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Abstract— In this paper we present a method to calculate the
intended motion of joints in the human body by analysing EMG
signals. Those signals are emitted by the muscles attached to the
adjoining bones during their activation.

With the resulting intended motion a leg orthosis will later be
controled in real-time to support disabled people while walking
or climbing stairs and help patients suffering from the effects
of a stroke in their rehabilitation efforts.

To allow a variety of different motions, a human body model
with physical properties is developed and synchronized with data
recorded from the pose sensors. Computing the intended motion
is performed by converting calibrated EMG signals to muscle
forces which animate the model.

The algorithm was evaluated with experiments showing the
calculated intended motion while climbing one step of a stair.
The algorithm and the experimental results are both shown.

Index Terms— Exoskeleton, Orthosis, EMG, Rehabilitation,
Intended Motion.

I. INTRODUCTION

EMG signals have long been studied by many researchers
to analyse disabilities, anomalies or to track progress in
rehabilitation. Except some early work [1], only in recent
years the focus shifted to control robot arms and exoskeletons
with EMG signals [2], [3]. The advantage of using EMG
signals is their ability to predict the intended motion (motion
the subject wants to perform but cannot in some cases) as
long as the muscles are not paralyzed, but even if they are
too weak to actually perform the movement. This is the main
reason for choosing those signals as the interface between the
subject and the orthosis aside from the intuitive handling: In
our environment the orthosis (see Fig. 1) that is attached to
the leg restricts the motion in the knee if the actuator is not
powered. Thus the intention has to be recognized without any
motion being carried out to control the actuator accordingly.

In many EMG applications (like grasping objects with a
prostheses, e.g. [4]) the signals are used to toggle binary ac-
tions or recognize activation patterns [5] to control predefined
trajectories. When considering full-body motions like walking
or climbing stairs a more flexible input handling is desirable
to allow the subject to maintain balance, step over obstacles
and adapt the motion to different velocities.

Since the actuator powering the knee does not behave like
a human muscle, but instead introduces a resistance to the
actuated joint if it is not or only low powered, a body model
has to be developed to simulate the behaviour of the joint
taking into account the intended joint torque as derived from

the EMG signals, influences from the adjoining bones and the
external forces - as if the actuator did not exist.

The resulting motion has to be performed online by the
actuator. Considering all that, two main problems have to be
solved to perform intended motion prediction with EMGsig-
nals:

o development of a body model simulating the subject,

« calibration of the EMG signals.

The body model has to cope with different points of
contact with the environment and influences from parts of the
subject’s body that are not modeled (and thus no information
about their pose is available).

Many body models have been developed (e.g. Delp et. al.
[6]), driven with EMG signals and are able to calculate the re-
sulting joint torques [7], [8], [9]. The problem when applying
those models to an exoskeleton orthosis is their sometimes
high complexity or the need for external sensors like force
plates, dynamometers or vision systems for calibration and
computation of the dynamics.

Fig. 1.
pose sensors in the foreground (Hall sensors: solid circles, accelerometers:
squares, floor contact sensors: dashed circles). In the background the light-
weight orthosis for the left leg can be seen.

This image shows the orthosis with the attached actuator and all

Our approach is to derive a more simplified body model,
taking into account only the most important properties of the
subject. All varying parameters should be calculated through
the sensors attached to the orthosis to assure consistency of
the calibration with the sensor readings during interaction
with the orthosis.

In our case it is not necessary that calculated muscle
forces match actual forces in the subject’s body exactly as in



clinical diagnosis. For our purpose it is essential that the body
model performs the same motions when the EMG signals are
applied, because they are interpreted as the desired motion
and will be executed.

The calibration of the EMGsignals is very important since
they are different for every subject and from day-to-day,
depending on numerous factors like moisture on the skin,
muscle fatigue and blood circulation [10]. The problem has
been approached for applications like this by ourselves as
presented in [11], but an improved version is presented here
allowing co-contraction of muscles and taking into account
ground reaction forces.

As can be seen in Fig. 1, the orthosis covers the right
thigh, shank and foot. Currently only intention reading and
force support for the knee joint has been realized.

II. FRAMEWORK

This section describes the framework in which the motion
prediction algorithm is running. Please refer to Fig. 2 for an
overview of the whole system.

A. Measurement System

The measurement system used for the algorithm consists of
two groups of sensors: The EMG sensors to read the muscle
activity and the pose sensors to get the current state of the
subject.

