
Predicting The Next App That You Are Going To Use

Ricardo Baeza-Yates
Yahoo Labs

Barcelona, Spain
rbaeza@acm.org

Di Jiang
∗

CS and Eng. Dept.
HKUST, Hong Kong, China

dijiang@cse.ust.hk

Fabrizio Silvestri
Yahoo Labs

Barcelona, Spain
silvestr@yahoo-inc.com

Beverly Harrison
Yahoo Labs

Sunnyvale, US
beverlyh@yahoo-inc.com

ABSTRACT

Given the large number of installed apps and the limited
screen size of mobile devices, it is often tedious for users to
search for the app they want to use. Although some mo-
bile OSs provide categorization schemes that enhance the
visibility of useful apps among those installed, the emerging
category of homescreen apps aims to take one step further by
automatically organizing the installed apps in a more intel-
ligent and personalized way. In this paper, we study how to
improve homescreen apps’ usage experience through a pre-
diction mechanism that allows to show to users which app
she is going to use in the immediate future. The prediction
technique is based on a set of features representing the real-
time spatiotemporal contexts sensed by the homescreen app.
We model the prediction of the next app as a classification
problem and propose an effective personalized method to
solve it that takes full advantage of human-engineered fea-
tures and automatically derived features. Furthermore, we
study how to solve the two naturally associated cold-start
problems: app cold-start and user cold-start. We conduct
large-scale experiments on log data obtained from Yahoo
Aviate, showing that our approach can accurately predict
the next app that a person is going to use.

Categories and Subject Descriptors

J.0 [Computer Applications]: GENERAL.

General Terms

Design, Experimentation, Performance.

Keywords

Aviate, Prediction, Mobile App, Machine Learning.

∗This work was done while the author was an intern at Ya-
hoo Labs, Barcelona, Spain

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WSDM’15, February 2–6, 2015, Shanghai, China.

Copyright 2015 ACM 978-1-4503-3317-7/15/02 ...$15.00.

http://dx.doi.org/10.1145/2684822.2685302.

1. INTRODUCTION
Mobile devices (smartphones and tables) are ubiquitous

in today’s lives. This high popularity also corresponds to a
huge growth in the availability and usage of mobile applica-
tions (commonly referred to as apps). Mobile applications
are very easy to install and this usually correspond to having
mobile phones with a very large number of apps installed.
An empirical study conducted by Yahoo Aviate team shows
that on average there are 96 apps installed on each mobile
device. This large number of apps installed calls for the de-
sign of new paradigms aimed to manage the installed apps.
In particular, one of the major issues associated with the
high number of apps installed on a smartphone is that of
their visibility. When a user needs a particular app it is not
always available immediately and the search through the
large number of installed apps might take lots of time. This
is the reason why homescreen apps are becoming more and
more popular. Homescreen apps act as an intelligent layer
between the underlying mobile operating system and the
user interface. They manage the installed apps in a highly
personalized manner rather than simply relying on manual
(or trivial) categorization schemes.

The basic building block that we consider at the heart
of an effective personalized management of apps is a per-
sonalized app prediction mechanism. In other words, the
most important feature of our homescreen app is that of an-
ticipating the user needs even before the user would click
on the relative icon on his/her mobile phone. Ideally, once
the predictor has made its guess the homescreen app should
show the application already opened as the user picks up
the phone and unlocks it. Even if this scenario might sound
futuristic, we show here that to predict which app a user is
going to open, is actually feasible. Our solution leverages
the sequence of real-time spatiotemporal contexts that are
continuously sensed by the homescreen app (in this case, the
Yahoo Aviate application).

App Prediction Problem is formally defined as follows:
Given a list of installed apps {au1, au2, ..., aun} by a user

u on his/her phone and the user’s spatiotemporal context C,
the problem of app usage prediction is to find an app aui that
has the largest probability of being used under C. Specifically,
we aim to solve the problem:

max
aui

P (aui|C, u), ∀i, 1 ≤ i ≤ n;

(a)

(b)

Figure 1: Screenshot of Homescreen App Aviate.

We model the problem of app usage prediction as a su-
pervised classification problem. Through a comprehensive
study of the log data obtained from Aviate (see Figure 1), we
propose several features from two different perspectives: ba-
sic features (i.e., signals) obtained from the mobile phone’s
sensors and the session features capturing sequential pat-
terns of app usage. Based on these features, we design highly
scalable algorithms to train the prediction models.

