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ABSTRACT 
Mobile context-aware applications experience a 
constantly changing environment with increased 
dynamicity. In order to work efficiently, the location of 
mobile users needs to be predicted and properly 
exploited by mobile applications. We propose a spatial 
context model, which deals with the location prediction 
of mobile users. Such model is used for the 
classification of the users' trajectories through Machine 
Learning (ML) algorithms. Predicting spatial context is 
treated through supervised learning. We evaluate our 
model in terms of prediction accuracy w.r.t. specific 
prediction parameters. The proposed model is also 
compared with other ML algorithms for location 
prediction. Our findings are very promising for the 
efficient operation of mobile context-aware 
applications. 
 
Keywords 
context-awareness, machine learning, location 
prediction, spatial context representation.  

1. INTRODUCTION 
During the recent past, we have witnessed an 
impressive growth in the domains of wireless-
mobile telecommunications and context-aware 
services. The general framework that evolved from 
distributed systems, and is currently described 
under the term mobile computing has attracted the 
extensive interest of academia and the industry. 
New protocols, schemes, applications and services 
are developed and applied in real-life situations. 
This escalating development has also triggered 
discussions on other, more enhanced paradigms 
like pervasive computing.  
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In order to render mobile applications intelligent 

enough to support modern users everywhere / 
anytime and materialize the so-called ambient 
intelligence, information on the present context of 
the user has to be captured and processed 
accordingly. Contextual information may refer to 
the user’s position, time, physical properties like 
temperature or other general parameters (e.g., the 
specific devices that the user carries). The efficient 
management of context requires detailed and 
thorough data modeling along with specific 
processing, classification, inference and prediction 
capabilities. 

A well-known definition of context is the 
following: “context is any information that can be 
used to characterize the situation of an entity. An 
entity is a person, place or object that is 
considered relevant to the integration between a 
user and an application, including the user and the 
application themselves” [26]. Context refers to the 
current values of specific parameters that represent 
the activity of an entity.  

Context-awareness allows an entity to adapt to 
its environment, thus, offering a number of 
advantages and possibilities for new applications. 
One of the more intuitive capabilities of mobile 
context-aware applications is their pro-activity. 
Predicting user actions and contextual parameters 
enables the development of new, advanced 
applications.  

Moreover, predicting the location of a mobile 
user is an inherently interesting and challenging 
problem. Location prediction has received 
increased attention driven by applications in 
location management, call admission control, 
smooth handoffs, and resource reservation for 
improved quality of service. Spatial information 
prediction can be used to facilitate the provision of 
advanced location-based services by preparing and 



feeding them with the appropriate contextual 
information (in advance). Pro-active context-aware 
applications address context pre-evaluation / pre-
determination introducing innovative proactive 
services, e.g., alerts related to traffic conditions, 
content pre-fetching and triggering actuation rules 
in advance (download company documents while 
entering downtown).  

Context pre-evaluation may match with 
information classification and prediction, in the 
sense that, the values of certain contextual 
parameters are estimated /evaluated, clustered and 
classified in advance. The concept of predicting 
context through ML algorithms and techniques is 
quite novel. ML refers to the study of algorithms 
that improve automatically through experience. A 
wide spectrum of applications based on ML 
algorithms relates to search engines, medical 
diagnosis, object recognition in computer vision 
and natural language processing. ML tasks can be 
addressed through: supervised learning, (e.g., 
classification and regression), and unsupervised 
learning, (e.g., clustering and rules extraction). In 
this paper, we adopt classification in order to 
predict spatial context - location. The (training) 
examples used for the supervised learning task are 
vectors of attribute-value pairs. Each example is 
assigned to a specific class from a fixed set of 
classes (e.g., symbolic locations). The goal of the 
classification task is to develop a model from a set 
of examples capable of predicting the class of a 
given unseen example. 