The EMG sensors are placed on top of selected mus-
cles responsible for flexing and extending the knee: the M.
semimembranosus and M. vastus medialis [12], [13]. Many
other muscles cooperate during those motions but we have
chosen those as they are most clear and simple to record and
largely contribute to the resulting torque in the knee [14]. The
signals are sampled with 1kH z from DelSys 2.3 Differential
Signal Conditioning Electrodes [15] with an built-in gain of
1000% and a bandpass filter from 20 — 450H z. In software
the offsets of the signals are eliminated, the resulting signal
rectified and lowpass filtered with 4H z to approximate acti-
vation envelopes of the muscles.

Ankle and knee angles are measured in sagittal plane on
both legs with Philips KMZ41 Hall sensors [16] and the
thigh and trunk angles with accelerometers ADXL.210 from
AnalogDevices Inc. [17] (as described in [18], [11]). All
sensors measuring the current pose are attached to the orthosis
as shown in Fig. 1 except the torso sensor on the belly-plate
which is not shown. In addition to that, pressure sensors are
attached under the heel and footpad on both feet to detect
floor contact (binary result: contact / no contact). All sensors
are sampled with 1kH z.

B. Signal Flow

As mentioned in the introduction, the intended motion of
the subject should be analysed to let the human control the
orthosis (Fig. 2). First, the current pose of the subject is
read from the pose sensors attached to the limbs and fed
into the biomechanical model. To determine the intended

motion of the joints within the orthosis, the EMG signals
from the appropriate muscles are recorded, converted into
muscle forces and also fed into the biomechanical model.
The model now calculates the knee torque from the muscle
forces and computes the resulting acceleration for the knee
joint by regarding all joint torques and the ground reaction
forces. The knee acceleration is interpreted as the desired
motion and passed to the motion controller. Depending on
the actual implementation of the controller, the acceleration
can be integrated once or twice.

To be able to use the EMG-to-force function, parameters
of the function have to be calibrated. This is performed in
the block calibration: The biomechanical model calculates
the knee torque (torque that must have been active in the
knee to produce the current motion) using inverse dynamics.
This torque, together with the corresponding EMG values of
all recorded muscles, are fed into the block calibration to
optimize the parameters of the EMG-to-force functions. The
computed parameters are then passed to the EMG-to-force
functions again.

III. COMPUTING THE INTENDED MOTION

Computing the intended motion is based on interpreting the
results of the online simulation of the subject’s body.

A. Body Model

The human body model of the simulation consists of two
legs with feet, shanks, thighs and the torso. All limbs and
the torso are modelled as rigid bodies (rectangular paral-
lelepipeds) connected with swivel joints that can rotate in
sagittal plane only. Body masses for the torso, thighs, shanks
and feet are calculated as fixed fractions of the total body
weight (myorq; = 88kg) of the subject (the figures can be
found e.g. in [19]). Body dimensions are taken from our
subject. Two muscles My (flexor) and M, (extensor) have
been added to produce the corresponding forces Fjy, and
Fyy, to allow flexion and extension of the knee. The points
of origin 0] fs 66 and insertion I_;c I_; of the muscles are fixed
and have been chosen by hand in analogy to human anatomy.

Biomechanical Model
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Fig. 2. The figure shows the data flow within the system. The solid lines
show the flow in normal operation mode, the dotted lines mark additional
signals during EMG calibration.



The dynamic equations of the model were derived using
Kane’s formalism [20]

M(q)u = f(q,u) + T x g(q) 1)

where

e q: vector of generalized coordinates, which are joint
angles qup’ q;clnee’ q;nkle’ qéip’ qfcnee’ qlllnkle’ Gtorso and
coordinates of the reference point gy, s, @pepis With
the z-axis parallel and the y-axis perpendicular to the
ground in the sagittal plane),

o u: vector of generalized velocities, with ¢ = u (time
derivative in the Newtonian reference frame),

o M (matrix function): specifies mass distribution,

o f (vector function): adds inertial forces and gravity,

o T: takes into account all torques in the joints as a
result of the muscle forces applied: ¢}, Uyees Lankie
thips thmees taniie together with the external forces F,
Fé, F;, F, applied to the left and right ankles in z—
and y—direction, F* applied to the hip and the torques
applied between the reference frame and the feet 7, T,

o g(q): nonlinear function representing the current system
configuration and geometry.