In addition, the application prediction functionality in
Aviate (or in a homescreen app in general) suffers from two
inherent cold-start problems: app cold-start and user cold-
start. The first one deals with the problem of not knowing
anything about past usages of that app by the mobile phone
user. The latter deals with the problem of generating pre-
dictions when the user first install Aviate. In this paper
we also propose several techniques to alleviate the effects of
cold start. Conducting extensive experiments on Aviate log
data, our experimental results show that the user’s app us-
age is predictable based on the user’s usage history and the
wisdom of the crowd.

The contributions of this paper are summarized as follows:

• We conduct a large scale comprehensive study of mo-
bile app usage.

• We propose several domain-specific features for app
usage prediction. We studied how to conduct efficient
app usage prediction and we conduct a preliminary
study on how to handle the app cold-start and user
cold-start problems.

• We conduct extensive and large scale experiments based
on usage information recorded into a log from Aviate.
We show that our method outperforms existing ones.

The remainder of this paper is organized as follows. In
Section 2, we review the related work. In Section 3, we

describe the empirical study of app usage. In Section 4, we
describe the methods for app prediction. In Section 5, we
discuss how to handle the cold start problem. Finally, we
present experimental evaluations in Section 6 and conclude
the paper in Section 7.

2. RELATED WORK
The problem of predicting app usage has been already pro-

posed by other researchers in the past. In particular, Tan
et al. [16] proposed a prediction algorithm for predicting
mobile application usage patterns. They conducted exper-
iments on the Nokia MDC dataset which contains a small
group of 38 users and their experiments show promising re-
sults. Huang et al. [6] studied the problem of pre-loading
the right apps in memory for faster execution or can pop
the desired app up to the mobile’s home screen. Similarly
to our work, Huang et al. [6] exploit contextual information
such as time, location, and the user profile, to predict the
user’s app usage using the Nokia MDC dataset already men-
tioned. Yan et al. [18] designed an app preloading method
by using contexts such as user location and temporal access
patterns to predict app launches with 34 volunteers. Pan
et al. [13] proposed a different prediction problem: finding
the most likely mobile application that a user will install.
They exploited social information coming from friends of
the user in a social networks. Parate et al. [14] designed
an app prediction algorithm that predicts which app will
be used next without sensor context. Zou et al. [20] pro-
posed some light-weighted Bayesian methods to predict the
next app based on the app usage history. Krishnaswamy et
al. [8] developed a general-purpose service that runs on the
phone and discovers frequent co-occurrence patterns indi-
cating which context events frequently occur together. Liao
et al. [9] designed a widget that is able to predict users’ app
usage by constructing temporal profiles which identify the
relation between apps and their usage times.

Our work is also related to app analytics and app rec-
ommendation. Kai et al. [17] proposed a framework called
App Developer Inspector, which aims to effectively profile
app developers in aspects of their expertise and reputation
in developing apps. Jiang et al. [7] presented a framework
to provide independent search results for Android apps with
semantic awareness. Yin et al. [19] proposed an Actual-
Tempting model that captures such factors in the decision
process of mobile app adoption. Henze et al. [5] reported on
five experiments that were conducted by publishing apps in
the Android Market. Based on these outcomes, the authors
identified factors that account for the success of experiments
using mobile application stores. Lin et al. [11] presented a
framework that incorporates features from version descrip-
tions into app recommendation. Lin et al. [10] described a
method that accounts for nascent information culled from
Twitter to provide relevant recommendation in such cold-
start situations.

Our work differs from the previously proposed methods in
several ways:

1. To the best of our knowledge, this work is the largest
scale of evaluation for app usage. In existing work,
the scale of user study is usually limited to less than
40 users, while our study is four orders of magnitude
larger;

Table 1: Examples of Aviate Log Data (the user ID is anonymized to ensure privacy).

User ID App Action

xx8ae648c10 {”ts”:”2014-01-10 12:27:39”,”et”:”App Opened”} [”com.skype.raider”]
xx8ae648c10 {”ts”:”2014-01-10 12:36:09”,”et”:”App Opened”} [”com.android.dialer”]
xx8ae648c10 {”ts”:”2014-01-10 12:47:41”,”et”:”Location Update”} [”37.393093”,”-122.079788”,”20.000000”,”0.000000”]
xx8ae648c10 {”ts”:”2014-01-10 12:57:42”,”et”:”Context Triggered”} [”Work”]

2. We achieve the highest precision for app prediction.
The precision of the state-of-the-art is usually far be-
low 90%;

3. Besides achieving high precision, our method is highly
scalable for big data;

4. We study the cold start problems that are still open in
app usage prediction and we study both perspectives
of cold start: users and apps.

