeoTIFF files containing mean model outputs as dis-

played in the distribution maps are provided in Additional

files 10, 11, 12, 13, 14, 15 and 16. The model code gener-

ated is available on an open source basis from https://

github.com/SEEG-Oxford/seegSDM.

Discussion
Forest cover is shrinking in southeast Asia and the loss

of natural or intact forest is in part due to conversion to

degraded or logged areas and plantations (included in

the disturbed forest category in this study) [38]. Further-

more, this trend is expected to continue [39]. This study

is the first to predict the full distributions of knowlesi

malaria host and vector species by modelling these spe-

cies across their ranges using environmental data sur-

faces that track changes in land cover. The predicted

distributions generated are not solely restricted to for-

ested areas and any disease risk in non-forested areas

has the potential to dramatically increase estimates of

the population at potential risk of knowlesi malaria

within this densely populated region [5].

The species distributions were generated using envir-

onmental covariates but the relationship between species

occurrence and these covariates may vary in time and

space. One advantage of the BRT approach is its ability

to fit a single overall model to multiple distinct patterns

within the data. This flexible nonparametric statistical

model is better able to simultaneously model multiple

environmental relationships than more traditional ap-

proaches [29]. The cost of this flexibility and focus on

predictive power is that it complicates inference, thus, it

is not possible to identify causal relationships between

the environmental covariates and the species modelled.

For the vector species, data scarcity meant we had to

pool data from multiple species and again BRT’s ability

to encompass different relationships within a pooled

dataset helps to overcome some of the issues of model-

ling multiple species together. The model is still limited

as it is only able to model relationships for the combina-

tions of covariates found within the field data provided

to the model.

The model is also limited by the set of covariates used.

These do not capture all potential sources of variation

that may influence the distributions of these species in

some or all parts of their ranges. For example, forest

edge effects were not incorporated in our study. Previ-

ously the booted macaque, M. ochreata, has been shown

to be more abundant near forest edges at two sites in

Sulawesi [40], however, a study of tiger prey, including

Fig. 1 Ranges and predicted distributions of the macaque species. The three maps on the left show the current range of each macaque species

and the three maps on the right show the predicted relative probability of occurrence at every 5 × 5 km pixel within the study area on a scale of

0 to 1.0
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M. nemestrina, on Sumatra found that edge effects asso-

ciated with national park boundaries were not significant

once human population density was considered [41].

The potential predictors provided to the model are

also limited by the fact that each land class encompasses

variation in that habitat; most noticeably the disturbed

forest class includes natural forest with evidence of human

disturbance, or less than 500 km2 in area, and established

palm and rubber plantations. Our aim was to model each

species across its entire range using region-wide covariate

datasets rather than more detailed but locally-restricted

data. Furthermore, our approach did not incorporate fac-

tors that may be important at finer resolutions than the

5 km used here [42]. Nevertheless, the models performed

reasonably well using the covariate data that we con-

structed for the region as a whole, at a 5 km resolution,

and gave AUC values of 0.82 and above. The answers to

more detailed questions about the influence of individual

factors on host and vector populations require more

detailed studies. The distributions presented here provide

a good estimate of the full distributions of the species im-

portant to P. knowlesi transmission across their ranges.

Earlier studies of M. nemestrina were more detailed

but also more geographically restricted. In Indonesian

Borneo, M. nemestrina was found in intact and partially

degraded or burned forest but was absent from completely

deforested areas [43]. On Sumatra, M. nemestrina densities

were higher in areas of low human population density [41]

and this species was less common in plantations compared

to M. fascicularis, although it was found [44]. Macaca

nemestrina raids rice crops in Sumatra, most frequently on

farms close to the forest edge [45]. Of the macaque species

studied here, our model predicted a high relative probability

of M. nemestrina presence in the smallest number of

land cover classes, and rarely predicted occurrence in

non-forested areas. This finding and those of other

studies support the hypothesis that this species will be

negatively impacted by conversion of forested areas to

Fig. 2 Ranges and predicted distributions of the mosquito species, complexes and group. The four maps on the left show the current range of each

mosquito species, complex or group, and the four maps on the right show the predicted relative probability of occurrence at every 5 × 5 km pixel

within the study area on a scale of 0 to 1.0
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non-forest habitats but conversion of intact forest to

disturbed forest will allow populations to remain. The

latter conversion will, however, bring humans into the

vicinity of these macaque populations where they had

previously been separated.

