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ARTICLE INFO ABSTRACT

Keywords: The outbreak of COVID-19 Coronavirus, namely SARS-CoV-2, has created a calamitous situation
COVID-19; SARS-CoV-2; Coronavirus; throughout the world. The cumulative incidence of COVID-19 is rapidly increasing day by day.
Machine Learning; Prediction; Cloud Machine Learning (ML) and Cloud Computing can be deployed very effectively to track the
Computing disease, predict growth of the epidemic and design strategies and policy to manage its spread.

This study applies an improved mathematical model to analyse and predict the growth of the
epidemic. An ML-based improved model has been applied to predict the potential threat of
COVID-19 in countries worldwide. We show that using iterative weighting for fitting Generalized
Inverse Weibull distribution, a better fit can be obtained to develop a prediction framework. This
has been deployed on a cloud computing platform for more accurate and real-time prediction of
the growth behavior of the epidemic. A data driven approach with higher accuracy as here can be
very useful for a proactive response from the government and citizens. Finally, we propose a set
of research opportunities and setup grounds for further practical applications.

1. Introduction

The novel Coronavirus disease (COVID-19) was first reported on 31 December 2019 in the Wuhan, Hubei Province,
China. It started spreading rapidly across the world [1]. The cumulative incidence of the causitive virus (SARS-CoV-2)
is rapidly increasing and has affected 196 countries and territories with USA, Spain, Italy, U.K. and France being the
most affected [2]. World Health Organization (WHO) has declared the coronavirus outbreak a pandemic, while the
virus continues to spread [3]. As on 4 May 2020, a total of 3,581,884 confirmed positive cases have been reported
leading to 248,558 deaths [2]. The major difference between the pandemic caused by CoV-2 and related viruses, like
Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS), is the ability of CoV-2
to spread rapidly through human contact and leave nearly 20% infected subjects as symptom-less carriers [4]. Moreover,
various studies reported that the disease caused by CoV-2 is more dangerous for people with weak immune system. The
elderly people and patients with life threatening diseases like cancer, diabetes, neurological conditions, coronary heart
disease and HIV/AIDS are more vulnerable to severe effects of COVID-19 [5]. In the absence of any curative drug, the
only solution is to slow down the spread by exercising “social distancing” to block the chain of spread of the virus. This
behavior of CoV-2 requires developing robust mathematical basis for tracking its spread and automation of the tracking
tools for on line dynamic decision making.

There is a need for innovative solutions to develop, manage and analyse big data on the growing network of infected
subjects, patient details, their community movements, and integrate with clinical trials and, pharmaceutical, genomic
and public health data [6]. Multiple sources of data including, text messages, online communications, social media and
web articles can be very helpful in analyzing the growth of infection with community behaviour . Wrapping this data
with Machine Learning (ML) and Artificial Intelligence (Al), researchers can forecast where and when, the disease
is likely to spread, and notify those regions to match the required arrangements. Travel history of infected subjects
can be tracked automatically, to study epidemiological correlations with the spread of the disease. Some community
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transmission based effects have been studied in other works'. Infrastructure for the storage and analytics of such huge
data for further processing needs to be developed in an efficient and cost-effective manner. This needs to be organized
through utilization of cloud computing and Al solutions [7]. Alibaba developed cloud and Al solutions to help China,
fight against coronavirus, predict the peak, size and duration of the outbreak, which is claimed to have been implemented
with 98% accuracy in real world tests in various regions of China [8]. Different types of pneumonia can be resolved
using ML-based CT Image Analytics Solution, which can be helpful to monitor the patients with COVID-19 [9]. Details
can be seen in [10]. The development of vaccine for COVID-19 can also be accelerated by analysing the genome
sequences and molecular docking, deploying various ML and Al techniques [11].

1.1. Motivation and Our Contributions

ML [12] can be utilized to handle large data and intelligently predict the spread of the disease. Cloud computing [13]
can be used to rapidly enhance the prediction process using high-speed computations [7]. Novel energy-efficient edge
systems can be used to procure data, in order to bring down power consumption. In this paper, we present a prediction
model deployed using FogBus framework [14] for accurate prediction of the number of COVID-19 cases, the rise and
the fall of the number of cases in near future and the date when various countries may expect the pandemic to end. We
also provide a detailed comparison with a baseline model and show how catastrophic the effects can be if poorly fitting
models are used. We present a prediction scheme based on the ML model, which can be used in remote cloud nodes for
real-time prediction allowing governments and citizens to respond proactively. Finally, we summarize this work and
present various research directions.

1.2. Article Structure

The rest of the paper is organized as follows: Section 2 presents the prediction model and performance comparison.
blackSection 3 provides discussions on the results, biases, implementation and possible deviations in future. Section 4
provides research opportunities and emerging trends. Finally, Section 5, concludes the work and describes the future
research opportunities.