3. APP USAGE CHARACTERIZATION
As this is the first time that such a large scale analysis is

performed, we present here some basic statistics of the Avi-
ate sample log data. The log sample contains more than 60
million records with about 200K anonymized users that have
a total of more than 70K unique apps by January 2014. An
example of the events recorded in the log are shown in Ta-
ble 1. For example, the first log entry indicates that “Skype”
(the app) com.skype.raider was opened by user xx8ae648c10
at 2014-01-10 12:47:39. The third entry shows that the
user’s location is moved to the GPS location (37.393093, -
122.079788). The fourth entry tells us that Aviate’s working
mode is switched to Work.

Aviate records 10 types of actions in total. The distribu-
tion of those actions is depicted in Figure 2. As expected,
App Open represents a large fraction of app actions. This
actually confirms that the app prediction problem could im-
pact significantly on Aviate by improving its user experience.
Furthermore, we observe that the fraction of App Installed
event is relatively low but is non-negligible (around 250K
times in our dataset). Just to put this into perspective ev-
ery ten times a user changes location he or she installs an
app. For this reason the app cold-start problem is an im-
portant one that needs a particular attention.

Figure 2: Distribution of Actions.

4. APP USAGE PREDICTION
In this section we discuss the problem of predicting the

next app that a given user is going to open as she will pick up
her mobile phone. We start by presenting a naive prediction
strategy based on apps popularity in 4.1. We discuss our set
of features, namely basic and session features in Sections
4.2 and 4.3, respectively. Then we discuss how to train the
prediction model and how to generate predictions in Section
4.4.

4.1 Predictions by Popularity
At first sight the app prediction problem might seem to

be straightforwardly solvable by always predicting the most
popular app. While it is obvious that a popularity score
computed globally among all the users is not going to work
in practice, it might seem reasonable to consider a per-user
popularity score. We discuss two kinds of popularity-based
features: Global Frequency and Timeslot Frequency. Global
Frequency represents the number of times that an app has
been opened by a particular user. Timeslot Frequency, in-
stead, is the number of times that an app has been opened
within a specific timeslot of the day (e.g. at Noon). We
consider timeslots of granularity ranging from 1 day to 1
second and based on the two kinds of frequencies we predict
the next app by selecting the one with the highest (global
or timeslot-based) popularity. We run a test to evaluate
the effectiveness of popularity-based approaches. We ex-
tract popularity statistics on 80% of the log data and we
test the methods on the remaining 20%. Results show that
using Global Frequency we can achieve an average precision
of up to 16.7%. We observe similar results also when we con-
sider timeslot-based statistics. Results of predictions using
various timeslot granularities are shown in Figure 3. Us-
ing 1 day based timeslots we reach a precision of 16.3%.
Reducing the timeslot to 1 hour the prediction precision de-
creases to 15.2% and the precision further decreases to 12.6%
when the timeslot size is 1 second. Results shown in Fig-
ure 3 demonstrate that differently from what the intuition
suggests, solely relying on timeslots is not effective to find
any useful pattern in real-life app usage scenarios. We fur-
ther investigate the prediction performance of considering a
week as a cycle. We calculate the frequencies of each app
at each day in a week and using the most frequent one at
the corresponding date. The prediction precision is 10.5%
showing that app usage does not have very strong periodic
phenomenon in terms of week.

In order to understand why popularity-based prediction
might fail, we study the distribution of the activeness of the
apps, in other words how an app is used. The activeness
of an app a is denoted as ∆a, which is formally defined as
follows:

∆a =

∑S

i=1
Fai

Fi

S
,

Figure 3: App Usage Prediction by Timeslot Frequency.

where S is the number of timeslots, Fai is the frequency of
a in timeslot i and Fi is the frequency of all apps in the i-th
timeslot. ∆a reflects a’s activeness across different timeslots
in each day. We show app activeness with its activeness rank
(in decreasing order of activeness) for the 30 most popular
apps in Figure 4. In the plot each line corresponds to a dif-
ferent timeslot granularity. We find that the activeness of
the apps on mobile device follows a power-law distribution.
A small fraction of dominant apps take a large proportion
of the whole activeness. Most of these dominant apps are
related to basic services like browser, phone and communi-
cation. These dominant apps are frequently used in each
timeslot, making the other apps hard to predict if only the
frequencies are considered. Hence, we need to look for more
effective features to approach the problem.