Our model predicted that the M. fascicularis and M.

leonina distributions encompass a wider range of habi-

tats than the M. nemestrina distribution, and this is par-

ticularly apparent for the M. fascicularis distribution. A

number of studies have measured the habitat preferences

of M. fascicularis within restricted parts of its range but

none have considered the full distribution of this species.

In Malaysian Borneo, studies found that M. fascicularis

populations were initially negatively impacted by logging

activities but their local abundance was higher in areas

that had been logged ten years previously than in

unlogged forest [46]. In Vietnam, M. fascicularis was

found in public parks and temples as well as mangroves,

river banks and primary, disturbed and secondary forests

[47]. On Sumatra, M. fascicularis was found in plantations

more commonly than M. nemestrina [44]. In Thailand, M.

fascicularis habitats have changed from natural forests to

temples and parks over the last 30 years [48] and groups

are found in suburban Bangkok, the Thai capital [49]. This

species will also freely enter suburban areas of Selangor

State, Malaysia [50]. In Singapore, M. fascicularis is found

at forest perimeters and in forest fragments, where these

macaques are habituated to human presence and will

leave forest areas for urban habitats [51]. Our results and

these previous findings strongly suggest that M. fascicu-

laris populations are able to occupy a wide range of

habitats. Importantly, the distribution of this species

encompasses many locations close to human habitation

(urban areas) or activity (disturbed forests, orchards,

croplands, etc).

There are fewer studies of M. leonina habitat prefer-

ences. In recent surveys, M. leonina monkeys were found

in a range of habitats in Laos from river areas to inter-

mediate plains to dry hilly forest [52]. When the habitat

preference of this species was measured within a Laos re-

serve, it was associated with proximity to village areas

(average 6 km) as well as with evergreen and deciduous

forest cover, lower elevations and higher temperatures

[53]. Macaca leonina has also been found to move be-

tween primary and secondary forest in a Thai reserve [54].

The evidence available, and our own results, suggests that

this species occurs in deforested areas where human ac-

tivity occurs although, like M. nemestrina, this species

was not associated with urban areas.

The question of whether these latter two macaque

species occur in northern Myanmar is of particular rele-

vance because human cases of P. knowlesi malaria have

been found in people living in Shan State near the

border with Yunnan Province, China [16, 17]. If the

current ranges used here are accurate then, of the species

we mapped for this study, only M. leonina is present in

northeast Myanmar. Records of macaques in Myanmar

are, however, incomplete and may be out of date [55]

although a recent survey close to the Yunnan border in

Kachin State (to the north of Shan State) found M. leonina

monkeys but not M. fascicularis [56]. The M. fascicularis

range extends at least as far north as central Myanmar but

our results predict that the habitats further northeast are

unsuitable for this species (Fig. 1). Further surveys of this

region are necessary to confirm the full list of species

present and whether they are infected with P. knowlesi.

Sulawesi is not in the natural range of the three ma-

caque species studied here although related species are

found on the island [57]. Macaca fascicularis and M.

nemestrina monkeys are kept as pets on Sulawesi [58]

and there is an unsubstantiated report of P. knowlesi

infecting a macaque here [59]. For these reasons we have

shown the model predictions for these species on Sulawesi

but this area of the map should be interpreted as showing

suitable environments for these species should they estab-

lish feral populations.

The Leucosphyrus Complex of mosquitoes was pre-

dicted to occur in areas with high coverage of disturbed

forest but lacking intact forest cover, although the sparse

data and low data volumes for this Complex mean these

predictions need to be interpreted with caution. This

Complex is responsible for P. knowlesi transmission in

the region where knowlesi malaria is believed to be most

common, Malaysian Borneo, and where deforestation

(the loss of intact forest) is occurring [21, 60]. Notifica-

tions of knowlesi malaria cases increased in Malaysian

Borneo between 1992 and 2011 [61] and our results in-

dicate the conversion of intact forest to disturbed forest,

and the resulting impact on the probability of encoun-

tering members of the Leucosphyrus Complex, could be

a factor here. One study in the northern part of Sabah in

Malaysian Borneo recently found an association between

two forest variables, forest loss and total cover within

2 km of a village, and the estimated incidence of knowlesi

malaria at the village level in the two districts studied but

they did not distinguish intact and disturbed forest [62].