2. Prediction Model and Performance Comparison

Machine Learning (ML) and Data Science community are striving hard to improve the forecasts of epidemiological
models and analyze the information flowing over Twitter for the development of management strategies, and the
assessment of impact of policies to curb its spread. Various datasets in this regard have been openly released to the
public. Yet, there is a need to capture, develop and analyse more data as the COVID-19 grows worldwide [15, 16].

The novel coronavirus is leaving a deep socio-economic impact globally. Due to the ease of virus transmission,
primarily through droplets of saliva or discharge from the nose when an infected person coughs or sneezes, countries
which are densely populated need to be on a higher alert [17]. To gain more insight on how COVID-19 is impacting
the world population and to predict the number of COVID-19 cases and dates when the pandemic may be expected to
end in various countries, we propose a Machine Learning model that can be run continuously on Cloud Data Centers
(CDCs) for accurate spread prediction and proactive development of strategic response by the government and citizens.

2.1. Dataset

The dataset used in this case study is the Our World in Data by Hannah Ritchie”. The dataset is updated daily
from the World Health Organization (WHO) situation reports3. More details about the dataset are available at:
https://ourworldindata.org/coronavirus-source-data.

2.2. Cloud Framework

The ML models are built to make a good advanced prediction of the number of new cases and the dates when the
pandemic might end. To provide fail-safe computation and quick data analysis, we propose a framework to deploy
these models on cloud datacenters, as shown in Figure 1.In a cloud based environment, the government hospitals and
private health-centers continuously send their positive patient count. Population density, average and median age,
weather conditions, health facilities etc. are also to be integrated for enhancing the accuracy of the predictions. For

1CDC transmission of CoV-2 https://wuw.cdc.gov/mmwr/volumes/69/wr/mm6915e1 . htm
20ur World In Data: COVID-19 Dataset; source: https://github.com/owid/covid-19-data/tree/master/public/data/
3Situation Reports-WHO; source: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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Figure 1: Proposed Cloud based Al framework for COVID-19 related analytics.

this case study, we used three instances of single core Azure Bls virtual machines with 1-GiB RAM, SSD Storage
and 64-bit Microsoft Windows Server 2016*. We used the HealthFog [12] framework leveraging the FogBus [14]
for deploying multiple analysis tasks in an ensemble learning fashion to predict various metrics, like the number of
anticipated facilities to manage patients and the hospitals. We analyzed that the cost of tracking patients on a daily basis,
amortized CPU consumption and Cloud execution is 37% and only 1.2 USD per day. As the dataset size increases,
computationally more powerful resources would be needed.

2.3. Machine Learning Model

Many recent works have suggested that the COVID-19 spread follows exponential distribution [18, 19, 20]. As
per empirical evaluations and previous datasets on SARS-CoV-1 virus pandemic, many sources have shown that data
corresponding to new cases with time has large number of outliers and may or may not follow a standard distribution like
Gaussian or Exponential [21, 22, 23, 24]. In recent study by Data-Driven Innovation Laboratory, Singapore University
of Technology and Design (SUTD), the regression curves were drawn using the Susceptible-Infected-Recovered
model [25] and Gaussian distribution was deployed to estimate the number of cases with time. However, in the
previously reported studies on the earlier version of the virus, namely SARA-CoV-1, the data was reported to follow
Generalized Inverse Weibull (GIW) Distribution [26] better than Gaussian as shown in Figure 2 (details of Robust
Weibull fitting follow in the next section). Detailed comparison for SARS-CoV-2 has been described in the next section.
This fits the following function to the data:

f(x)zk'}"ﬁ'aﬂ'x_l_ﬂ-exp(_y(%)ﬂ). M

Here, f(x) denotes the number of cases with x, where x > 0 is the time in number of days from the first case, and
a,f,y > 0, € R are parameters of the model. Now, we can find the appropriate values of the parameters a, f and y to
minimize the error between the predicted cases (y = f(x)) and the actual cases (¥). This can be done using the popular
Machine Learning technique of Levenberg-Marquardt (LM) for curve fitting [27]. However, as various sources have
suggested, in initial stages of COVID-19 the data has many outliers and noise. This makes it hard to accurately predict
the number of cases. Thus, we propose an iterative weighting strategy and call our fitting technique "Robust Fitting". A
diagrammatic representation of the iterative weighting process is shown in Figure 3.

4Azure Cloud VMs: https://azure.microsoft.com/en-au/pricing/calculator/
5When Will COVID-19 End, DDI Lab, SUTD: https://ddi.sutd.edu.sg/when-will-covid-19-end
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Data for SARS-CoV-1 for Hong Kong (Special Administrative Region), China
Source: World Health Organization

—— Robust Weibull Fit
---- @Gaussian Fit

Number of new cases

1-Fob03 14-Feb-03 27-Feb-03 12-MarD3 25-Mar03 7-Ape0d 20-Apr-03 3-Mayp03 16-May-0328-Ma:
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Figure 2: Fit curves for SARS-CoV-1 pandemic for Hong Kong (SAR), China. Data source: WHO epidemic curves
(https://www.who.int/csr/sars/epicurve/epiindex/en/index4.html)

The main idea is as follows. We maintain weights for all data points (i) in every iteration (n, starting from 0) as wy.
First, we fit a curve using the LM technique with weights of all data points as 1, thus w? =1V i. Second, we find the
weight corresponding to every point for the next iteration (w”.""l ) as:

1 d!'—tanh(d")

X — —
eXp max; d'—tanh(d!")
n+l _ ! !