Figure 4: Activeness Proportion v.s. Activeness Rank

4.2 Basic Features
Since app usage is strongly related to the user’s spatiotem-

poral context, we discuss some basic features that can be
directly obtained from the sensors of mobile devices. These
basic features defining the user’s spatiotemporal contexts are
the following: Time, Latitude, Longitude, Speed, GPS Accu-
racy, Context Trigger Context Pulled, Charge Cable, Audio
Cable. The first five features are self-explanatory. Charge
Cable and Audio Cable indicate whether the corresponding
cable is plugged into the mobile device. Context Trigger
Context Pulled indicate whether the corresponding Aviate

user has switched the ambient in which he operates (e.g.,
“work”, “home”, etc). Among these features, only context
trigger and context pulled are peculiar of Aviate whereas
the other features are obtained from the OS. These features
help to represent the spatiotemporal context of actions re-
lated to the app open event. The feature Time is normalized
between 00:00:00-23:59:59, in order to capture daily app us-
age patterns. As a side note, we have also tried to add the
App Activeness feature to our set of basic features. The
contribution of avtiveness has not been significant therefore
we have removed it and we are not going to consider it in
the experiments we show next.

4.3 Session Features
Basic features do not capture latent relations between app

actions. Intuitively, and as also reported by Huang et al. [6],
the correlation between sequentially used apps may have a
strong contribution to the accuracy of app prediction. In
this section we propose a method to extract session features
by considering the sequential relationships existing among
app actions.

We exploit the ideas presented in word2vec [12]. In
word2vec documents are modeled as sequences of terms and
a context of a term is defined to be the k immediately
preceding and following terms in the document. Likewise,
we model documents with sequences of app events but we
cannot simply choose the preceding and following actions
as the context of an app given that they may be associ-
ated with events happened a long time back in the past
(or ahead in the future). Based on this observation, we
propose a Gaussian based method to identify the context
of each app action. The context is defined as the set of
other actions that are conducted before or after the cur-
rent one within a time period whose duration is obtained
by sampling from an empirically defined Gaussian distribu-
tion. For example, in Table 1 we show a context relative to
App Open:com.android.dialer formed by the following two
app actions: App Open:com.skype.raider, and Location Up-
date:(37.393093, -122.079788, 20.000000, 0.000000).

Our objective is to find distributed representations of
these features that are useful for predicting the surround-
ing actions of the current context. More formally, given an
app action τ and its context Cτ , the objective is to maximize
the average log probability:

1

T

T∑

t=1

∑

τ ′∈Ct

log p(τ ′|τt), (1)

where Ct is the context of τt and T is the number of app
actions. The probability p(τ ′|τt) is calculated as follows:

p(τ ′|τt) =
eVτ′ ·Vτt

∑T

t=1 e
V
τ′ ·Vτt

(2)

where Vτ ′ is the distributed representation of τ ′ and Vτt is
the distributed representation of τt.

In order to enhance the efficiency, the full softmax in
the above formula is approximated by the hierarchical soft-
max [12]. In order to efficiently compute the distributed
representations, we parallelize the training procedure using
a MapReduce paradigm. The Mapper and Reducer are pre-
sented in Algorithms 1 and 2. The MapReduce procedure
iterates for a predefined number of times and the output
vectors are the session features for mobile apps.

Algorithm 1 Mapper of Distributed Representation

1: load the vectors of app actions from the previous iteration;
2: initialize the Huffman tree based on the loaded vectors;
3: for each app action a do

4: draw a temporal gap g1 from Gaussian distribution G;
5: draw a temporal gap g2 from Gaussian distribution G;
6: consider the actions between g1 and g2 as the context Ca;
7: train a based on Ca;
8: end for

9: for each app action action a do

10: emit(key=IDa,value=V ectora);
11: end for

Algorithm 2 Reducer of Distributed Representation

1: for each app action a do

2: calculate average and normalize the corresponding vectors;
3: end for

4: flush updated vectors to HDFS;

Based on Algorithms 1, and 2, we define distributed repre-
sentations of the following six app actions: Last App Open,
Last Location Update, Last Charge Cable, Last Audio Ca-
ble, Last Context Trigger, Last Context Pulled. The corre-
sponding distributed representations of the six actions are
in turns considered as the session features for the app pre-
diction method we use.