The small number of previous studies of the Leucosphyrus

Complex all focussed on measuring the characteristics of

relevance to vectorial capacity rather than relationships

with environmental factors. These studies were conducted

in restricted geographical areas and did not explicitly

measure environmental variables, although sites were

classified into types. Anopheles balabacensis in an area of

Sabah was more abundant in a village site than the forest

site and farming site surveyed, but P. knowlesi infection

rates were lowest in the village [21]. Anopheles latens

human biting rates in Sarawak, Malaysia were higher at

a fruit tree farm on the forest fringe and a forest site
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compared to a longhouse site, and P. knowlesi sporozo-

ite infected individuals were only found at the fruit tree

and forest sites [60]. Ours is the first study to investi-

gate the distribution of the Leucosphyrus Complex,

generally considered to be a forest species [24, 36, 37]

and to have predicted occurrence in areas with dis-

turbed forest cover.

Two previous studies have considered the relation-

ships between the Dirus Complex and environmental

factors. The research presented here builds on an earlier

project that predicted distributions for all primary hu-

man malaria vectors in the region using an older version

of the field dataset used here, and similar methods [24].

In the current study we developed the modelling tech-

niques further to handle sampling bias, we extended the

range of covariates tested and we incorporated data on

temporal changes to land cover since 2001. We found

similar relationships with environmental factors to the

earlier work and observed a closer match to the known

range of the Dirus Complex. An independent study used

a different approach to model both the potential niche

and the current distribution or realised niche of this

Complex [63]. They used temperature and rainfall to de-

fine the fundamental niche, and land cover (specifically

forest cover in 2005) to model the realised niche or

current distribution. Our results did not predict Dirus

Complex occurrence exclusively in forested areas but

the outputs from the two studies, our predicted distribu-

tion and their realised niche map, show similar results.

More detailed but geographically restricted studies have

considered differences in abundance in different habitat

types at a small number of sites but have not explicitly

analysed the relationships with environmental variables.

The An. dirus biting and infection rates did not differ

significantly between a forest site and a forest fringe site

in Khanh Hoa Province, Vietnam [64], whereas An. cracens

was more abundant and had a higher human biting rate at

an orchard site compared to a forest edge and village site

in Pahang State, Malaysia [19]. Our study took data from a

much larger number of sites and used quantified environ-

mental variables, but is restricted to species occurrence.

For all potential vector species, and particularly the

members of the Leucosphyrus Complex implicated as P.

knowlesi vectors, more data is needed to define their dis-

tributions with confidence. Large-scale systematic sam-

pling of a range of habitats across the region is urgently

needed to address this important gap in our understanding

of P. knowlesi infection risk.

Conclusions

Together our results for the macaque hosts and the mos-

quito vectors of P. knowlesi malaria suggest that the rela-

tive probability of host macaque species and members of

the Leucosphyrus Complex occurring in disturbed forest

areas, for example, plantations or timber concessions, and

vegetation mosaics, will mean these species can co-exist

close to human activity. This finding is of most signifi-

cance in the southern part of our study area (Malaysia,

Indonesia, Singapore, Brunei and part of the Philippines)

where members of this Complex are the main P. knowlesi

vectors. The predicted distribution of the long-tailed ma-

caque, M. fascicularis, encompassed many more types of

human-occupied habitat. This is of most significance in the

northern part of its range and our study area (Myanmar,

Thailand, Laos, Cambodia and Vietnam) because members

of the Dirus Complex are the main P. knowlesi vectors here

and our model predicts occurrence of these species in

areas of open canopy cover (savannah), vegetation mosaics

and cropland as well as closed canopy forest.

Characterising the distribution of all component species

is an important first step in understanding the distribution

of a vector-borne, zoonotic disease when human infection

data is lacking. The maps generated here will help identify

areas where there may be a P. knowlesi disease risk but

further information is needed to extrapolate directly from

these maps to an index of risk [42]. The next stage of this

work, therefore, needs to consider the relationship be-

tween P. knowlesi infections and a range of risk factors

including the fine scale species distributions presented

here as well as geographical, environmental and socioeco-

nomic factors. Using a similar modelling framework, the

P. knowlesi reservoir and vector maps can be used as ex-

planatory variables to test their ability to predict spatial

variation in risk of human P. knowlesi infections in areas

where human disease data is available. The resulting

model could then be used to predict human disease risk

in areas where both reservoirs and competent vectors are

likely to be present but human disease data is scarce or

absent. Only then can we consider estimating the popula-

tion at risk across the region.
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Additional file 1: Distributions of the model input data in space and

time. The spatial distributions of the species occurrence data and

background data are shown on a series of maps and their temporal

distributions are shown by a series of histograms. (DOCX 1584 kb)

Additional file 2: Environmental variables used in the species distribution

models and construction of the forest cover layers. Details of the covariate

data used are provided together with their source details. The construction

and validation of the intact and disturbed forest layers is described in detail.