! d"—tanh(@™) '\
2 €xp <1 - m)

Simply, in the above equation, we first take tanhshrink function defined as tanhshrink(x) = x — tanh(x) for the

distances of all points along y axis from the curve (d;). This is to have a higher value for points far from the curve and

near 0 value for closer points. This, is then standardized by dividing with max value over all points and subtracted from

1 to get a weight corresponding to each point. This weight is then standardized using so f tmax function so that sum of

all weights is 1. The curve is fit again using LM method, now with the new weights w?“. The algorithm converges
when the sum total deviation of all weights becomes lower than a threshold value.

@)

2.4. Distribution Model Selection

To find the best fitting distribution model for the data corresponding to COVID-19, we studied the data on daily new
confirmed COVID cases. Five sets of global data on daily new COVID-19 cases were used to fit parameters of different
types of distributions. Finally, we identified the best performing 5 distributions. The results are shown in Table 1. We
observe that using the iteratively weighted approach, the Inverse Weibull function fits the best to the COVID-19 dataset,
as compared to the iterative versions of Gaussian, Beta (4-parameter), Fisher-Tippet (Extreme Value distribution), and
Log Normal functions. When applied to the same dataset, Iterative Weibull showed an average MAPE of 12% lower
than non-iteratively weighted Weibull. A step-by-step algorithm for iteratively weighted curve fitting using the GIW
distribution (called "Robust Weibull") is given in Algorithm 1.

2.5. Analysis and Interpretation
To compare the proposed "Robust Weibull fitting" model, we use the baseline proposed by Jianxi Luo from SUTD 3.
The comparison metrics include Mean Squared Error (MSE), Mean Absolute Percentage Error (MAPE) and Coefficient
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Figure 3: Iterative weighting technique for robust curve fitting.
Count MSE R MAPE
ountry Weibull | Gaussian | Beta 4 | Fisher-Tippet | Log Normal | Weibull | Gaussian | Beta 4 | Fisher-Tippet | Log Normal | Weibull | Gaussian | Beta 4 | Fisher-Tippet | Log Normal
World 2.41E+07 | 3.78E+07 | 2.00E+07 | 2.80E+07 | 2.09E+07 | 0.98 0.07 0.08 097 0.97 4914 | 4914 | 50.39 312 46.19
india 6.07E+03 | 7.00E+03 | 6.80E+03 | 6.80E+03 | 7.00E+03 | 0.07 0.07 0.98 007 0.97 1833 | 1833 | 18.49 21.69 20.69
United States | 8.37E+06 | L.IIE+07 | 8.63E+05 | 947E+06 | 0.78E+06 | 0.95 0.03 0.04 003 0.04 2433 | 2433 | 403 7164 111.63
United Kingdom | 2.00E+05 | 2.22E+05 | 2.12E+05 2.02E+05 2.07E+05 0.95 0.95 0.95 0.95 0.95 21.46 21.46 20.43 21.52 17.42
Italy 1.56E+05 | 3.38E405 | 2.10E+05 2.09E+05 2.35E+05 0.96 0.92 0.95 0.95 0.94 14.98 14.98 20.00 19.62 170.63
Table 1

Preliminary Evaluation of different models. We observe that iterative fitting of Inverse
Weibull performs significantly better than iterative fitting of other distributions like Gaussian,
Beta (4-parameter), Fisher-Tippet (Extreme Value distribution), and Log Normal. The
lowest value of MSE/MAPE and highest values of R> among all distributions are shown in
bold.

Algorithm 1 Robust Curve Fitting using Iterative weighting
Require:
x : Input sequence of days from first case
¥ : Number of cases for each day in x
€ : Threshold parameter
procedure ROBUST CURVE FITTING
w? « Unit vector [1] X size(x)
for iteration n from 0, step 1 do
f < LM(input = x, target =y, weights = w")
di < |fxp) =yl Vi
_ dl'~tanh(d]) )
max; d,." —tanh(d;')
d"—tanh(d"
Ziexp <1_ oy d,."—tu(nli(;;’) )
it ¥, |w! — w!™!| < e then
break
end for
end procedure

exp (1
w;_1+1

«—

of determination (R?). Table 2 shows the model predictions of the spread of the COVID-19 for every major country for
which sufficient data was available and model fits had R? > 0.5 using the proposed model. As shown in the table, the
proposed model performs significantly better than the baseline.

As shown in Figure 4°, the predictions of the baseline Gaussian model deployed by SUTD are overoptimistic.
Following such models could lead to premature uplifting of the lockdown, causing adverse effect on management of
the epidemic. Having better fit models, as proposed here, could help plan a better strategy, based on more accurate
predictions and future scenarios.