A context model is proposed in order to support 
location prediction for mobile users. Such model 
predicts, with a certain accuracy level (portion of 
successful predictions), the future position (cell) of 
a mobile user in a cellular environment and can be 
used for the pro-active management of network 
resources (e.g., packets, proxy-cache content). The 
model can be trained using a variety of ML 
classification algorithms. In this paper we 
experiment with such algorithms, in order to 
perform location prediction. We can divide the 
assessed algorithms into two broad categories 
according to the way they construct their 
classification models: standard classification 
algorithms, (e.g., decision trees, k-nearest 
neighbors, support vector machines), and ensemble 
learning algorithms that learn to combine 
classification models constructed by base learning 
algorithms in order to improve predictive 
performance. Typical examples of this last 
category are the boosting and voting schemes. 
Finally, the performance of the ML models is 
compared with that of the most cited location 
prediction models namely the LeZi-Update [12] 

and Mobile Motion Prediction (MMP) [13] 
algorithms.  

This paper is organized as follows: Section 2 
reports certain ML schemes used for classification 
while in Section 3 the context representation model 
taking into account the user mobility pattern is 
proposed. In Section 4, we evaluate the discussed 
model and we compare it with the certain ML 
schemes. Section 5 reports prior work on that 
research area and, finally, Section 6 concludes the 
paper. 

2. CLASSIFICATION IN MACHINE   
LEARNING  
Classification is the task of learning to categorize 
(predict) an unseen example to a discrete class 
value. An example is a (m+1)-dimensional vector e 
of m attributes ei, i = 1, …, m and a class attribute 
em+1, that is e = [e1, …, em, em+1]. The ei attributes 
determine the value of the class attribute em+1 of e. 
An ei attribute assumes values from the 
corresponding domain Dom(ei). The input of a 
classification algorithm is a set E of s example 
vectors, E = {ei, i = 1, …, s}, and the output is a 
classification model M(E). Such model is capable 
of predicting / estimating the value of the class 
attribute of an unseen and yet unlabeled (m+1)-
dimensional example vector q based only on the 
values of its qi attributes with Dom(ei) = Dom(qi), 
∀i. 

The performance of a classification algorithm is 
estimated on the basis of the quality of predictions 
delivered by the trained models. In order to 
estimate the classification performance, a test 
phase is required. In the test phase we employ a 
test set V that was not used in the training phase. A 
classification model, M(E), is established through 
the training set, E,  as a result of the learning 
phase. The produced model M(E) is then applied 
on the test set V and the correctness of its 
predictions is assessed and quantified. Prediction 
accuracy ε is a quantitative measure for the 
classification performance. It refers to the 
proportion of the correctly predicted examples C ⊂ 
V out of V, i.e., the fraction ε = |C| / |V|, where |C| 
denotes the cardinality of C. One method to 
estimate the prediction accuracy of a classification 
algorithm is a re-sampling method called cross-
validation [1, 2]. In n-fold cross-validation, the 
training set E is divided into n subsets of equal 
size. A different model M is trained n times, each 
time setting aside one of the subsets which will be 
used as the test set on which the predictive 
accuracy will be computed. The final accuracy 
estimation is the averaged accuracy over the n 



different repetitions of the training and testing 
phases. 

 A number of different learning paradigms have 
been developed over the years for classification. 
Since there is no single classification algorithm 
that is better than all the others irrespective of the 
application domain, each time face a new 
classification problem we have to assess anew the 
suitability of the algorithms. We have 
experimented with several classification algorithms 
trying to cover a range, as broad as possible, of 
different learning paradigms. We found a voting 
ensemble-learner to be the best for our application 
problem according to the estimated predictive 
performances. In the next paragraphs we give a 
brief description of the different types of learning 
paradigms that we are going to consider in this 
paper. 

 
2.1 Bayesian learning  
Bayesian classification algorithms are statistical 
learning algorithms based on the Bayes theorem. 
The Naïve Bayes algorithm (the simplest Bayesian 
classifier) [5] assumes that, the effect of the value 
of an attribute on the class attribute is independent 
of the values of the other attributes given the value 
of the class attribute (conditional independence). 
 
2.2 Decision Tree learning  
A decision tree consists of decision nodes and 
leaves. A leave is usually associated with a single 
class; the majority class of the training examples 
that arrive to that leave. Splits are introduced in the 
building of the tree according to the outcome of a 
function f (information gain ratio). When examples 
are classified a function is used in each split to 
determine the downstream path to be followed [6]. 
An indicative decision tree-based algorithm is the 
C4.5 classifier [7]. 
 