The dynamic equations (1) were generated with the sym-
bolic manipulation tool AUTOLEV [21] resulting in a system
of nine equations. The script for the system description and
equations generation can be received on request.

The body model is used in two different ways: the forward
dynamics and the inverse dynamics (Fig. 2). The inverse
dynamics block solves the Eqgs. 1 for elements of T: the
torques in the joints (as contributed by the muscles, not by
external forces or other body parts) and some external forces
depending on the current contact configuration of the feet
with the ground:

« only left foot: F}, F, and T",

« only right foot: F;, F}/ and 1",

o both feet: F, F and F}!
(is symmetric for both legs and avoids singularities when
feet are close together).

The other elements of T are set to 0. The accelerations
1 needed to perform the inverse dynamic computation are
numerically derived from the values of the pose sensors with
At = 30ms. After this computation the contributions of the
mentioned torques and forces that result in the current motion
are known.

The forward dynamics block takes the current system state
S(t) = (q(t),u(t))” and applies all internal and external
torques (except for the actuated knee t7,,..) and external
forces as calculated by the inverse dynamics, assuming they
are all constant for a short period of time. After that, Eq. 1
is solved for 01 as the solution of the forward dynamics.

The torque of the actuated knee joint ¢}, . is calculated
by converting the EMG values to activations as proposed in
[22][7] and scaling them to the maximum force (EMG-to-

force function):

eAiui(t) _ 1

g, (t) = Py v

! fj,maaz; (2)
where Fy,(t) is the force produced by the muscle j with
j =1...N (IN: number of recorded muscles), u;(¢) the post-
processed and scaled EMG signal at time ¢ of muscle j and A
the non-linear shape factor. A; was limited to —10 < 4; <0
in our setup. The scale for u;(t) is set to s; = 1/ujmax
where 1 142 1s the maximum recorded post-processed EMG
signal during calibration with the corresponding maximum
force f; maa-

The total knee joint torque ¢, is calculated as a sum of
all force contributions of the muscles spanning the knee joint
with

N " _ g
r _ TR TR J J
knee(t)_z (IJ -J ) X |I_.R_O_.R| FM] s (3)
Jj=1 J J
where J% is the vector to the knee joint and Of and IZR the
points of origin and insertion in the reference frame.
Co-contraction is allowed during normal operation mode
but is not handled explicitly (e.g. by changing properties of
the knee joint).

B. EMG-to-Force Calibration

Since EMG signals vary very much even for the same
subject from day-to-day, the parameters f; mq, and A; from
the EMG-to-force functions in Eq. 2 have to be calibrated.

The optimization procedure is split into three parts that
are executed online while the motions are performed by the
subject:

1) gathering of data into special tables,
2) checking if optimization for a muscle is feasible,
3) optimizing parameters of one muscle at a time.

The basic idea was published by us in [11], but an improved
version is presented here, taking into account co-contraction
of muscles, ground reaction forces and reducing computation
time by using inverse dynamics: For every muscle m =
1... N one table exists. Every entry of those tables contains
EMG signals of all muscles at time ¢; and the resulting knee
torque t},...(t;) as computed by the inverse dynamics. The
entries of table m are indexed by the activation of muscle m
for reading and writing.

As a result, all tables will contain unique information
about different levels of muscle activations and resulting
knee torques. Since the entries of the tables are indexed by
activations of different muscles and not by time, redundancy
of information is kept low, minimizing the costs of the
optimization independent of the complexity of the necessary
motion.

Before the optimization of a specific muscle can be
performed, three conditions have to be met, otherwise the
calibration is postponed:

1) the data table contains more entries than ¢,,;, = 0.6 -
Tmae (avoids calibration without sufficient data),



2) Cpew = 0.8 - Tinqe of the non-empty entries must have
been replaced since the last calibration (avoids repeated
calibration without updated information),

3) all antagonistic muscles that have an activation of more
than ¢, = 0.25 - U mqee of muscle j that should be
calibrated have to be already calibrated (omits unwanted
bad optimizations due to missing counteraction in case
of co-contraction).

T'nax 18 the maximum number of entries in the table expected
to be filled during the considered motion. But it is possible
to resize the table at run-time if needed.
The optimization itself is performed by minimizing the
error-function
2

T N
E=3" (@)=Y ) . @
i=1 m=1
where t;:;: is the torque as computed by the inverse dy-

namics and stored in the table and ¢,

knee.m 1S the torque
contribution of muscle m to the total knee torque. ¢ denotes
the i-th non-empty table entry, 7' the total number of non-
empty entries.

