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Abstract: Implementation costs are a major factor in manufacturers’ decisions to invest in energy-
efficient technologies. Emerging technologies in lighting systems, however, typically require small
investment costs and offer short, simple payback periods, due, in part, to federal, state, and utility
incentive programs. Recently, however, certain state and federal mandates have reduced the support
for and efficacy of electricity utility incentivizing programs. To determine the impact of such support
programs, this study examined historical data regarding lighting retrofit savings, implementation
costs, and utility rebates gathered from 13 years of industrial energy audits by a U.S. Department of
Energy Industrial Assessment Center in a midwestern state. It uses a machine learning approach
to evaluate the industrial energy and cost-saving opportunities that may have been lost due to
decisions attributable to legislative mandates, utility policies, and manufacturers’ calculations and to
evaluate the potential effect of lighting rebates on manufacturers’ decisions to implement industrial
energy-efficient lighting retrofits. The results indicate that the decision not to implement lighting
energy efficiency recommendations resulted in a loss of more than USD800,000 in potential rebates
by industries during the study period and that the implementation of lighting energy assessment rec-
ommendations could have increased by about 50% if electric utility rebates had been available. These
findings can help industries evaluate the benefits of implementing lighting efficiency improvements,
and help utilities determine feasible lighting retrofit rebate values for incentivizing such changes by
the industries they serve.

Keywords: industrial energy efficiency; energy audit; machine learning; lighting rebates

1. Introduction

The United States’ industrial sector is its largest consumer of end-use electricity, with
about 1.4% of this total being consumed by industrial lighting systems [1,2]. Because
new and emerging lighting technologies can significantly reduce energy consumption by
industrial lighting systems, numerous federal and state entities have instituted incentive
programs to encourage industries to upgrade and manage their energy usage. At the federal
level, the U.S. Department of Energy (DOE) has developed multiple energy efficiency
certifications and various programs to assist manufacturing industries in achieving their
energy reduction goals. These include ISO-50001 certification, which industries can earn
by implementing energy management systems to reduce various areas of energy waste
and become more energy efficient [3,4]. The DOE also sponsors the Industrial Assessment
Center (IAC), which provides small and medium-sized manufacturers (SMEs) with no-cost
energy assessments of multiple energy systems and specific assessment recommendations
(ARs) that offer annual cost savings that average more than USD130,000 per facility [5,6].
Among these are recommendations regarding lighting systems, as efficient management of
industrial lights can reduce energy and improve personnel performance [7]. Upgrading
current lighting to more efficient lamps and ballasts is the most common AR proposed for
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lighting systems, as more energy-efficient lamps, such as light-emitting diodes (LEDs), have
been shown to consume less energy, last longer, and be more aesthetically pleasing than
compact fluorescents and incandescent bulbs [8,9]. Another popular method for reducing
energy consumption is installing smart controls, which have been implemented in about
20% of the commercial sector [10,11].

In the United States, utility rebate programs became more mainstream with the Amer-
ican Reinvestment and Recovery Act of 2009 (ARRA). This fiscal stimulus program made
billions of dollars available to state and local utility companies to institute energy efficiency
and renewable energy programs [12]. At the state and local levels, utility providers have
offered incentives to assist manufacturers in making energy-efficient upgrades that have
significantly influenced their energy cost-savings strategies. In a study of 20 state rebate
programs, Hoffman et al. found that the average cost of saved electricity, mostly in the resi-
dential sector, was about 4.6 cents per kWh, thanks to the rebate programs [13]. Ohio took
advantage of the ARRA by requiring the state’s utility companies to reduce their electricity
sales by 0.3% annually and by a total of 2% by 2019. The legislature passed a Clean Energy
Law (SB221) in 2008 that mandated that utilities reduce their customer’s energy usage by
22% from 2008 levels [14], which led utilities to offer rebates to manufacturers for installing
energy-efficient lighting and other systems. After the 2019 deadline and the passage of
House Bill 6, however, Ohio backtracked on its energy efficiency goals and allowed utilities
to end their energy efficiency rebate programs [15]. All available state level policies and
incentives can be found in the DSIRE [16]