Curves and predictions of all countries have been given in Appendix
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Figure 4: Comparison of predicted dates to reach 97% of the total expected cases by baseline Gaussian and proposed
Robust Weibull models. The predicted end date of the pandemic in the baseline model are over-optimistic.
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Figure 5: Number of new cases and deaths for all countries Figure 6: Predicted Mortality Rate % for a few countries

Figure 7 shows the total predicted number of cases for all countries across the globe. Here we have neglected those
countries where the data is insufficient for making predictions, or the number of days for data is less than 30. As shown
in Figure 4 explained in model section, the fit curve can be used to predict the number of cases that will have to be dealt
by the country, assuming the same trend continues. The figure illustrates that the maximum number of total cases will
be in the North America region. The number of cases will also be high in the European continent, Russia and eastern
Asia, including China, the original epicenter of the disease.

blackThe model was also applied to the data corresponding to the number of deaths with time. Figure 5 shows
curves corresponding to both new cases and deaths across the world. Using the predicted total deaths, the expected
mortality rate can be calculated as 100 X w. The predicted mortality rates of the world and few countries

| ) redicted total cases
are shown in Figure 6.

3. Discussions

blackThis section discuss about the biases in data, integration details with tracking systems and trend possibilities
in the future.

3.1. Biases in data

blackThe outbreak of SARS-CoV-2 and its corresponding diseases COVID-19 has received diverse responses from
different countries. Countries like India, China and Australia have imposed partial to full nation-wide lock-downs
leading to mixed repercussions [28, 29, 30, 31]. Other countries like Sweden have imposed little to no restrictions.
Such factors definitely affect the distribution of cases and hence the curve parameters.

blackMoreover, there is bias in data due to diverse travel histories and contact demographic histories of people from
‘Wuhan [32]. Reports from health systems in Wuhan are overwhelmed and the only possible way of quantifying spread
of coronavirus is through cumulative cases in each country [33]. The proposed GIW model is applied separately to each
country to fit the model parameters to the distribution of new cases with time. The parameters themselves incorporate

S Tuli et al.: Preprint submitted to Elsevier Page 6 of 17
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the biases from travel histories of citizens and migrants, lock-downs and social distancing measures taken specifically
by each country. Having a holistic models that can take these indicators as quantified inputs to generate curve without
having any training data would require development and collection of large datasets. Such models can be explored in
future.

3.2. Leveraging tracking systems for near-real time predictions

blackWith efficient and up-to-date tracking mechanisms, the spread of the disease can be traced. Once authorities
have information on the spread of the virus, relevant decisions can be made including locking down target areas and
increasing testing measures in adjacent areas. Only with systematic and planned testing can we mitigate the negative
effects of the spread of this disease [34]. Government institutions can utilize cloud services to deploy such frameworks,
feeding data from such tracking sensors and predict in near-real time the number of cases in the near future [35]. Further,
if we frequently update the dataset and utilize other demographic indicators like population density, temperatures and
age distribution in the proposed model, we can make more reliable and accurate predictions for the last expected case.
This enables the authorities to lift the lock-down in a phased manner, thus keeping a check on the post-lockdown rise in
cases.