During the optimization only the parameters of the cur-
rently considered muscle are optimized, all others are evalu-
ated together with the corresponding EMG signals to account
for co-contraction. This greatly reduces the dimension of the
optimization but makes a repeated optimization necessary as
soon as parameters from other muscles are changed.

In contrast to the previous version the calibration presented
here is reduced to optimizing an exponential function by
utilizing inverse dynamics.

Since the paramaters can be bound to

0< fj,max < fmaz (5)
Amin < A5 <0 (6)

with f,0. = 10000N and A,,;, = —10 as experimentally
determined, fast and stable optimization by subspace search
can be performed.

Thinking of the two parameters of a muscle as one dimension,
the repeated optimization can be seen as the implementation
of a direction set algorithm [23]: The optimum is searched
along one dimension. If found, the algorithm continues with
the following dimension cycling through all of them until a
global criterion is met that identifies a local optimum.

Fig. 3 shows two calibration curves from the experiments
described in Sec. IV.

C. Motion Controller

The motion prediction is based on evaluating the body
model with the calibrated EMG signals.

In every iteration of the algorithm the current state of the
body model is synchronized with the state of the subject as
read from the pose sensors. To all joints except the actuated
right knee joint the torques are applied as calculated by

the inverse dynamics, assuming that the muscle forces are
constant for the short period of one iteration. Additionally,
the similar computed ground reaction forces are applied
to the model. The EMG-to-Force functions are evaluated
with the current EMG signals resulting in the desired force
contributions of the muscles to the total knee torque.

Computing the forward dynamics of the body model results
in solutions for the angular accelerations u for all joints and
an acceleration of the reference point.

Since only the knee is actuated and all joints of the model
are synchronized in every step, calculating u;,,, . is sufficient
here. Depending on the actual implementation of the low-
level motion controller 7,,.., U%,cc OF Q.. Can be used as
an put.

IV. EXPERIMENTS

To evaluate the behaviour of the algorithm more easily,
all experiments have been performed with healthy patients.
The example experiment presented here was performed in an
upright standing position. The actuator was not attached.

During the initial calibration phase the subject was standing
on the left leg and the right knee was bent backwards to 63
degrees to record EMG signals of the knee flexor. After that,
one step of a stair was climbed, right leg first, to record the
signals of the knee extensor.

This simple experiment tests the most important aspects of
the algorithm: motion of all limbs, various points of contact
during single- and double-support phase, swing-phase of the
right leg, co-contraction of knee flexor and extensor muscles
and co-activation with other muscles that are not recorded.

The calibration of the muscle parameters was divided into
three steps. The first step was performed after the backward
motion with the knee flexor. Since the maximum activation
of the knee extensor was below the flexor activation threshold
Cu, flex during this motion, the calibration procedure started
after having gathered enough data. Fig. 4 shows the results of
the optimization of the knee flexor parameters. Applying the
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Fig. 3. This diagram shows the final results from the calibration with

Afleac = —8.13, ffleac,mam = 232N (at Uflex,max — 0.05V) and
Aezt = —0.47, fezt,maz = 3750N (at Uezt,max = 0.06V).



EMG signals to the body model results in a torque-curve very
similar in shape and magnitude to the torque-curve calculated
by the inverse dynamics (see Sec. V).

Step two was performed after stepping up the stair. As can
be seen in the lower part of Fig. 5 both muscle groups are
active during this motion resulting in the calibration of the
knee extensor parameters while applying the parameters from
the previous calibration to the knee flexor.

Calculated Knee Torques During Free Motion
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Fig. 4. This diagram shows the knee torque as calculated through inverse
dynamics compared to the torque resulting from the EMG signal evaluation
(after having calibrated the EMG-to-Force parameters of the knee flexor).

In the final step parameters of both muscles have been
repeatedly optimized without the need of acquiring new data.
This was necessary since results modify each other due to co-
contraction. This procedure was terminated when the change
in parameters was sufficiently small.

Fig. 3 shows the final calibration curves for both muscles
and the upper part of Fig. 5 shows the torque-curves during
stair-climbing after the calibration was completed. It begins
when the right foot is lifted from the ground. The section
between the dashed lines indicate the double support phase
before the left foot is lifted and also put on the same step.