This article examined the impact of those utility rebate programs on manufacturers’
implementation of energy-efficient lighting retrofits by applying a machine learning (ML)
algorithm to lighting data collected from industrial energy audits performed by the Univer-
sity of Dayton Industrial Assessment Center between 2008 and 2020. We aimed to develop
a supervised machine learning model to create a general predictor for industrial energy
efficiency rebate rates for lighting systems. In addition, we aimed to allow industries to
evaluate the benefits of implementing lighting efficiency improvements and allow utilities
to determine feasible lighting retrofit rebate values for incentivizing such changes.

2. Literature Reviews

Studies have shown that improving industrial energy efficiency not only provides
benefits to the facility but also generates trickle-down impacts on society [17–19]. In
addition, researchers have shown that consumer behavior and the willingness to pay for
energy efficiency increase when a well-designed rebate is provided for various energy-
efficient products [20–22]. A study found that facilities implementing energy-efficient
measures with a utility-provided energy efficiency rebate program benefited the local
economy by USD88M and helped offset 466 K tons of emissions over 5 years [23]. However,
Galarraga et al. [24] claimed that such a program could generate detrimental impacts such
as welfare losses, a rebound effect, and a considerable deficit in the public budget.

Several previous studies have explored the relationship between energy-efficient
practices and future energy consumption by applying ML techniques at the macro- and
micro-levels [25,26]. For instance, Naji et al. [25] analyzed the likely effectiveness of various
incentivizing opportunities for a given community by predicting the energy consumption of
houses in that community by using an ML approach. The energy usage of lighting systems
in the industrial sector has found ML techniques to be applicable and beneficial [27,28].
ML application is increasingly becoming a useful tool in manufacturing due to its ability to
analyze trends in large datasets [29]. One popular model is the Random Forest (RF) model,
developed by Breiman [30], which creates multiple uncorrelated decision trees and takes
the average predictions of the group. RF models also measure the variable’s importance,
allowing for targeted analysis of the key characteristics of the predicted variable [31].
Wang et al. [32] developed an RF model to predict hourly building energy usage based
on weather, occupancy, and time data. A generalized linear model (GLM) utilizes a link
function to relate the predictor variable with the linear model [33]. Similar to RF models,
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there have been many studies of different applications of GLM models, including for
energy efficiency. GLMs have been used to determine different quantitative and qualitative
variables affecting energy efficiency and security in different countries [34,35]. Gradient
boosting machines (GBMs) are developed similarly to RF models but sequentially build
decision trees based on the previous tree’s error to reduce the error in future trees [36,37].
It has been shown that GBMs can outperform other predictive methods when applied to
predict energy consumption for commercial and residential buildings [38,39]. Artificial
neural networks (ANNs) attempt to replicate activities such as recognizing patterns and
forecasting, which neurons in the human brain can process [40]. The forecasting capabilities
of ANNs have served well in predicting the energy consumption behaviors and optimizing
energy efficiency options in energy systems [41,42]. When compared, ANNs and RF models
have been shown to have similar predictive power in energy applications [43].

Machine learning is frequently used in manufacturing industries to manage and pro-
cess data from the facility and products to support manufacturing decisions, estimate
product costs, and improve manufacturing facility operations [29]. It was found that utiliz-
ing machine learning capabilities reduced error and uncertainty by 50% in measurement
and verification applications in industry [44]. Similarly, smart manufacturing and predic-
tive manufacturing both combine machine learning, big data, artificial intelligence, and
advanced technology to optimize efficiency and productivity while reducing costs and
production time [45,46]. Another study was able to accurately predict maintenance system
failures by using a Random Forest machine learning model with a high R-squared (R2)
value based on real-time data from production line equipment [47].