3.3. Beyond the lock-downs

blackCurrently, travel and group activities have been restricted world-over. As lock-downs are lifted, the number
of new cases and deaths might change significantly from the proposed predicted trends. Other factors like virus
mutations [36] would also affect the distribution in future. Hence, continuous work is required to ensure accurate
predictions are made and correct measures can be taken.
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Country Predictions of Robust Weibull Model ‘ Fit comparison metrics ‘
‘ Total Cases ‘ Date of last case ‘ 97% cases date ‘ MSE (W) ‘ MSE (G) ‘ R (W) ‘ R* (G) ‘ MAPE (W) ‘ MAPE (G) ‘
United States 1,937,724 11-Feb-22 14-Aug-20 | 9.32E+06 | 1.33E4+07 | 0.95 0.92 26.58 1568.56
Russia 529,687 27-Nov-21 26-Sep-20 5.50E+04 | 5.92E+04 | 0.99 0.98 24.53 75.91
India 409,418 29-Oct-24 13-Aug21 8.40E403 | 0.11E403 | 0.97 0.97 22.38 80.47
United Kingdom 331,124 31-Jul-21 18-Aug-20 | 2.54E+05 | 3.19E405 | 0.95 0.93 20.14 211.72
Ukraine 254,087 10-Dec-41 18-Jan-31 3.31E+04 | 3.37E404 | 0.53 0.52 1842.80 2079.70
Italy 253,022 7-Mar-21 27-Jun-20 1.52E+05 | 3.55E+05 | 0.96 0.01 14.55 1577.95
Spain 236,737 30-Sep-20 20-Apr-20 4.67E4+05 | 6.59E+405 0.93 0.90 3682.04 2917.90
Turkey 234,218 22-Jun-23 30-Dec-20 2.27E+05 | 1.49E4+05 | 0.92 0.94 30.95 555.87
Germany 181,369 17-Oct-20 2-May-20 3.30E+05 | 4.50E4+05 | 0.01 0.88 1013.65 582.89
France 147,795 11-Oct-20 20-May-20 | 3.93E405 | 4.14E405 | 0.84 0.83 32.36 134.36
Qatar 143,779 1-Oct-22 18-Mar-21 3.71E+03 | 3.46E+03 0.93 0.93 99.14 90.02
Canada 139,331 7-Dec-21 31-Oct-20 2.12E+04 | 2.64E+04 | 0.95 0.94 28.19 210.56
Belarus 135,375 4-Jun-22 2-Feb-21 1.28E+04 | 1.28E+04 | 0.83 0.83 1040.39 1101.48
Tran 126,048 12-Mar-21 15-Jul-20 2.11E+05 | 1.88E405 | 0.78 0.80 1847.80 2313.85
China 84,171 6-Jul-20 27-Mar-20 1.40E+06 | 1.28E+06 | 0.48 0.53 114.04 202.88
Sweden 68,671 25-Apr-22 15-Feb-21 5.33E+03 | 5.45E403 | 0.91 0.01 20.55 151.04
Belgium 65,257 19-Nov-20 27-Jun-20 3.88E+04 | 4.10E+04 | 0.88 0.88 18.76 134.34
Bangladesh 53,127 19-Apr-22 22-Feb-21 1.38E403 | 1.60E+03 | 0.96 0.96 30.89 118.80
Netherlands 53,057 28-Nov-20 2-Jul-20 1.07E+04 | 1.10E+04 | 0.94 0.94 16.45 140.98
United Arab Emirates | 46,395 18-Jul-21 5-Nov-20 3.30E+03 | 3.49E4+03 | 0.01 0.90 840.72 947.02
Portugal 37,302 7-Jun-21 12-Sep-20 2.62E4+04 | 3.20E+404 0.75 0.70 41.46 222.40
Indonesia 35,581 19-Sep-21 20-Dec-20 1.24E403 | 1.22E+03 | 0.93 0.93 51.06 124.06
Poland 35,113 22-Nov-22 1-Aug-21 3.08E+03 | 3.42E+03 | 0.87 0.86 29.90 110.45
Switzerland 31,407 26-Jul-20 13-May-20 1.14E+04 | 1.39E404 0.92 0.90 383.82 476.28
Bahrain 30,258 21-Mar-23 12-Jan-22 1.05E+03 | 1.04E+03 | 0.57 0.57 98.32 102.20
Ireland 27,694 6-Sep-20 12-Jun-20 1.I7E+04 | 9.49E+03 | 0.84 0.87 25.91 21.83
Singapore 24,088 19-Jul-20 28-May-20 | 1.68E404 | 1.69E+04 | 0.82 0.82 912.31 1018.38
Dominican Republic 22,103 19-Jun-21 29-Apr-20 1.79E+03 | 1.85E4+03 | 0.81 0.81 304.96 420.08
Romania 22,102 24-Dec-20 10-Aug-20 1.08E+03 | 2.29E+03 | 0.91 0.90 16.83 87.83
Algeria 19,188 6-Feb-22 16-May-21 | 3.59E4+02 | 3.96E+02 | 0.86 0.85 61.43 147.61
Israel 18,167 3-Aug-20 26-May-20 | 8.81E+03 | 1.03E+04 | 0.80 0.77 37.01 137.87
Japan 17,614 27-Jul-20 20-May-20 1.12E+04 | 1.08E+04 | 0.74 0.75 162.70 202.00
Morocco 16,972 24-May-22 2-Aug-21 1.60E4+03 | 1.40E+403 0.69 0.73 188.07 171.78
Serbia 16,426 24-Jan-21 27-Aug-20 2.49E+03 | 2.36E+03 | 0.87 0.87 210.28 229.10
Austria 15,781 9-Jun-20 30-Apr-20 4.07E+03 | 5.33E403 | 0.92 0.89 23.08 34.08
Philippines 14,371 24-Nov-20 2-Apr-20 5.08E+03 | 5.49E+03 | 0.65 0.62 543.57 698.02
Denmark 13,282 26-Oct-20 17-Jul-20 1.94E+03 | 1.81E+03 | 0.81 0.82 18.95 104.47
Moldova 12,818 6-Feb-22 12-Jun-21 8.78E4-02 | 9.57E+02 0.75 0.73 36.51 68.69
Hungary 11,077 19-Jul-22 22-Nov-21 585E+02 | 5.66E+02 | 0.64 0.65 49.55 71.00
South Korea 10,780 4-May-20 2-Apr-20 3.35E+03 | 3.88E+03 | 0.87 0.85 55.81 68.84
Finland 9,158 21-Dec-20 5-Sep-20 9.09E402 | 9.11E+402 0.74 0.74 125.43 188.74
Norway 8,534 23-Jul-20 19-Apr-20 1.73E+403 | 1.79E+03 0.80 0.79 187.65 211.88
Czech Republic 8,528 14-Jul-20 22-May-20 | 1.34E403 | 1.56E403 | 0.85 0.83 20.11 59.31
Malaysia 7,080 6-Aug-20 7-Jun-20 4.88E+02 | 5.73E+02 | 0.89 0.87 30.30 112.20
Australia 6,797 17-May-20 21-Apr-20 2.54E+03 | 2.78E4+03 | 0.81 0.79 31.85 36.77
Oman 4,871 4-Sep-20 23-Apr-20 6.01E+02 | 5.98E+02 | 0.66 0.66 229.07 232.19
Iraq 4,113 20-Nov-20 20-Apr-20 4.99E+402 | 5.21E+02 0.47 0.45 299.89 354.05
Luxembourg 3,887 29-May-20 2-May-20 5.15E+02 | 6.64E+02 | 0.83 0.79 49.42 127.81
Thailand 3,044 30-May-20 2-Apr-20 851E+02 | 9.01E+02 | 0.63 0.61 381.04 399.02
Greece 2,044 7-Jul-20 28-Apr-20 3.60E+02 | 3.67E+02 | 0.66 0.66 137.87 127.28
Croatia 2,275 15-Jun-20 18-May-20 | 8.44E+01 | 1.04E4+02 | 0.88 0.85 20.64 45.14
World [ 6734075 | 29-Jan24 | 11-Oct20 | 2.01E407 | 492E407 | 0.98 | 096 | 4753 | 6336
Table 2
Predictions and error comparisons. Country wise predictions using Robust Weibull model
and error comparison between Robust Weibull and baseline Gaussian Model. We predict
the total number of cases that will be reached, and the last case date i.e. when the model
predicts new cases < 1. We also predict the date when the total number will reach 97% of
the total expected cases. Such data is critical to prepare the healthcare services in advance.
The fit comparison metrics (with proposed model as W and baseline model as G) show
that Mean Square Error (MSE) and the Mean Absolute Percentage Error (MAPE) of the
proposed model are lower than baseline for most cases. The coefficient of determination
(R?) is higher for the proposed model for most of the countries. The least MSE/MAPE
and highest R? values among the two models are shown in bold. Data upto 4 May, 2020
was used to create these results.
S Tuli et al.: Preprint submitted to Elsevier Page 8 of 17
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4. Country-wise predictions
All data uptil 4 May 2020 has been used to generate the prediction results shown in Figure 8 below:
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Figure 8: New cases for different countries (continued on next page)