2.3 Rule-Induction learning  
Rule-induction performs a depth-first search in a 
graph G(V,E) generating one path. V is a set of 
attributes and E is the set of edges denoting 
dependencies among attributes. Such path 
represented as a classification rule [8] is a 
conjunction of conditions with discrete or numeric 
attributes. A rule is said to cover an example if the 
later fulfills all the conditions of that rule. A 
representative rule-induction algorithm is the 
RIPPER ( Repeated Incremental Pruning to 
Produce Error Reduction) [9]. 
 
2.4 Instance-based learning  
An instance-based algorithm uses a distance 
function ||e - q|| in order to determine which 

example vector e of the training set is closest to an 
un-classified example q (or instance). Once the 
nearest example vector has been determined, its 
class label is selected as the class label for q. A 
representative instance-based algorithm is the k-
nearest neighbor classifier.  
2.5 Ensemble-Learning Algorithms  
Ensemble-learning algorithms combine a number 
of base classification models, classifiers, produced 
by different learning algorithms or by different 
training sets, in order to achieve better 
classification performance than their constituents. 
Base models can be combined in different ways in 
order to generate ensemble-learning algorithms. 
Popular ensemble-learning algorithms are the 
following: 
 
2.5.1 Voting 
Each base classifier predicts, votes, a class. The 
final class is that, which assumes the greatest 
number of votes.  
 
2.5.2 Bagging 
Several training sub-sets Ei are formed from the 
initial training set E by random re-sampling with 
replacement. A base classifier is learned from each 
training sub-set. The final class is determined by 
voting of the base classifiers.  
 
2.5.3 Boosting  
In boosting also the diversity of the base classifiers 
is a result of different training sets. The method 
works in an iterative manner re-sampling the 
current training dataset by giving higher resample 
weights to instances that are hard to classify. The 
final class is determined by a weighted voting of 
the base classifiers where the weights are 
determined on the basis predictive performance of 
the base classifiers. A typical example of a 
boosting algorithm is AdaBoost M1 boosting [6]. 

3. CONTEXT REPRESENTATION 
3.1 Spatial Context Model 
The contextual information considered for 
classification refers to the history of user 
movements. Such history is represented by a 
(m+1)-dimensional vector e of m time-ordered 
visited locations ei, that is, ej < ei if the user visited 
location ej before ei, i, j = 1, …, m. Such locations 
refer to the antecedent-part of a classification rule 
while the consequent-part is also the location em+1, 
which is the predicted location. In the considered 
context model, the user roams through a cellular 
network thus a network cell with a unique 
identifier represents a location. All attributes of the 
e vector assume values in the set Dom(e) of 



network cells identifiers. Assume that a user u is 
currently positioned at cell e, which becomes the 
point of reference. We want to predict which cell 
the user is going to move to in the next transition. 
Let eS(u) denote the sequence of the last m cells 
from which user u went through together with the 
class attribute, em+1, i.e., the cell to which he/she is 
going to move in the next transition. Note that the 
eS(u) vector does not model time. Instead, it only 
models cell transitions. Then, from the complete 
sequence of transitions of a user, we extract a 
number of transition sequences, eS(u), applying a 
sliding window of length m+1, where : 

eS(u) = [e1, e2, …, em, em+1] (1) 
In the above vector em is the cell in which the 

user is currently positioned, em+1 is the cell to 
which he/she is going to move in the next 
transition and which constitutes the prediction 
target and [e1, e2, …, em-1] is the sequence of cells 
from which the user passed before reaching em. We 
explain the above model through an example. 
Consider a set of cells Dom(e) = {e1, e2, e3, e4, e5}. 
Assume a user that had the following sequence of 
transitions [e1, e2, e3, e4, e5]. Applying a sliding 
window of length 3 derives the following three eS(u) 
[e1, e2, e3], [e2, e3, e4], and [e3 , e4, e5]. Obviously 
the corresponding class labels are e3, e4, e5.  Figure 
1 depicts an area divided into cells in which 
several sliding windows of a user movement are 
shown.  
 