Although many researchers have adopted ML algorithms to facilitate energy analyses
for commercial, industrial, and residential lighting systems, to our knowledge, no research
has yet applied the ML approach to assist decision-making by utility companies and energy
legislators regarding the incentives provided by energy efficiency rebate programs. To
help fill this gap, this study adopted ML algorithms to predict feasible lighting rebate rates
and how those rebates could increase the implementation of lighting retrofits and help
industrial manufacturing facilities reduce their energy usage and costs.

3. Methodology

The research framework used by this study is shown in Figure 1. First, initial energy
audits were performed in three steps: (1) pre-assessments, in which a facility’s energy
consumption data were utilized for a baseline analysis; (2) one-day facility audits, in which
expert energy engineers identified energy savings opportunities following a system-by-
system approach; and (3) post-assessments, in which scientifically rigorous engineering
calculations were used to estimate the amount of the potential energy savings, cost savings,
and CO2 reductions of various assessment recommendations (ARs). Second, all collected
data of industrial lighting systems from audits performed between 2008 and 2021 were
classified into two groups: training data and testing data. The training data refer to lighting
ARs where lighting rebates were available, whereas all the testing datasets consist of the
ARs where the lighting rebates were not available for three reasons: (1) the legislation effect,
meaning that the audits were performed after HB6 ended or reduced many utility rebates
for industrial energy efficiency; (2) the utility effect, meaning that the local utility never
offered such rebates; and (3) the manufacturer effect, meaning that other factors shaped a
facility’s decision to not take advantage of the lighting rebates. The third case applied when
manufacturers mentioned, during our audit, that they were not interested in applying for
the rebate program because of internal reasons. In those cases, rebates were not included
in the final report, thus, these data do not belong in the training data. Third, a rebate ML
model was built using the training data to predict feasible rebate values for the testing data.
After these rebate rates had been calculated, an implementation ML model was constructed
to predict the implementation rate of the testing data with the newly predicted rebate
values. Ohio utilities had provided rebates mostly on lighting, motors, and HVAC systems.
Our historical data indicated that manufacturers tended to apply for lighting rebates more
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than motor and HVAC rebates. As the ML model validity becomes more feasible when
more data are utilized for training, we chose the lighting system instead of other industrial
energy systems. The following subsections describe each of these steps in more detail.
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Figure 1. Research framework for using ML to analyze the impact of lighting utility rebates.

3.1. Energy Audit Process

Sponsored by the DOE to perform no-cost energy assessments [48–50], the University
of Dayton Industrial Assessment Center (UD-IAC) has served the whole Midwest region
for 40 years. Its assessments perform analyses of 11 different industrial systems. In addition
to lighting, these systems include motors, fluid flow, compressed air, process heating, steam,
process cooling, industrial refrigeration, HVAC, combined heat and power, and renewable
energy systems.

To analyze the impact of utility rebates on the implementation rates of energy-efficient
lighting upgrades, this study collected historical data from all UD-IAC energy assessments
conducted between 2008 and 2021. Each lighting AR proposed to a facility typically
includes estimates of the energy, cost, and CO2 emissions savings it is likely to provide.
Nine months after the initial energy assessment, facilities complete an implementation
survey to identify which ARs were implemented. Table 1 provides examples of the various
types and kinds of ARs related to lighting systems.

Table 1. Examples of ARs for increasing the efficiency of lighting systems.

Category Description of Assessment Recommendations (ARs)

Controls

Install occupancy sensors
Add area lighting switches

Install timers on light switches in little-used areas
Use photocell controls

Hardware

Utilize more efficient lamps and ballasts
Install skylights

Lower light fixtures in high ceiling areas
Install spectral reflectors/delamping
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Table 1. Cont.

