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Consider a sequencing experiment as sampling at random  
from a DNA library. Distinct molecules in the library have  
different probabilities of being sequenced, which we assume 
will change very little upon deep sequencing of the same library.  
Our goal is to accurately estimate the number of previously  
unsequenced molecules that would be observed if additional 
reads were generated.

Capture-recapture statistics has dealt with analogous ques-
tions of estimating animal population size or species diversity3.  
We borrow the Good and Toulmin model4, a classic Poisson 
nonparametric empirical Bayes model, for the problem of read 
sampling. On the basis of the initial sequencing experiment,  
we identify unique molecules by some unique molecular identi-
fier5 and obtain the frequency of each unique observation (for 
example, each genomic position, transcript, allele and others). 
Using these frequencies, we estimate the expected number of 
molecules that would be observed once, twice and so on, in an 
experiment of the same size from the same library. The formula 
takes the form of an alternating power series with the estimated 
expectations as coefficients (we provide the full derivation in 
Online Methods).

The power series is extremely accurate for small extrapolations, 
but major problems are encountered when attempting to extrapo-
late past twice the size of the initial experiment4. At that point, 
the estimates show extreme variation depending on the number 
of terms included in the sum. Technically, the series is said  
to diverge and therefore cannot be used directly to make infer-
ences about properties of experiments more than twice as large 
as the initial experiment. Methods traditionally applied to  
help these series converge in practice, including Euler’s series 
transformation ETR6, are not sufficient when data are on the 
scale produced in high-throughput sequencing experiments or 
for long-range predictions.

We investigated a technique called rational function approxi-
mation (RFA), which is commonly used in theoretical physics7. 
Rational functions are ratios of polynomials that, when used  
to approximate a power series, often have a vastly increased  
radius of convergence. Algorithms to fit an RFA essentially 
rearrange the information in the coefficients of the original  
power series, under the constraint that the resulting rational 
function closely approximates the power series. The conver-
gence properties of RFAs are known to be especially good for a 
class of functions that includes the Good-Toulmin power series 
(Supplementary Note).

By combining the Good-Toulmin power series with RFAs, we 
developed an algorithm that can make optimal use of information 
from the initial sample and accurately predict the properties of 
sequencing data sets several orders of magnitude larger than the 
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Predicting the molecular complexity of a genomic sequencing 
library is a critical but difficult problem in modern sequencing 
applications. Methods to determine how deeply to sequence 
to achieve complete coverage or to predict the benefits of 
additional sequencing are lacking. We introduce an empirical 
Bayesian method to accurately characterize the molecular 
complexity of a DNA sample for almost any sequencing 
application on the basis of limited preliminary sequencing.

Modern DNA sequencing experiments routinely interrogate 
hundreds of millions or even billions of reads, often to achieve 
deep coverage or to observe very rare molecules. Low-complexity  
DNA sequencing libraries are problematic in such experiments: 
many sequenced reads will correspond to the same library  
molecules, and deeper sequencing will either provide redun-
dant data or introduce biases in downstream analyses. When 
sequencing depth appears insufficient, investigators must decide 
whether to sequence more deeply from an existing library or to 
generate another library. If this situation is anticipated during 
experimental design, investigators can plan to select from sev-
eral libraries or samples for deep sequencing on the basis of pre-
liminary ‘shallow’ surveys. The underlying question is how much  
new information will be gained from additional sequencing? 
The Lander-Waterman model1 was essential to understand-
ing traditional Sanger sequencing experiments but does not  
account for the various biases typical in applications of high-
throughput sequencing.

We present an empirical Bayes method for predicting the molecu-
lar complexity of sequencing libraries or samples on the basis of data 
from very shallow sequencing runs. We define complexity as the 
expected number of distinct molecules that can be observed in a given 
set of sequenced reads2. This function, which we call the complexity 
curve, efficiently summarizes new information to be obtained from 
additional sequencing and is generally robust to variation between 
sequencing runs (Supplementary Note). Our method also applies  
to understanding the complexity of molecular species in a sam-
ple (for example, RNA from different isoforms), and as we require  
no specific assumptions about the sources of biases, our method is 
applicable in a variety of contexts (Supplementary Note).
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initial ‘shallow’ sequencing run. We implemented our methods 
as a command-line software package licensed under the General 
Public License and available as Supplementary Software or at 
http://smithlab.usc.edu/software/librarycomplexity/.