As can be seen there is an abrupt change and a high peak
in the knee torque as calculated by the inverse dynamics at
t = 4.62s. At this point a change in contact configuration
occurs: The left foot is raised from the ground.

In theory, if the motion is completely tracked with head,
arms and upper torso (or the torso has to be stiff) and if the
pose sensors are accurate enough, an abrupt change should not
occur. Unfortunately this is not the case with our experimental
setup. Motion artifacts due to inertial accelerations and errors
in calibration of the accelerometers attached to the torso and
thighs result in inaccurate angle readings. Especially for the
heavy torso this leads to wrong torque calculations in the
joints for some configurations.

Furthermore, during double support phase with the feet
apart no calibration data can be gathered (region between
the dashed lines in Fig. 5). In this configuration the inverse

dynamics cannot be calculated. The system is redundant and
no unique solution exists: Changes in the muscle forces of the
knee can be compensated through changes of muscle forces
in the right hip and ankle joints and the left leg without
performing any motion. This is also true for the forward
dynamics, but since only information about EMG activity
is gathered from the knee muscles and all other muscle
forces are assumed to be constant, an approximated desired
motion can be calculated. This desired torque can be seen
in Fig. 5. In this experiment, the double support phase lasts
from 3.56s < t < 4.58s.

Before and after the double support phase, a good corre-
lation of the two torque-curves can be seen expressing the
performance of the body model and the consistent calibration
for both muscles.

V. RESULTS AND DISCUSSION

As can be seen in the Fig. 4 and 5 the torque-curves
show the prediction of the intended motion. The shape of the
curves correlate very well, although sometimes the amplitudes
of the curves differ. This is not a major problem for the
desired application: Since the subject wearing the orthosis
is inside the control loop of the system, he or she can
increase or decrease the muscle activity a little to adapt to
the circumstances. This is what healthy persons do every day
and is part of the necessary rehabilitation for injured persons.

Calculated Knee Torques During Stair Climbing
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It is more important that through the filter and data-processing
chain no significant displacements in time occur. For practical
experiments with the actuator attached, a time-displacement
would introduce a delay while executing the desired motion.
That would let the orthosis react slowly to the muscle activity.

The results also show the possibility to use one muscle
out of a group to represent the activity of the whole group
for a specific motion. Unfortunately, preliminary tests with
different kind of motions have shown that it will be necessary
to incorporate more knee flexors and extensors to handle a
range of different motions.

Looking at the sensor system it has to be mentioned that
a good calibration and accurate readings are very impor-
tant. Otherwise inconsistencies between EMG activities and
recorded motions can occur which cannot be handled easily
by the calibration algorithm.

A prerequisit for all experiments is the ability of the
subject to control the muscle activations to balance during
movements. The natural muscle force does not have to be
sufficient. But due to the limited actuated degrees of freedom
of the orthosis, algorithms to maintain postural stability can
be hardly applied at the moment.

VI. FUTURE WORK

In this paper an approach has been presented that allows
to calculate the intended motion of a subject wearing a lower
extremities orthosis by evaluating EMG signals from certain
muscles.

The next steps of research will be to experiment with
the actuator attached and powered to get a feeling for the
force feedback effects. It has to be examined if adding more
properties to the muscles improve the prediction or if further
simplifications can be made.

To allow a larger variety of motions, more muscles from
the knee extensor and flexor groups have to be interpreted as
our preliminary experiments have shown. This most certainly
introduces a new problem of crosstalk between neighbouring
muscles that has to be eliminated with algorithms like blind
source separation to discriminate the different activities.

It has to be evaluated if real force support with the orthosis
is possible by multiplying the output of the EMG-to-Force-
Function with a value s > 1.0. In theory the EMG activity
for one and the same motion should be reduced if no other
factors interfere.

The handling of erroneous or incomplete data from the
pose- and contact-sensors has to be improved to allow reliable
computation in difficulty situations, e.g. when the subject is
leaning to the wall or is supporting herself or himself with a
handrail.

Other steps include first experiments with patients to op-
timize the algorithms for weak EMG signals and test the
performance of the calibration. One open point here is that
some patients might not be able to perform the motions
needed for the calibration.

It has to be examined if this can be done with the aid
of a therapist or if alternative methods of generating the
parameters have to be developed. Despite of all those topics
that need to be addressed, hopefully in the near future this
system will provide an intuitive and easy-to-use interface for
an exoskeleton orthosis.
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