Category Description of Assessment Recommendations (ARs)

Operation

Utilize daylight instead of artificial light whenever possible
Make a practice of turning off lights when not needed

Keep lamps and reflectors clean
Disconnect ballasts

Levels Reduce illumination to minimum necessary levels

In one example of a lighting AR that involved a utility rebate, we recommended that
the facility install occupancy sensors on all its 247 6-lamp T5 high-bay fluorescent fixtures
that illuminated the warehouse and manufacturing areas. During our site visit, plant
personnel had indicated that lights in the warehouse were turned off after the first shift
but many lights in manufacturing areas were left on even when unoccupied. We therefore
recommended installing occupancy sensors on all lighting fixtures to turn them off when
not needed, resulting in energy, cost, and CO2 emission savings. The audit team counted
45 fixtures in the warehouse area that operated 2200 h per year and 155 fixtures in the
manufacturing area that operated 4400 h per year. Table 2 shows these and other properties
of the lighting fixtures before the installation of occupancy sensors.

Table 2. Lighting fixture information before adding occupancy sensors.

Term Warehouse Manufacturing Units

Operating hours 2200 4400 h
Electrical peak

demand 16.0 55.2 kW

Electrical
consumption 35,284 243,065 kWh/year

CO2 emissions 25 172 tons/year
Total electricity cost USD4641 USD20,908 /year
Total relamping cost USD218 USD1500 /year
Total operating cost USD4859 USD22,408 /year

The plant personnel estimated that the occupancy sensors would be able to turn off all
the lights about 40% of the time, which would, in turn, decrease energy usage and increase
the life of the lights, resulting in reductions in electricity and relamping costs. Market
research indicated that occupancy sensors cost an average of USD26 each. Considering a
labor cost of USD50 per hour and an installation time of 10 min per sensor, we estimated
that the total implementation cost would be USD6867. Because the facility’s electrical utility
company offered rebates of USD40 per installed occupancy sensor, the implementation cost
would be completely offset at that rebate price, creating an immediate payback.

3.2. Data Collection and Cleaning

Of all the lighting AR types shown in Table 1, data regarding only those eligible for the
lighting rebate were collected, eliminating those regarding non-technical lighting ARs such
as “turn off lights for certain hours” and “keep lamps and reflectors clean.” Data regarding
the remaining five AR types are shown in Table 3.
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Table 3. Number of rebate-applicable lighting ARs used for training and testing the ML models.

Number of
“Rebates Applied”

ARs (Training Data)

Number of “Rebate Omitted”
ARs (Testing Data)

Lighting AR Type Cause of missing the rebate opportunity

Legislation Utility Manufacturer

Install occupancy sensors 45 6 7 13
Install spectral

reflectors/delamping 2 0 1 5

Utilize daylight whenever possible 7 0 5 7
Use photocell controls 7 0 0 2

Utilize more efficient lamps 142 11 18 29

Total 203 104

The training dataset consisted of 203 ARs in which rebate savings were applied for
calculating the energy cost savings during the study period. The historical rebate values,
eligible lighting technologies, and the ways of applying/receiving rebates are quite different
for each manufacturer, depending on the geographical locations of the plants because the
rebate policies varied among the 25 different regional utility territories in the studied
region [16].

The testing dataset consisted of 104 ARs from which rebate savings were omitted
because of three different reasons. Those that fell into the “legislation” group refer to the
ARs recommended by audits performed following the phasing out of energy efficiency
programs following the passage of HB6 in Ohio. Those falling into the “utility” group
included ARs in which the manufacturing facilities’ contracting utility program did not
offer lighting rebates, which was more likely in smaller and municipal utilities. ARs falling
into the “manufacturer” group were cases in which the rebates were not adopted because
the facility did not want to apply for the available utility rebate program. Small and
medium-sized manufacturers sometimes want to use a cheaper or less efficient solution
for various reasons. Our analysis showed that “install occupancy sensors” and “utilize
more efficient lamps” were the two most common ARs that made use of lighting rebates,
undoubtedly reflecting that most utility companies provided rebates for purchasing specific
materials such as LED light bulbs and occupancy sensors, whereas some utility companies
offered rebates based on how much energy a general lighting retrofit would save.