We use an example to illustrate how naive analysis can lead to 
incorrect complexity predictions (Fig. 1a–d). In the example, two 
hypothetical libraries have complexity curves that initially appear 
linear (Fig. 1c) but eventually cross (Fig. 1d). Such extreme behav-
ior can actually arise in practice. As the initial sample, we used 
a small sample of reads from human and chimp sperm bisulfite 
sequencing experiments8 (Supplementary Table 1) and produced 
complexity curves for the libraries (Fig. 1e). Both complexity 
curves appear linear in the initial 5-million-read experiment, with 
the chimp library curve exhibiting a lower trajectory; on the basis 
of this information, a naive analysis might predict that the chimp 
library would saturate first. However, the complexity curves cross 
after deeper sequencing (at 22 million reads; Fig. 1f), with the 
chimp library yielding more distinct observations.

On the basis of the initial sample of 5 million reads, we esti-
mated the complexity of these two libraries using the RFA as 
well as ETR applied to the Good-Toulmin power series and 
a zero-truncated negative binomial (ZTNB). The ZTNB is 
commonly used to model count data that are not Poisson- 
distributed, and ETR is the traditional method used to improve 
convergence of the Good-Toulmin series. ETR initially gives 
accurate estimates, but these diverge and are useless after  
40 million reads. The ZTNB estimates exhibit a substantial down-
ward bias (more than 35% error for both libraries) and do not 
predict that the complexity curves cross, indicating that this  

distribution does not account for library biases. The RFA esti-
mates the complexity of both libraries almost perfectly. For the 
human library, this amounts to extrapolating to over 30 times 
the size of the initial sample while only incurring 4% error  
(Supplementary Table 2).

In sequencing applications that identify genomic intervals 
such as protein-binding sites in chromatin immunoprecipita-
tion and sequencing (ChIP-seq) or expressed exons in RNA 
sequencing (RNA-seq), the number of distinct molecules in the 
library may be of secondary interest to the number of distinct 
genomic intervals identified after processing mapped reads. To 
demonstrate the broad applicability of our method (discussed 
in the Supplementary Note), we investigated how well our 
method could predict the number of non-overlapping genomic 
windows identified in a ChIP-seq experiment (1 kilobase) and an 
RNA-seq experiment (300 base pairs) using an initial 5 million  
reads. We used non-overlapping windows for simplicity, but 
more sophisticated methods of identifying binding sites or exons 
are equally applicable. For the ChIP-seq experiment (CCCTC-
binding factor; mouse B cells9), the number of distinct reads 
did not reach saturation even after sequencing 90 million reads 
(Fig. 2a), whereas the number of identified windows saturated 
after approximately 25 million reads (Fig. 2b). RFA predicted 
this saturation correctly (Fig. 2b) and estimated library complex-
ity with very high accuracy (Fig. 2a). The ZTNB overestimated 
the saturation of identified windows at 4 million reads, more 
than possible in the mouse genome and severely underestimated 
the yield of distinct reads. The RNA-seq experiment (Human 
adipose-derived mesenchymal stem cells10) did not saturate for 

Figure 1 | Difficulties in predicting library  
complexity from initial shallow sequencing.  
(a,b) Frequency of molecules in two  
hypothetical libraries containing 10 million  
distinct molecules. Half of the molecules  
(5 million) make up 99% of library 1 (a),  
whereas only 10,000 molecules make up  
half of library 2 (b). (c,d) Observed  
complexity of both libraries after a  
shallow (1 million (M) reads) sequencing  
run (a) and after deeper sequencing (b).  
(e) Initial observed complexity from 5 M  
sequenced reads for human and chimp  
DNA bisulfite sequencing libraries.  
(f) Observed complexity after additional  
sequencing and predicted complexity  
based on the initial experiments in e.  
Observed complexity curves cross, with the chimp sperm sample yielding more distinct observations after sequencing 22 M reads. Estimates using RFA 
and ETR predict crossing (though ETR becomes unstable), whereas ZTNB does not. 
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Figure 2 | Library complexity can be estimated in 
terms of distinct molecules sequenced or distinct 
loci identified. (a–d) Comparison of estimated 
complexity curves for RFA and ZTNB using 5 million 
(M) sequenced reads from an initial ChIP-seq 
experiment (CCCTC-binding factor; mouse B cells; 
a,b) and an RNA-seq experiment (human adipose-
derived mesenchymal stem cells (ADS); c,d).  
Complexity is defined in terms of distinct 
observed reads in a and c, and in terms of distinct 
occupied nonoverlapping bins in b and d. 
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either distinct reads (Fig. 2c) or identified windows (Fig. 2d), 
suggesting additional sequencing from this library would yield 
more information. Only the RFA accurately predicted absence of 
saturation for both windows and reads, with considerably lower 
relative error than the ZTNB at 200 million sequenced reads 
(Supplementary Table 3).