Movements:
t1 t2 t3

Network

Cell

 
Figure 1. The three eS(u) vectors of a sliding window of length m = 

4. Note that the sliding windows are overlapping. 

3.2 User Mobility Profile  
We introduce the parameter degree of movement 
randomness, δ ∈ [0, 1], in order to express the 
mobility behavior of a user, i.e., the way a user 
transits between cells and changes directions. Such 
degree is used for assessing the performance of the 
proposed models under various levels of 
uncertainty and unpredictability w.r.t. mobility 
behavior. The δ degree denotes the possible 
transition patterns of a user trajectory between 
locations. A certain trajectory can derive either 

from a deterministic movement (assuming a low 
value of δ) or a random movement (assuming a 
high value of δ). The adoption of δ provides an 
objective criterion for assessing movement 
prediction algorithms. It allows a correct 
interpretation of the performance evaluation results 
(e.g., a high accuracy may not necessarily indicate 
an efficient algorithm if the testing patterns were 
quite deterministic).  

The deterministic trajectories represent regular 
movements (e.g., the route from home to work). 
On the other hand, random trajectories represent 
purely random movements between predefined 
locations (e.g., a quick detour for a coffee after 
leaving home and before getting to work). 
Therefore, a value of δ ~ 1.0 does not mean an 
explicitly non-deterministic mobility behavior. 
Instead, such a movement (i.e., δ ~ 1.0) is 
constrained by obstacles in the examined space.  

In our experiments, we adopted the mobility 
pattern generator discussed in [10]. Through this 
generator we obtained trajectories with specific δ 
values in the set {0.0, 0.25, 0.5, 0.75, 1.0}. The 
five discrete values of δ range from the regular 
pattern (δ = 0.0 with 500 example trajectories) to 
completely random pattern (δ = 1.0 with 1000 
example trajectories). It should be noted that, the 
value of δ influences the size of the training 
patterns (movement history) since the more 
random the movement is, the more transitions are 
generally required for a certain itinerary (i.e., 
moving from a given origin to a given destination).  

 
Table I. The value of the majority class ρ w.r.t., degree of 

randomness δ. 
Degree of Randomness 

(δ) 
Majority Class ratio (ρ), 

(Default accuracy) 
0% 9.06% 

25% 6.53% 
50% 5.48% 
75% 3.81% 
100% 3.69% 

4. CONTEXT MODEL EVALUATION 
We derive a number of context models that, in fact, 
correspond to the different classification models 
build from the different classification algorithms 
that we consider, and examine their relative 
predictive performance. All the considered 
classification algorithms are provided with the 
Weka machine-learning workbench [4]. We 
represent user trajectories through a series of 
waypoints. Each waypoint is defined by the 
location in terms of a cell and speed. The number 
of cells is 100, hence, |Dom(em+1)| = 100. Traces 



were obtained by the RMPG tool [10] which 
allows a controllable degree of randomness. We 
have used five discrete categories of randomness 
from the regular pattern (δ = 0.0 with 500 training 
instances) to completely disordered trajectories (δ 
= 1.0 with 1000 training instances). 

We experimented with the following classifiers 
from Weka: (i) the Naïve Bayes classifier, (ii) the 
J48 Decision Tree-based classifier (an 
implementation of the C4.5 algorithm), (iii) the 
JRip Classification Rule classifier (an 
implementation of the RIPPER algorithm), and (iv) 
the IBk incremental algorithm (an implementation 
of k-nearest neighbor algorithm). From the 
category of the Ensemble learning algorithms we 
experimented with: (i) Voting with the base 
classifiers constructed by J48 and Ibk, (ii) Bagging 
were the base classifiers were learned by IBk, and 
finally (iii) the AdaBoost M1, where the base 
classifiers were also learned by IBk. The prediction 
accuracy ε for each classification algorithm is 
estimated by 10-fold cross-validation.  

We assessed the level of statistical significance 
for the differences in the accuracies of the different 
classification algorithms using the t-test [11]. We 
extensively evaluated the performance of models 
produced by the best classification algorithm under 
different levels of movement randomness (δ) and 
different sizes m of the sliding window (parameter 
m).   