(viii) Russia
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Figure 8: New cases for different countries (continued on next page)
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Figure 9: Future Research Directions and Open Challenges

5. Research Opportunities and Emerging Trends

blackThe COVID-19 pandemic has opened several new directions of research for the current and future pandemics.
The prominent research opportunities are described as follows.

1. Incorporating other indicators: Important parameters like population density, distribution of age, individual
and community movements, level of healthcare facilities available, strain type and virulence of the virus etc.,
need to be included in the regression model to further enhance the prediction accuracy.

2. Integrating with other time series models: Models like ARIMA [37] can be integrated with Weibull function
for further time series analysis and predictions.

3. Predicting protein structure of CoV-2: Al can be utilized to predict the structure and function of various
proteins associated with CoV-2 and their interaction with the host human proteins and cellular environment. The
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contribution of various socio-economic variables that determine the vulnerability, spread and progression of the
epidemic can be predicted by developing suitable algorithms. This can help efficiently decide resource allocation
in large countries with limited healthcare resources.

4. Analyzing social media data using AI: We can also explore and analyze social media data for real time collection
of epidemiological data related to COVID-19 [15].

5. Contact-less treatment and drug delivery using Robotics: Al based Robots can be used to perform contact-
less delivery and treat patients remotely to reduce involvement of medical staff with infected people. Further,
there have been considerable improvements in air quality across the globe due to COVID-19 enforced lock-downs.

6. Climate Change: There have been considerable improvements in air quality across the globe due to COVID19
enforced lock-downs. However, there is a prevailing conjecture of the revenge pollution following these lock-
downs [38]. More extensive studies considering age distributions and demographics with other characteristics
van be studied as part of future work.

7. Risk assessment: The risk of severe disease related with COVID-19 for people with different age can be predicted
using Al Using such algorithms, proactive measures can be taken to prevent virus being spread to sensitive
groups of the society.

8. Real time sensors and visual imaging: Al based proactive measures can be taken to prevent the spread of
the virus to sensitive groups in the society. Real time sensors can be used, for example in traffic camera or
surveillance, which track COVID-19 symptoms based on visual imaging and tracking apps, and inform respective
hospitals and administrative authorities for punitive action [39]. Tracking needs to cover all stages from ports of
entries to public places and hospitals [40].

The research directions and challenges are summarized in Figure 9.

6. Summary and Conclusions

In this study, we have discussed how improved mathematical modelling, Machine Learning and cloud computing
can help to predict the growth of the epidemic proactively. Further, a case study has been presented which shows the
severity of the spread of CoV-2 in countries worldwide. Using the proposed Robust Weibull model based on iterative
weighting, we show that our model is able to make statistically better predictions than the baseline. The baseline
Gaussian model shows an over-optimistic picture of the COVID-19 scenario. A poorly fitting model could lead to a non
optimal decision making, leading to worsening of public health situation.