4.4 Building Prediction Models
By merging basic and session features for each App Open

event, we obtain the training instances for the prediction
model. In order to achieve a balance between effective-
ness and efficiency, we propose the Parallel Tree Augmented
Naive Bayesian Network (PTAN) as the prediction model.
PTAN is a parallel version of the Tree Augmented Naive
Bayes (TAN) [3], which has been proposed in order to
remove the strong assumptions of independence in native
Bayes and exploit the correlations among attributes. This
model captures the latent correlations between different fea-
tures and can be easily deployed on parallel computing
frameworks such as Hadoop. The training procedure of
PTAN can be divided into two phases: (1) parallel struc-
ture training and (2) parallel parameters estimation. The
first phase is to learn the structure of the Bayesian network.
The procedure of constructing the PTAN bayesian network
from data is as follows:

1. Based on the training data from all users, we com-
pute the conditional mutual information between any
two attributes fx and fy given the app a. Conditional
mutual information is defined as follows:

Ip(fx, fy|a) =
∑

fx,fy,a

P (fx, fy, a) log
P (fx, fy|a)

P (fx|a)P (fy|a)
.

2. Build a complete undirected graph in which the ver-
tices are the features. Annotate the weight of an edge
connecting feature fx and fy by Ip(fx, fy|a).

3. Build a maximum weighted spanning tree for the com-
plete undirected graph. The maximum spanning tree
problem can be transformed to the minimum span-
ning tree problem simply by negating edge weights [2].
Kruskal’s algorithm [4] is used to solve the minimum
spanning tree problem.

4. Transform the resulting undirected tree to a directed
one by choosing a root variable and setting the direc-
tion of all edges to be outward from it. Construct a
Bayesian network by adding a vertex labeled by app
variable a and adding an arc from a to each feature
vertex.

The highest computational cost is associated with the first
and the third step in the above algorithm. If we assume there
exist m training instances and each instance has n features
then the first step has complexity of O(n2m). The third
step has a complexity of O(n2 log n). Since m ≫ log n, the
first step is the bottleneck of building the Bayesian network
structure. Hence, in PTAN, we parallelize the first step
again using MapReduce. The Mapper for parallelizing the
first step is presented in Algorithm 3 and the Reducer can be
straightforwardly developed by aggregating the values based
on the keys.

Algorithm 3 TAN Structure Learning Mapper

1: for each app action entry {u, a, f1, f2, f3, ..., fn} do
2: for each feature pair (fi, fj) do

3: emit(key={fi, fj , a},value=1);
4: emit(key={fi, a},value=1);
5: emit(key={fj , a},value=1);
6: end for

7: end for

After learning the structure of PTAN, we estimate a set
of parameters for each individual user, in order to achieve
the personalization effect. The conditional probability is
estimated as follows:

P (fi = k|pa(fi) = j) =
Nijk +N ′

ijk

Nij +N ′
ij

, (3)

where fi is a feature, pa(fi) is the set of the parents of fi,
Nij is the number of times pa(fi) = j, Nijk is the num-
ber of times fi = k given pa(fi) = j in the training set,
and N ′

ij and N ′
ijk are the smoothing parameters that we set

both to 0.5 by default. Smoothing is fundamental for the
prediction performance when some user contains very few
training instances for an app. Furthermore, parameters es-
timation for each user is also parallelized. The Mapper is
presented in Algorithm 4 and the Reducer can be straight-
forwardly developed by aggregating the values based on the
keys. When the parameters for the Bayesian network have
been estimated we compute the probability that a user u is
going to use mobile app aui when it finds herself within the
context C = {f1, f2, ..., fn} as follows:

P (aui|f1, f2, ..., fn)

∝ P (aui)P (f1, f2, ..., fn|aui)

= P (aui)

n∏

i=1

P (fi|pa(fi))

(4)

Based on this equation we consider the app that has the
highest probability as the prediction result. It is straight-
forward to transform this prediction algorithm into a top-k
recommendation one just by sorting apps according to the
computed probability scores.