(DOCX 27 kb)

Additional file 3: Investigating the impact of using annual land cover data.

The model was run using identical datasets and either 1) year-matched land

cover data or 2) 2012 land cover data. The resulting distributions are shown

with the AUC ± standard error, and the top predictors with their relative

influences. A map showing the difference between the two resulting

distributions is also provided. (DOCX 2977 kb)

Additional file 4: The 0.025 and 0.975 quantile model predictions, and

the top predictors, for each macaque species. For each macaque species

the 0.025 and 0.975 quantile model outputs, masked out on islands outside
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each species range, are provided with the mean AUC (± standard error) and

the relative influence of the top predictors for that species. (DOCX 1183 kb)

Additional file 5: The 0.025 and 0.975 quantile model predictions, and

the top predictors, for each mosquito model. For each mosquito species,

complex or group, the 0.025 and 0.975 quantile model outputs, masked

out on islands outside each species or complex range, are provided with

the mean AUC (± standard error) and the relative influence of the top

predictors for that model. (DOCX 1331 kb)

Additional file 6: Proportional land cover in areas with high predicted

probability of species occurrence. Plots showing the relative density of pixels

at each percentage land class coverage for all pixels where the probability of

species occurrence was greater than 0.75, for each species. (DOCX 795 kb)

Additional file 7: Macaca fascicularis data. Each record of M. fascicularis

occurrence is provided with a location and date. Duplicate records within

a calendar year have been removed. Locations are classed as points

(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 322 kb)

Additional file 8: Macaca nemestrina data. Each record of M. nemestrina

occurrence is provided with a location and date. Duplicate records within

a calendar year have been removed. Locations are classed as points

(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 130 kb)

Additional file 9: Macaca leonina data. Each record of M. leonina

occurrence is provided with a location and date. Duplicate records within

a calendar year have been removed. Locations are classed as points

(defined as <25 km2) or polygons (defined as >25 km2). (XLSX 63 kb)

Additional file 10: Relative probability of Macaca fascicularis occurrence.

A GeoTIFF raster data layer containing a predicted value (the mean

model output) for every 5×5km pixel within SE Asia excluding islands

outside the species range. This file can be opened in GIS software (e.g.

QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4459 kb)

Additional file 11: Relative probability of Macaca nemestrina occurrence.

A GeoTIFF raster data layer containing a predicted value (the mean model

output) for every 5×5km pixel within SE Asia excluding islands outside the

species range. This file can be opened in GIS software (e.g. QGIS, ArcMap,

etc) or using the ‘raster’ R package. (TIF 4090 kb)

Additional file 12: Relative probability of Macaca leonina occurrence. A

GeoTIFF raster data layer containing a predicted value (the mean model

output) for every 5×5km pixel within SE Asia excluding islands outside

the species range. This file can be opened in GIS software (e.g. QGIS,

ArcMap, etc) or using the ‘raster’ R package. (TIF 3459 kb)

Additional file 13: Relative probability of Anopheles dirus occurrence. A

GeoTIFF raster data layer containing a predicted value (the mean model

output) for every 5×5km pixel within SE Asia excluding islands outside

the species range. This file can be opened in GIS software (e.g. QGIS,

ArcMap, etc) or using the ‘raster’ R package. (TIF 3461 kb)

Additional file 14: Relative probability of a member of the Dirus Complex

occurring. A GeoTIFF raster data layer containing a predicted value (the mean

model output) for every 5×5km pixel within SE Asia excluding islands outside

the complex range. This file can be opened in GIS software (e.g. QGIS, ArcMap,

etc) or using the ‘raster’ R package. (TIF 3770 kb)

Additional file 15: Relative probability of a member of the Leucosphyrus

Complex occurring. A GeoTIFF raster data layer containing a predicted value

(the mean model output) for every 5×5km pixel within SE Asia excluding

islands outside the complex range. This file can be opened in GIS software

(e.g. QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4006 kb)

Additional file 16: Relative probability of a member of the Leucosphyrus

Group occurring. A GeoTIFF raster data layer containing a predicted value

(the mean model output) for every 5×5km pixel within SE Asia excluding

islands outside the group range. This file can be opened in GIS software

(e.g. QGIS, ArcMap, etc) or using the ‘raster’ R package. (TIF 4524 kb)
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