 
4.1 Classifier Selection 
At first we have to compare the predictive 
performance of each classification algorithm with 
the default accuracy, i.e., the prediction accuracy 
obtained from a naïve classifier that always 
predicts the majority class. A classification 
algorithm is considered appropriate for a certain 
classification problem if its classification accuracy 
is significantly better than the default accuracy. 
Table I depicts the values of default accuracy 
w.r.t., the different levels of randomness δ.  

Figure 2 depicts the prediction accuracy ε of the 
IBk, J48, Naïve Bayes, JRip, Vote, Bagging and 
AdaBoost M1 classifiers for the eS(u)representation. 
The prediction accuracy of all classification 
algorithms is significantly better than the default 
accuracy for any given δ (see Table I). The 
classification algorithm that achieves the top 
performance (for all levels of randomness) is Vote.  

Table II depicts in the t-test results of all the 
pairs of classifiers for δ = 0.25. The (i,j) element of 
the matrix denotes the statistical significance of the 
difference between the classification algorithm of 
the ith row and that of the jth column. Specifically, 
if the element at (i,j) is ‘0’, then the difference |εi - 

εj| between the ith and the jth classification 
algorithm is insignificant. If the element at (i,j) is 
‘*’ then the prediction accuracy of the ith 
classification algorithm is better than that of the jth 
algorithm and this is validated through statistical 
significance test; if the element at (i,j) is ‘v’ then 
the jth classifier is better. The threshold of the 
statistical significance test was set to a = 0.05.  
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Figure 2. The behavior of the prediction accuracy ε of classifiers 

vs. degree of randomness δ. 
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 Figure 3. The behavior of the prediction accuracy ε of eS(u) -Vote 
vs. the window length m. 

4.2 Experimenting with the window length 
An important factor of the proposed model is the 

selection of the sliding window size m. The 
appropriate value of m is estimated by 
experimentation. In Figure 3, we can observe the 
prediction accuracy of the eS(u)-Vote for 2 ≤ m ≤ 20 
with a training set size s = 40 days. The best results 
are obtained for m = 4. The case m = 4 assumes 
better prediction results even when the user 
exhibits a high degree of randomness. In case 
where the size m is small, the considered vectors 
refer to many different class attributes (almost 
equi-probable), thus, the prediction accuracy 



decreases. As long as the size m raises then the 
considered vectors of cell identifiers is quite large 
to achieve a close match (between sample and test 
data), especially, when randomness increases. The 
size m = 4 reflects the regularity of a common user 
movement as reported in [27]. 

 
4.3 Comparison with other Machine Learning 
algorithms 
We compare eS(u)-Vote with the LeZi-Update [12] 
and MMP [13] schemes by means of prediction 
accuracy. Specifically, in [14], the mobility 
tracking problem in a cellular network has been 
considered in the information theoretic framework. 
Comparison of user mobility models has been 
based upon the concept of entropy. A dictionary of 
user’s path updates is built and maintained by the 
proposed scheme. Such dictionary supports an 
adaptive online algorithm that learns the profiles of 
users. This technique is based on ideas and 
concepts coming from the area of lossless 
compression and, specifically, the Lempel-Ziv 
algorithm. This algorithm is also called “LeZi-
update” and is exploited to reduce the location 
update related costs while its predictive power is 
used to reduce paging cost. In [12], the LeZi-
Update scheme is applied in an intelligent home-
environment in order to track down an inhabitant, 
both inside and within surroundings in order to 
satisfy connectivity requirements. After processing 
the input trace of the user through the LeZi-update 
algorithm, a blending strategy called exclusion is 
used to predict the next location of the user (see 
Figure 4). 

 
Table II. Significance difference between the classifiers. 
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Moreover, the algorithm discussed in [13] is 

based on Mobile Motion Prediction (MMP) 
scheme for the prediction of the future location of 

a roaming user according to his / her movement 
history pattern. The scheme consists of Regularity-
Pattern Detection (RPD) algorithms and Motion 
Prediction Algorithm (MPA). Regularity Detection 
is used to detect specific patterns of user 
movement from a properly structured database 
(IPB: Itinerary Pattern Base). Two RPD algorithms 
are proposed: (i) Movement Circle (MC) for the 
detection of long way routes and (ii) Movement 
Track (MT) for the detection of regular routes. 
Three classes of matching schemes are used for 
correlation analysis of the MCs or MTs namely the 
state matching, the velocity or time matching and 
the frequency matching. The Motion Prediction 
Algorithm (MPA) is invoked for combining 
regularity information with stochastic information 
(and constitutional constraints) and thus reach a 
decision - prediction for the future location (or 
locations) of the mobile user. Figure 5 shows an 
overview of the suggested scheme.  