Algorithm 4 TAN Parameter Learning Mapper

1: for each action long entry {u, c, a1, a2, a3, ..., an} do
2: for each pair

(

ai, pa(ai)
)

do

3: emit(key=ai, pa(ai),value=1);
4: emit(key=pa(ai),value=1);
5: end for

6: end for

5. COLD START PROBLEMS
In this section, we discuss how to handle two of the main

challenges we face when homescreen apps that are deployed
in real-life environments. The first problem is the App Cold
Start, which happens when a user installs a new app on her
device. The second problem is the User Cold Start that
arises when a user installs and open the homescreen app
for the first time. User cold start is more severe than the
first one given that in order to reduce the risk of app aban-
donment it is important to provide high quality personal-
ized predictions already from the first interactions with the
homescreen app. We discuss how to tackle these two cold
start problems in Sections 5.1 and 5.2.

5.1 App Cold Start
For a newly installed app ai, we have no user-specific in-

formation available on the app. In particular the probability
of opening an app for a given user u, P (aui), is unavailable.
On the other hand, P (fi|pa(fi)), the prior probability for
a given feature, can be obtained from information on other
users. Therefore, for newly installed apps, how to estimate
its P (aui) is critical. We present the app activeness for newly
installed apps in Figures 5 (Daily) and 6 (Hourly). We can
see that a significant fraction of the newly installed apps is
very active within the first few hours. After this period of
time the newly installed apps are used significantly less. In
contrast, some apps are used frequently and for a long time
after their installation. Hence, in order to better estimate
P (ai), we categorize apps as short-term apps and long-term
apps depending on their activeness longevity.

In order to capture the temporal prominence of each app
we fit app usage data into a Beta(α, β) variable and to dif-
ferentiate apps by their temporal significance we use the
excess kurtosis [15] to evaluate the temporal peakedness of
each app. The excess kurtosis ̺ of a Beta(α, β) distribution
is defined as follows:

̺ =
6[α3 − α2(aβ − 1) + β2(β + 1)− 2αβ(β + 2)]

αβ(α+ β + 2)(α+ β + 3)
. (5)

An app with a high ̺ value indicates that it is likely to be
a short-term app while an app with a low ̺ value is likely
to be a long-term app. Through using ̺, we can categorize
the apps into short-term apps and long-term app. Table 2
shows some examples after categorization. As an example,
we can observe that while communication apps are usually
long-term game apps tend to have a shorter life span.

Short-term App. We assign to short-term apps a P (aui)
value of P (ai), which is the average opening frequency ob-
tained from other users’ historical information. After a fixed
time period (two hours, for example) we can replace P (ai)
with the actual app’s usage information for that particular
user, namely P (aui).

Long-term App. For long-term apps, we exploit the
well-known concept of “wisdom of the crowd”. When an

Figure 5: Daily App Activeness (Proportion) After Instal-
lation.

Figure 6: Hourly App Activeness (Proportion) After Instal-
lation.

app has been opened very few times its P (ai) should ap-
proximate the average value coming from other users. As
the number of open events grow we can switch to the actual
P (aui). Hence, we used Bayesian average [1] to effectively
blend actual usage information with that coming from other
users’ history. The equation for calculating P (aui) is there-
fore given by:

P (aui) =
C · Ωai

+Oaui

C +Ou

, (6)

where Oaui
is the number of openings of the app ai by the

current user U , Ou is the sum of all app openings by u,
and Ωai

is the average opening probability of ai by all other
users. C is a constant whose value is set to match the ex-
pected variation between data sets containing the history
from different users. The value of P (aui) for an app with
a small number of open events tends to be closer to the
average opening probability of that same app by all other
users. The more openings an app has received by the cur-
rent user, the more accurate the probability estimation is.

Table 2: Examples of Short-term and Long-term Apps.

Short-term Apps

jp.gree.jackpot
com.rockstargames.gtasa
com.sq.dragonsworld

com.cocoapps.elbomberman
com.zhan dui.animetaste

com.sweettracker.smartparcel
com.mobie.catholiclife
com.partyplay.xxl

com.king.candycrushsaga
com.battlelancer.seriesguide

Long-term Apps

com.quixey.android
com.google.android.talk

com.whatsapp
mobi.mgeek.TunnyBrowser
com.fitbit.FitbitMobile

com.spotify.mobile.android.ui
com.google.android.apps.authenticator2

com.facebook.katana
com.myfitnesspal.android
com.google.android.gm

On the other hand, when an app has received just a small
number of openings, its estimated P (aui) value is close to
its unweighted average opening probability computed on all
the other users.

5.2 User Cold Start
In this subsection, we discuss two different strategies to

tackle the user cold start problem. In Section 5.2.1 we dis-
cuss the Most Similar User Strategy essentially based on col-
laborative filtering. In Section 5.2.2 we discuss the Pseudo
User Strategy that is designed to synthesize an appropriate
pseudo-history for the new user so that the PTAN model
can be effectively trained on this surrogate usage data.