Sequencing data will always be subject to some amount of 
technical variation between sequencing instruments or even 
between runs on the same machine. We applied our method to 
data from a single library sequenced on different instruments 
(using slightly differing sequencing technologies) and found that 
complexity estimates were within the range expected owing to 
stochastic noise (Supplementary Fig. 1). To have an impact on 
library complexity estimates, run-to-run variation must be dra-
matic and would likely be caused by detectable sequencing error 
at levels sufficient to warrant discarding the run.

As the cost, throughput and read lengths of sequencing tech-
nologies improve, the usefulness of methods for understand-
ing molecular complexity in a DNA sample will increase. The 
approach we described, which is based on RFA to the power series 
of Good and Toulmin, can be applied to an immense diversity 
of sequencing applications (Supplementary Note). As the age 
of clinical sequencing approaches, substantial resources will be 
dedicated to refining quality control, protocol optimization and 
automation; methods for evaluating libraries will be essential to 
controlling costs and interpreting the results of sequencing that 
potentially could inform clinical decisions.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Modeling the sequencing process. Consider a sequencing  
experiment in which a total of M = tN reads are sequenced, for 
some 1 < t <  and N < M. We fix a size N subset of the reads 
and refer to this subset as the initial experiment. The remain-
ing (t − 1)N reads are sequenced from the same library in the 
extended experiment and we refer to the union of the initial and 
extended experiment as the complete experiment. Although our 
terminology might suggest that the initial and extended experi-
ments are conducted separately and at different times, this is not 
necessary, and we only require that the properties of the library 
are unchanged between the initial and extended experiments. 
Concretely, we assume the total number of distinct genomic 
molecules contained in the library remains constant as well 
as the underlying properties of the library, such as the relative 
frequencies of the fragments. We seek to use the information 
obtained during the initial experiment to determine properties of 
the complete experiment, in particular the number of molecules 
sequenced in the complete experiment that were unsequenced in 
the initial experiment.

Estimating the yield of a library. The following derivation closely 
follows that in ref. 6. Let nj(t) denote the number of molecules 
sequenced j times in the complete experiment, and let nj = nj(1) be 
the number of molecules sequenced j times in the initial experi-
ment. Assume that L is the unobserved true total number of dis-
tinct molecules in the library and π = {πi; i = 1,…, L} are the 
probabilities, for each molecule in the library, that a sequenced 
read corresponds to that molecule. Furthermore assume that πi > 0  
for all i, so that L includes only those molecules that are in the 
library and can be observed and identified. Define λi = Nπi and 
assume each λi is independently and identically distributed 
according to distribution µ(λ) with finite second moment. We 
assume the number of reads observed from molecule i follows a 
Poisson process with rate λi. Therefore if tN reads are sequenced, 
the expected number of molecules observed j times is

E n t L e t j dj
t j( ( )) ( ) / ! ( )= −

∞

∫ l l m l
0

Let ∆(t) denote the marginal yield between the initial and com-
plete experiments, equal to the increase in the number of distinct 
observed reads resulting from the extended experiment. This is 
equal to the expected number of unobserved reads after the ini-
tial experiment minus the expected number of unobserved reads  
following the complete experiment:
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The last equality is obtained by expanding 1 − exp(–λ(t − 1)) as 
a power series centered at t = 1, reordering the integration and 
summation, and invoking identity (1). As the observed frequency 

(1)(1)

(2)(2)

of count j is always an unbiased estimator for E(nj(1)) regardless 
of the distribution µ

∆( ) ( ) ( )t t nj

j

j
j= − −+

=

∞
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1

is an unbiased estimator for the marginal library yield. Therefore, 
an unbiased estimator of the total library yield can be calculated 
by adding the marginal yield and the observed number of distinct 
reads in the initial experiment. The case of extrapolating to t =   
is equivalent to estimating the library size L, which is a desir-
able quantity, but is unidentifiable and therefore has no unbiased  
estimator without additional assumptions11,12.

This elegant result, originally derived in the 1950s (ref. 4), 
presents substantial difficulties in direct practical application. 
Equation (3) is only guaranteed to converge for t ≤ 2, which corre-
sponds to extrapolating to only twice the number of observations 
in the initial experiment. Accordingly, most applications of this 
formula are restricted to this range. Applications associated with 
deep sequencing, however, require accurate estimates far outside 
this range, implying we need to increase the radius of convergence 
of the power series. Previously suggested methods, such as ETR, 
do not perform well for large values of t, even for experiments 
significantly smaller than a typical sequencing experiment13.