Software Availability

Our prediction model is available online at https://github.com/shreshthtuli/covid-19-prediction.
The dataset used for this work is the Our World Dataset, available at https://github.com/owid/covid-19-dat
a/tree/master/public/data/.

Few interactive graphs can be seen at https://collaboration.coraltele.com/covid/.

Acknowledgements

We would like to thank Manmeet Singh (IITM, India) for his valuable comments, useful suggestions and discussion
to improve the quality of the paper. We would like to thank the editor, area editor and anonymous reviewers for their
valuable comments and suggestions to help and improve our research paper.

Declaration of Interests

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] Chen Wang, Peter W Horby, Frederick G Hayden, and George F Gao. A novel coronavirus outbreak of global health concern. The Lancet,
395(10223):470-473, 2020.

S Tuli et al.: Preprint submitted to Elsevier Page 14 of 17



(2]
(3]
[4]
[5]

[6]

(71
[8]
[91
[10]
[11]

[12]

[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]
[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
1321
[33]
[34]
1351
[36]

[37]

Predicting the Growth and Trend of COVID-19 Pandemic

Coronavirus - worldometer, link: https://www.worldometers.info/coronavirus/, [online accessed] 12 april 2020.

Guangdi Li and Erik De Clercq. Therapeutic options for the 2019 novel coronavirus (2019-ncov), 2020.

Smriti Mallapaty. What the cruise-ship outbreaks reveal about covid-19. Nature, 580(7801):18-18, 2020.

Kai Liu, Ying Chen, Ruzheng Lin, and Kunyuan Han. Clinical features of covid-19 in elderly patients: A comparison with young and
middle-aged patients. Journal of Infection, 2020.

Shi Zhao, Qianyin Lin, Jinjun Ran, Salihu S Musa, Guangpu Yang, Weiming Wang, Yijun Lou, Daozhou Gao, Lin Yang, Daihai He, et al.
Preliminary estimation of the basic reproduction number of novel coronavirus (2019-ncov) in china, from 2019 to 2020: A data-driven analysis
in the early phase of the outbreak. International Journal of Infectious Diseases, 92:214-217, 2020.

Shreshth Tuli, Shikhar Tuli, Gurleen Wander, Praneet Wander, Sukhpal Singh Gill, Schahram Dustdar, Rizos Sakellariou, and Omer Rana. Next
generation technologies for smart healthcare: Challenges, vision, model, trends and future directions. Internet Technology Letters, page e145.
Chaolin Huang, Yeming Wang, Xingwang Li, Lili Ren, Jianping Zhao, Yi Hu, Li Zhang, Guohui Fan, Jiuyang Xu, Xiaoying Gu, et al. Clinical
features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223):497-506, 2020.

Adrien Depeursinge, Anne S Chin, Ann N Leung, Donato Terrone, Michael Bristow, Glenn Rosen, and Daniel L Rubin. Automated classification
of usual interstitial pneumonia using regional volumetric texture analysis in high-resolution CT. Investigative radiology, 50(4):261, 2015.
Shuo Jin, Bo Wang, Haibo Xu, Chuan Luo, Lai Wei, Wei Zhao, Xuexue Hou, Wenshuo Ma, Zhengqing Xu, Zhuozhao Zheng, et al. Ai-assisted
ct imaging analysis for covid-19 screening: Building and deploying a medical ai system in four weeks. medRxiv, 2020.

Maxwell W Libbrecht and William Stafford Noble. Machine learning applications in genetics and genomics. Nature Reviews Genetics,
16(6):321-332, 2015.

Shreshth Tuli, Nipam Basumatary, Sukhpal Singh Gill, Mohsen Kahani, Rajesh Chand Arya, Gurpreet Singh Wander, and Rajkumar Buyya.
Healthfog: An ensemble deep learning based smart healthcare system for automatic diagnosis of heart diseases in integrated iot and fog
computing environments. Future Generation Computer Systems, 104:187-200, 2020.

Sukhpal Singh Gill, Shreshth Tuli, Minxian Xu, Inderpreet Singh, Karan Vijay Singh, Dominic Lindsay, Shikhar Tuli, Daria Smirnova, Manmeet
Singh, Udit Jain, et al. Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and
open challenges. Internet of Things, 8:100118, 2019.

Shreshth Tuli, Redowan Mahmud, Shikhar Tuli, and Rajkumar Buyya. Fogbus: A blockchain-based lightweight framework for edge and fog
computing. Journal of Systems and Software, 2019.

Emily Chen, Kristina Lerman, and Emilio Ferrara. COVID-19: The First Public Coronavirus Twitter Dataset. arXiv preprint arXiv:2003.07372,
2020.

Joseph Paul Cohen, Paul Morrison, and Lan Dao. COVID-19 image data collection. arXiv preprint arXiv:2003.11597, 2020.