Figure 6 depicts the prediction accuracy of the 
eS(u)-Vote with that of the LeZi-update and MMP 
schemes with m = 4 and s = 40 days for four same 
training sets. Specifically, eS(u)-Vote achieves 
better performance than the other two algorithms 
for each degree of user randomness.  
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Figure 4. The LeZi-update scheme.  
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Figure 5. The Predictive Mobility Management Algorithms. 

5. PRIOR WORK 
There are a lot of prediction models based on 

Machine Learning techniques. Specifically, the 
probabilistic model in [15] is based on the user 
movement history of handover behavior. This 



model considers the history of all handovers that 
occurred in a given cell using the Naïve Bayes 
classification. The authors in [16] report a 
probability - based and a learning - based model 
for trajectory prediction. The algorithm in [17] 
predicts the next inter - cell movement of a mobile 
user. The user mobility patterns are mined from the 
history of the trajectories resulting in mobility 
rules extraction. The location prediction is based 
on such rules.  
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 Figure 6. The behavior of the prediction accuracy ε of eS(u) -Vote 
vs. the LeZi-update and MMP algorithms. 

 
The authors in [18] implement an algorithm 

based on user mobility patterns discovery. Such 
patterns, which derived from trajectory clustering, 
are used for location prediction and dynamic 
resource allocation. Moreover, an efficient online 
(incremental) algorithm that classifies routes 
between important locations and predicts the future 
location is reported in [19]. Specifically, clusters of 
cell - sequences are built to represent physical 
routes. The prediction is based on destination 
probabilities and temporal reasoning. A data - 
mining algorithm is proposed in [20], which 
efficiently discovers sequential mobile patterns. 
These patterns exploit both spatial and application 
context (e.g., service requests). Moreover, the 
mobility tracking in a cellular network is based on 
information theory by using the compression 
Lempel-Ziv algorithm [21]. The algorithm [13] 
consists of the regularity-pattern detection and the 
model prediction processes used for predicting the 
user movements. The work presented in [22] 
discusses pattern matching techniques and 
extended self-learning Kalman filters in order to 
estimate the future location. In addition, a learning 
automaton that follows a linear reward - penalty 
scheme is used in [23] in order to facilitate location 
prediction. The authors in [24] apply evidential 
reasoning based on the Dempster-Shafer theory in 

mobility prediction when adequate knowledge 
about the history of user’s travelling patterns is not 
available. Finally, the authors in [25] refer to a 
conceptual context prediction model based on 
geometrical location prediction.  

6. CONCLUSIONS 
We propose a context model for location 

prediction based on the user mobility behaviour. 
We present how Machine Learning is applied to 
context-awareness for predicting future locations 
in pervasive computing environments. The 
proposed context model exploits the user history 
and degree of movement randomness in order to 
classify and predict future movements. The model 
is evaluated with the 10-fold cross validation 
method with sets of simulated user movements 
with varying degrees of randomness. We 
experiment with several ML classifiers and 
evaluate the model through certain parameters 
derived from the ML field in order to choose the 
appropriate classifier for location prediction. Our 
findings show that, the Voting classification 
scheme is appropriate for location prediction since 
it exhibits satisfactory prediction results for diverse 
user mobility behaviour. Moreover, we compare 
the performance of the proposed eS(u)-Vote model 
with that of the LeZi-Update and MMP algorithms 
justifying the importance of the ML classification 
in predicting spatial context.     

Our model can be enhanced with more semantics 
and contextual information, like temporal context 
(e.g., time period within a day), application context 
(e.g., service requests), proximity of people (e.g., 
social context) and destination / velocity of the 
user movement. Finally, the combination of several 
local classification models has to be considered in 
order to exploit local spatial and temporal 
contextual information.      
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