Rational function approximation. ETR is a common tool in 
increasing the radius of convergence for divergent series or to 
speed up the rate of convergence for difficult to sum series, par-
ticularly alternating series14. The transformed series is a power 
series in the variable u = 2(t − 1)/t (Supplementary Note), 
so that the transformed series form is a rational function in t.  
We hypothesized that more accurate results would be obtained 
by considering approximations in this larger class. For a given 
function and its power series, the coefficients of the optimal RFA 
of fixed degrees P and Q (Supplementary Note, equation 2), are 
determined by requiring the first P + Q + 1 coefficients of the 
associated power series to be equal to the first P + Q + 1 coeffi-
cients of the original power series (equation 3)7. The fundamental 
idea is that the initial experiment gives us reliable information 
on how the function behaves in a neighborhood around t = 1; 
our approximation should use this information while remaining 
globally well-behaved.

RFAs can be shown to converge for a wide variety of functions7 
but are more useful for approximating certain classes of functions. 
One such class is the set of alternating power series with coeffi-
cients arising from moments of a positive measure on the real line, 
including the familiar probability measures. Such power series are 
often called series of Stieltjes15. The power series of equation (2) 
falls within this class when the true expected frequencies, E(nj(1)), 
are known exactly. Clearly we can only estimate the E(nj(1)), 
which we do by counting reads. However, the absolute amount 
of information contributing to our estimates of the E(nj(1)) is 
extremely large, especially when we compare the number of reads 
sequenced in a small sequencing run (that is, millions) with the 
numbers arising from traditional capture-recapture experiments 
(for example, hundreds13 or thousands6 of captures).

When applied to Stieltjes series, RFAs have the fascinating 
property that the direction of their convergence depends on the  

(3)(3)
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relationship between the order of the polynomials in the numerator 
and denominator15. If the order of the approximation (P + Q + 1)  
is odd then convergence is from below. For a fixed t, successive 
approximations obtained from increasing both P and Q by one 
increase toward the true value. This implies that any odd order 
approximation will be conservative when the E(nj(1)) are known 
exactly. If the order is even then the convergence is from above 
and the resulting approximations will be liberal (Supplementary 
Fig. 2). We can therefore choose to only consider odd order 
approximations and our estimates will tend to be conservative.

Two common and equivalent implementations of RFAs are 
Padé approximants and truncated continued fractions. We chose 
to implement the approximations using continued fractions for 
several reasons. First, computing the coefficients for a trun-
cated continued fraction expansion is both asymptotically faster 
and numerically more stable than directly computing the Padé 
approximant coefficients. Using the quotient-difference algo-
rithm, the coefficients of the continued fraction can be computed 
in time that is a quadratic function of the degree of the truncated 
power series being approximated16. The straightforward methods 
typically associated with Padé approximants require inverting a 
matrix (often ill-conditioned), which requires cubic time and may 
be numerically unstable (Supplementary Note).

Second, representing rational functions as continued fractions 
easily circumvents direct evaluation of the high-order poly-
nomials in the numerator and the denominator. Using Euler’s  
recursion with renormalization evaluates continued fractions 
exactly while ensuring the magnitudes of intermediate values 
remain manageable17.

Finally, and most importantly for our application, the continued  
fraction representation provides a natural means of exploring  
several very similar RFAs to the same original power series. When 
instabilities arise in the approximations (Supplementary Note), 
they can usually be avoided by adjusting the order of the numera-
tor and denominator of the rational function. Using the continued 
fraction representation, such adjustments can be made without 
recomputing coefficients: lower-order approximants are obtained 
by successive truncation of a high-order continued fraction.

11.	 Link, W. Biometrics 59, 1123–1130 (2003).
12.	 Mao, C. & Lindsay, B. Ann. Stat. 35, 917–930 (2007).
13.	 Keating, K., Quinn, J., Ivie, M. & Ivie, L. Ecol. Appl. 8, 1239–1249 

(1998).
14.	 Hardy, G. Divergent series (Oxford University Press, London, 1949).
15.	 Simon, B. Adv. Math. 137, 82–203 (1998).
16.	 McCabe, J.H. Math. Comput. 41, 183–197 (1983).
17.	 Blanch, G. SIAM Rev. 6, 383–421 (1964).

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.


	Predicting the molecular complexity of sequencing libraries
	Methods
	ONLINE METHODS
	Modeling the sequencing process.
	Estimating the yield of a library.
	Rational function approximation.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Difficulties in predicting library 
complexity from initial shallow sequencing.
	Figure 2 Library complexity can be estimated in terms of distinct molecules sequenced or distinct loci identified.