Yan Bai, Lingsheng Yao, Tao Wei, Fei Tian, Dong-Yan Jin, Lijuan Chen, and Meiyun Wang. Presumed asymptomatic carrier transmission of
covid-19. Jama, 2020.

Benjamin F Maier and Dirk Brockmann. Effective containment explains sub-exponential growth in confirmed cases of recent covid-19 outbreak
in mainland china. arXiv preprint arXiv:2002.07572, 2020.

Yi Li, Meng Liang, Xianhong Yin, Xiaoyu Liu, Meng Hao, Zixin Hu, Yi Wang, and Li Jin. Covid-19 epidemic outside china: 34 founders and
exponential growth. medRxiv, 2020.

Mary Raygoza. Covid-19, exponential growth, and the power of showing up in social solidarity: The math behind the virus. 2020.

Yanping Bai and Zhen Jin. Prediction of sars epidemic by bp neural networks with online prediction strategy. Chaos, Solitons & Fractals,
26(2):559-569, 2005.

Ying-Hen Hsieh, Jen-Yu Lee, and Hsiao-Ling Chang. Sars epidemiology modeling. Emerging infectious diseases, 10(6):1165, 2004.

Dejian Lai. Monitoring the sars epidemic in china: a time series analysis. Journal of Data Science, 3(3):279-293, 2005.

Wendi Wang and Shigui Ruan. Simulating the sars outbreak in beijing with limited data. Journal of theoretical biology, 227(3):369-379, 2004.
David Smith and Lang Moore. The sir model for spread of disease: The differential equation model. Loci.(originally Convergence.) https://www.
maa. org/press/periodicals/loci/joma/the-sir-model-for-spread-of-disease-the-differential-equation-model, 2004.

Felipe RS De Gusmao, Edwin MM Ortega, and Gauss M Cordeiro. The generalized inverse weibull distribution. Statistical Papers, 52(3):591-
619, 2011.

Jorge ] Moré. The levenberg-marquardt algorithm: implementation and theory. In Numerical analysis, pages 105-116. Springer, 1978.
Priyanka Pulla. Covid-19: India imposes lockdown for 21 days and cases rise, 2020.

Oxford Analytica. Japan’s partial COVID-19 lockdown may be insufficient. Emerald Expert Briefings, (oxan-es).

Jacqui Thornton. Covid-19: A&e visits in england fall by 25% in week after lockdown, 2020.

Yuzhen Zhang, Bin Jiang, Jiamin Yuan, and Yanyun Tao. The impact of social distancing and epicenter lockdown on the COVID-19 epidemic
in mainland China: A data-driven SEIQR model study. medRxiv, 2020.

Rene Niehus, Pablo Martinez de Salazar Munoz, Aimee Taylor, and Marc Lipsitch. Quantifying bias of COVID-19 prevalence and severity
estimates in Wuhan, China that depend on reported cases in international travelers. 2020.

Joseph T Wu, Kathy Leung, and Gabriel M Leung. Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov
outbreak originating in wuhan, china: a modelling study. The Lancet, 395(10225):689-697, 2020.

Covid-19 science: Why testing is so important | american heart association. https://www.heart.org/en/news/2020/04/02/covid-1
9-science-why-testing-is-so-important. (Accessed on 05/07/2020).

Riccardo Mancini, Shreshth Tuli, Tommaso Cucinotta, and Rajkumar Buyya. iGateLink: A Gateway Library for Linking IoT, Edge, Fog and
Cloud Computing Environments. Proceedings of the International Conference on Intelligent and Cloud Computing, 2019.

Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, et al.
On the origin and continuing evolution of sars-cov-2. National Science Review, 2020.

Domenico Benvenuto, Marta Giovanetti, Lazzaro Vassallo, Silvia Angeletti, and Massimo Ciccozzi. Application of the arima model on the
covid-2019 epidemic dataset. Data in brief, page 105340, 2020.

S Tuli et al.: Preprint submitted to Elsevier Page 15 of 17



Predicting the Growth and Trend of COVID-19 Pandemic

[38] There’s an unlikely beneficiary of coronavirus: The planets, link: https://edition.cnn.com/2020/03/16/asia/china-pollution-
coronavirus-hnk-intl/index.html, [online accessed] 20 mar 2020.

[39] Halgurd S Maghdid, Kayhan Zrar Ghafoor, Ali Safaa Sadiq, Kevin Curran, and Khaled Rabie. A Novel Al-enabled Framework to Diagnose
Coronavirus COVID 19 using Smartphone Embedded Sensors: Design Study. arXiv preprint arXiv:2003.07434, 2020.

[40] Shuai Wang, Bo Kang, Jinlu Ma, Xianjun Zeng, Mingming Xiao, Jia Guo, Mengjiao Cai, Jingyi Yang, Yaodong Li, Xiangfei Meng, et al. A
deep learning algorithm using CT images to screen for Corona Virus Disease (COVID-19). medRxiv, 2020.

S Tuli et al.: Preprint submitted to Elsevier Page 16 of 17