5.2.1 Most Similar User Strategy

When a new user installs homescreen apps such as Aviate,
it is not true that we do not know anything about her. In
particular, we know her apps inventory and using this infor-
mation we can identify the most similar user from the set of
known users by using metrics such as, for instance, Jaccard
similarity between the new user and the known ones.

After the most similar user has been found, we can use this
user’s model to predict the behavior of the new user. We
name this strategy as the Most Similar User Strategy. In
fact, the most similar user may have an app inventory that
is very different from that of the user under consideration. In
some extreme cases the app inventory can be totally different
from those installed by known users and the most similar
user strategy would not have any sensitive advantage over
a purely random strategy. Of course we can resort to put
a threshold on the minimum acceptable similarity. While
this strategy improves the average accuracy of the method
it also limits the coverage, i.e., the number of users for which
recommendations can be generated.

5.2.2 Pseudo User Strategy

In order to solve the problem of the strategy presented
above we propose the Pseudo User strategy, which consists
in generating a “pseudo history” used in place of the actual
one to train the PTAN model for the new user. Let us
assume there are k users U = {u1, u2, u3, ..., uk} and let
us further assume that each user u has an app inventory
Iu. When a new user with app inventory Inew installs the
homescreen app, we obtain I ′u for each u by only keeping the
apps in Inew. We want to find a subset of users U ′ satisfying
the following conditions:

min
∑

u∈U′

|c(u)|

subject to
⋃

u∈U′

I ′u = Inew .

The cost of an user c(u) is defined as the inverse of its sim-
ilarity to the current user, i.e., c(u) = 1/J(Inew, Iu). The
idea is to find a small amount of similar users whose app in-
ventories cover all the apps in the inventory of the new user.
It is straightforward to prove that the problem is NP-hard
(it is essentially a weighted set-covering problem) and the
O(log |Inew|)-approximation algorithm we use to generate
the pseudo user is presented in Algorithm 5. After obtain-
ing U ′ we aggregate log entries for each user in U ′ and we
filter out the App Open events for those apps that are not
in Inew. What it is left is considered to be the Pseudo User
data used in PTAN training.

Algorithm 5 Building Pseudo User

1: U ′ ← ∅
2: I ← ∅
3: repeat

4: choose u ∈ U minimizing
c(u)

|I∪Iu−I|

5: let U ′ ← U ′ ∪ u
6: let I ← I ∪ I′u
7: until I = Inew

6. EXPERIMENTS
In this section we measure the performance of the pro-

posed method. Experiments are conducted on Aviate log
data collected from October 2013 to April 2014. We ran-
domly choose 480 active Aviate users for our experiments.
For each user, we use 80 percent of the data as training
data and the remaining 20 percent as testing data. For all
the methods we extract features (both basic and session)
using events within a sliding window of 12 hours, as we as-
sume that any event only influence future events that hap-
pen within 12 hours. In Section 6.1 we measure the perfor-
mance of the propose app prediction algorithm. In Sections
6.2 and 6.3, we evaluate the performance of our solution to
the app and user cold start problems, respectively.

6.1 App Usage Prediction
As we have stated in the previous sections, we modeled

the app prediction problem as a classification problem and
we opted for a parallelized version of the Tree Augmented
Naive Bayes (TAN) algorithm to build the classifier. In or-
der to assess the effectiveness of PTAN we compare it with
the best ML algorithms that are suitable for this problem,
namely Naive Bayes, SVM, C4.5, and Softmax Regression

(i.e., Multinomial Logistic Regression). In the experiments
we report the score for precision, that is the percentage of
correctly predicted opened apps over the total number of
app opened by users in the test data.

Figure 7 shows the performance of different methods in
the case of a model trained when the context is made up
of only the basic features. In this case, C4.5 achieves the
highest precision of 34.9%. We investigated the reasons why
C4.5 results is the best method for basic features and we
conjecture that is due to that some apps have a very clear
fingerprint in terms of sensor usage that a classification tree
is able to surface. For example, by analyzing the decision
tree, we found that when the charge cable is plugged in, the
predicted apps were some video games or using bluetooth.
Intuitively, game apps or file transmission apps usually con-
sume more battery energy, therefore when you plug your
charge cable (and you do not wait too much time before
taking an action), it is very likely you are going to use one
of the two classes of applications mentioned above.