3.3. Optimal Model Selection

The metrics commonly used to determine the accuracy of the model include the coeffi-
cient of determination (R2), the mean absolute error (MAE), the mean squared error (MSE),
and the root mean squared error (RMSE). The predicted values were compared with the
training values, and the R2, MAE, MSE, and RMSE were calculated with Equations (1)–(4).
R2 is a value between 0 and 1 that determines how much of the variation in the data can be
explained by the model. An R2 of 1 means the model can explain all the variation, and a
value of 0 means the model cannot explain any variation. MAE measures the absolute dif-
ference between the predicted and the values along the regression line. MSE is the average
of the squares of the errors of a regression line. A smaller MSE indicates a smaller error in
a regression line and thus a better-performing model. RMSE is the standard deviation of
the prediction errors, which shows how close the predictions are to the regression line. It
measures the standard deviation of the residuals. The closer the RMSE is to zero, the better
the fit of the regressor line.

R2 =
∑n

i=1

(
ypredict,i − ydata

)2

∑n
i=1

(
ydata,i − ydata

)2 (1)



Environments 2022, 9, 100 7 of 14

MAE =
∑n

i=1

⌊
ypredict,i − ydata

⌋
n

(2)

MSE =
∑n

i=1

(
ypredict,i − ydata

)2

n
(3)

RMSE =

√√√√∑n
i=1

(
ypredict,i − ydata

)2

n
(4)

where ypredict,i is the predicted rebate values for assessment recommendation i, ydata is the
historical rebate values for the assessment recommendation, n is the number of ARs in the
dataset, and ydata is the average rebate value.

Table 4 lists the validation metrics for the four types of ML models we compared to
help us build the best rebate ML model, as explained in more detail in Section 3.4. As the
table shows, the ANN model performed very well, with an almost perfect R2 and very low
RMSE and MAE values, indicating the regression line errors. The validation metrics for
other models are much less accurate (i.e., the errors indicated by MAE and RMSE increased).
Although the GBM model had an equivalent R2 to ANN, the MAE and RMSE were slightly
larger, making it a less optimal model for our purposes. The RF and GLM models showed
an even poorer fit.

Table 4. Validation metrics for rebate ML model selection.

Type of ML Model
Validation Metrics

R2 MSE (USD) RMSE (USD)

ANN (selected) 0.99 284 418
GBM 0.99 318 566

RF 0.95 1036 2172
GLM 0.00 5830 9576

Table 5 compares the validation metrics for the implementation of the ML model, as
shown in more detail in Section 3.5. For the purposes of this model, we found that GBM
was the most accurate. Whereas the goal of the rebate ML model was to predict a discrete
value, the goal of the implementation ML model was to predict enumerators by assigning
“yes” and “no” a percentage value and selecting the higher percentage as the prediction.
Even though we selected GBM as the most accurate model, the ANN model had a lower
RMSE value.

Table 5. Selection metrics for the implementation model.

Type of ML Model
Validation Metrics

R2 MSE RMSE

GBM (selected) 0.91 0.02 0.15
RF 0.88 0.03 0.17

ANN 0.83 0.04 0.07
GLM 0.23 0.19 0.43

3.4. Rebate ML Model

Figure 2 illustrates how we used ANN to predict the rebate values (output) using
multiple input parameters. Before the training and testing data were entered into an ML
algorithm, we selected eight technical parameters associated with the lighting ARs to
include in our calculations: year, utility provider, type of ARs, number of lights, electricity
demand savings, rebate value, total implementation cost, and implementation. These
specific features were chosen because the selected training data are not correlated with
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each other and would not cause multicollinearity, which can occur when multiple variables
are linearly correlated with each other and cause statistical insignificance problems. The
hidden layer between the input and output layers adds a weight to the inputs and puts them
through activation functions as the outputs. Each neuron in the hidden layers (numbered
circles) forms the weighted sum of its inputs and passes the resulting value through an
activation function. For example, for the first prediction made in the hidden layer, the
variable “year” may be weighted higher than the other variables, but the second hidden
layer prediction may weigh “utility” higher. This continues for the entirety of the hidden
layer, and the output is an aggregation of all the predictions in the hidden layer.
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3.5. Implementation ML Model

Although 104 of the suggested testing ARs applied rebate savings opportunities to
show facilities how they could save energy costs, the post-audit surveys showed that not
all the ARs were chosen to be implemented. To help us better understand why, we built
another ML model to capture the implementation patterns of facilities and analyzed the
influence of rebates on increasing implementation rates. This model is a binary classification
that predicts whether a facility will implement a lighting AR based on the newly predicted
rebate values produced from the rebate ML model explained in the previous section. A
prediction of “yes” means that the facility implemented the AR, and “no” means that the
AR was not implemented. For the reasons discussed above, GBM was shown to be the
most accurate model. Figure 3 describes how a GBM model trains each decision tree and
creates a prediction. In a GBM model, a decision tree is created for the original dataset, and
the predictions from that tree are compiled into a second dataset, where another decision
tree is formed. Each decision tree node takes a different subset of features for selecting the
best split. This continues for n times sequentially; for example, from the original dataset
to the second training dataset, the weighting of incorrect predictions (the size of the red
circles) increases, and the outcome is based on the weighted average of the predictions.
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4. Results
4.1. Results of the Rebate ML Model

The results of the rebate ML model reveal the potential savings offered by rebates
that were lost due to the three testing data scenarios described in Section 3.2. These results
were also used to calculate the feasible value of rebates that would have been awarded if
the AR had been implemented, which is information that future policymakers and utility
companies could use to create or reinitiate efficient lighting rebate programs. The model
predicted feasible total rebate values for each 104 AR (testing dataset) in USD. One of
the main constraints for the model is the range of the total rebate value for each AR. The
total rebate value for each AR cannot be less than zero (minimum) and cannot exceed the
implementation cost values (maximum). Figure 4 shows the total missed dollar savings
caused for each of the three reasons (legislation, utility, manufacturing). The rebate model
predicted a total of USD820,397 in missed rebate savings across the 104 lighting ARs in the
testing dataset.
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Figure 5 compares the total implementation cost and payback periods before and
after adding the predicted rebate values to the calculations. The blue and red bars rep-
resent the average implementation cost per type of AR with and without rebate savings,
respectively. The percentages are the percentage of reduction in the implementation cost.
If we consider all ARs, the results show that manufacturing facilities could have reduced
their implementation costs by about 34% through these ARs. The orange and green lines
reveal how the reduction in implementation costs also helped produce a faster payback
for each energy-efficient lighting project, amounting to a reduction of about 30% for all
ARs. This information should help facilities feel more confident that their investments in
energy-efficient lighting will pay off quickly and increase their cash flow, which could be
reinvested in even more energy-efficient practices.
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Because eight unique AR variables were inputted to the model, a wide range of rebate
values was generated for each AR after running the rebate ML model. Nominal values for
each AR type were found to give a general indicator. Equation (5) was used to find the
rebate rates for the ARs within the testing dataset.

ε =
τ

ζ
(5)

where ε is the rebate rate per kWh saved, τ is the total rebate value in US dollars, and ζ
is the total kWh saved by the implementation. Table 6 shows the nominal rates for each
type of lighting AR. “Utilize more efficient lamps and ballasts” saw the largest rebate rates,
possibly due to it being the most common AR and the large scale of most of these ARs.
These ARs typically include switching almost every light in a facility to a more efficient
lamp, so larger rebates are expected to help mitigate these costs.

Table 6. Predicted rebate rates for energy-efficient lighting ARs.

Energy-Efficient Lighting ARs Predicted Rebate per Unit of
Energy Saved (USD/kWh)

Install occupancy sensors USD0.020

Install spectral reflectors/delamping USD0.014

Utilize daylight whenever possible USD0.016

Use photocell controls USD0.030

Utilize more efficient lamps USD0.043

4.2. Results of the Implementation ML Model

The implementation ML model results are intended to help us better understand how
rebate programs affect the probability of industrial facilities implementing lighting ARs.
When developing the implementation ML model, we used the same training data as for
the rebate ML model but updated the implementation cost parameters information with
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the predicted rebate values generated from the rebate ML model. As explained earlier, a
GBM model was selected as the most accurate option for the implementation ML model.
Table 7 shows the number of lighting ARs that were implemented or not implemented by
client manufacturers for the 13 years of the study according to the results of the post-audit
survey conducted 9 months after the industrial energy assessment and how much that
implementation might have increased if the rebate rates predicted by the implementation
ML model were applied. From the post-audit survey data, it was found that about 70%
of lighting ARs that did not include rebate opportunities were not implemented. After
running the ML model, the number of implemented ARs increased for every type of AR.
The results indicate that if the predicted rebate rates had been applied to the rebate-omitted
ARs, the percentage of implemented ARs would have increased from 30% to 52%.

Table 7. Implementation results from the GBM model based on the AR type.

Number of Rebate-Omitted ARs If Predicted Rebate Rates Were Applied

Energy-Efficient Lighting ARs Not Implemented Implemented Not Implemented Implemented

Install occupancy sensors 19 7 18 8

Install spectral reflectors/delamping 4 2 3 3

Utilize daylight whenever possible 6 6 4 8

Use photocell controls 1 1 1 1

Utilize more efficient lamps 43 15 24 34

Total 73 31 50 54

Percentile 70% 30% 48% 52%

Figure 6 compares the changes in implementation rates before and after the ML model
was run in order to learn the impact of the three types of reason. The largest increase in
implementation rates was shown in the group affected by the legislation, which suggest
that if the state of Ohio had not passed HB6, which directly led regional utility companies
to discontinue energy efficiency rebate programs, there was a higher chance that industrial
facilities would have reduced their energy usage and costs through the lighting rebates.
Across all three types of rebate-omitted cases, the results predict an average 50% increase
in the number of lighting-related AR implementations, which suggests that providing
rebates for lighting systems can significantly increase the implementation of energy-efficient
lighting ARs in industrial facilities.
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5. Conclusions

While not consistent across the US, utility incentive programs have been shown to
influence manufacturing facilities’ decision-making regarding implementing energy effi-
ciency measures. This study demonstrated that energy-efficient lighting rebates played an
important role in incentivizing the implementation of energy-efficient lighting equipment
by manufacturing facilities in the whole Ohio region. Across the three scenarios in which
rebates were omitted from the recommendation analyses and five different types of lighting
recommendations, a ML analysis predicted that a total of USD811,090 in potential rebates
was lost by the facilities that were energy audited by the UD-IAC over a 13-year period, and
that these facilities were more 50% more likely to have implemented lighting ARs if these
rebates had been available. The results provided some additional insights. The ARs that
recommended upgrading to more efficient lamps missed out on the largest opportunities
by far, ranging from over USD130,000 to more than USD350,000, reflecting that upgrading
to high-efficiency lamps was the most frequent AR offered to facilities during this period.
The corresponding rebate values predicted by the ML model (USD0.043/kWh savings) for
this AR type were also much higher than those of any of the other ARs. Together, these
findings suggest that increasing a manufacturing facility’s investment in energy-efficient
lighting projects would also save large implementation costs. The ML techniques proved
to be effective in capturing the importance of rebates. Such evidence that facilities are
willing to implement more energy-efficient measures when incentivizing programs such as
energy-efficient rebates are in place should encourage policymakers and utility companies
to create or restore the kind of energy-efficient programs that were available in Ohio be-
tween 2009 and 2019. Although this research was only performed for facilities receiving
energy-efficient lighting ARs in one midwestern state, similar research into energy systems
across various localities, states, and countries could help make such policies more politically
and economically viable.
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