We then evaluate the hypothesis we made that sequence-
based patterns are useful for building more effective clas-
sifiers. For methods such as Naive Bayes, C4.5, PTAN
and Softmax Regression, the session features are effective to
boost the performance. Therefore, these results confirm the
assumption that the sequential correlations between app ac-
tions are critical for app usage prediction. Combining basic
features and session features is an effective strategy for Bayes
methods. With both types of features, Naive Bayes achieves
a precision of 76.3% and PTAN achieves the highest preci-
sion of 90.2%. We also studied the impact of dominant apps
(i.e, the most frequent apps) in app prediction. By filtering
the top five dominant apps for each user, we reevaluate the
performance of the five methods. The performance of Naive
Bayes with basic and session features is heavily influenced,
giving a precision of 39.3%. Among the five methods, PTAN
still achieves the highest precision of 85.7% with all the fea-
tures. Therefore, we can conclude that while dominant apps
are easy to predict using even just a Naive Bayes classifier,
when they are removed a strong signal can still be obtained
by opportunely combining the other features we have de-
signed (in particular features about event sequences).

Figure 7: App Usage Prediction (All Apps).

Figure 8: App Usage Prediction (Dominant Apps Filtered).

In order to comprehensively measure the performance of
the proposed method, we compare it with the state-of-the-
art counterparts. Although some methods described in Sec-
tion 2 are related to our work, some of them are not com-
parable with PTAN because they use some additional infor-
mation. We select EWMA [16], CPD [16], LU-2 [20], LUT
[20], and BN [20] as comparison baselines as they can be
used on our dataset. We evaluate these baselines by vary-
ing the different values of the parameters that characterize
those methods. Figure 9 shows the performance of EWMA
and CPD on the full set of apps (including dominant ones)
and Figure 10 shows the performance of EWMA and CPD
when dominant apps have been filtered out from the dataset.
With the full set of apps EWMA achieved the highest pre-
cision of 16.7%. When dominant apps were filtered out, in-
stead, CPD has a precision of 19.5%, which is the highest in
this case. We further observe that EWMA performs better
with all apps while CPD performs better when the domi-
nant apps are filtered. Figure 11 shows the performance of
LU-2, LUT and BN. LU-2 shows the best performance with
all apps, achieving a precision of 15.7% while BN achieves
the highest precision of 10.1%.

From the various results shown we can conclude that
PTAN significantly outperforms the five baselines we con-
sider by a large margin. We remark that the experiments
done using the techniques presented in the papers describing
the baselines were done on a much smaller dataset contain-
ing usage data on 38 users in total. Our user set is one
order of magnitude larger while the dataset is several order
of magnitude larger. Nevertheless the performance reported
for papers on the baselines methods are consistent with the
ones we report here.

6.2 App Cold Start
We now assess the performance of the method discussed

in Section 5.1 and we evaluate its effectiveness in alleviating
the app cold start problem. For each app installment, we
process the original dataset by splitting it into two subsets:
one subset containing all the events referred to the period
before the app installment and one subset containing the re-
maining events. We then build a model for predicting app
opening events contained in the second file by using events

Figure 9: App Usage Prediction of Baselines (All Apps).

Figure 10: App Usage Prediction of Baselines (Dominant
Apps Filtered).

in the first file. For short-term apps (those that are heavily
used in the moments immediately following their installa-
tion), the precision of app prediction improves from 86.3%1

to 87.1% after applying the strategy described in Section 5.1.
In particular the precision for new apps is about 91.3% and
for existing apps is about 86.25%. The prediction quality
for existing apps is thus not heavily hurt. The results con-
firm that in the case of short-term apps we usually observe
opening events during the first day after they are installed.
The number of opening events steadily decreases afterwards.
Therefore, assigning a relatively high probability for these
apps is useful for improving the performance. Note that
the increase in precision is significant since users open many
apps each day and the opening of the newly installed apps
may only happen in a relatively small fraction of the cases.
Indeed, the percentage of newly installed apps in the test
data is only 1.42%.

The precision we measure in the case of long-term apps
is 89.3% when we use the general method, but no newly

1Precision percentages are different from the previous sec-
tion as we are reporting results on a different partitioning of
the dataset created to test cold start methods.

Figure 11: App Usage Prediction of Baselines.

installed app is correctly predicted in this case. By apply-
ing the proposed cold-start strategy the precision measured
increases up to 90.3% on average. More accurately the pre-
cision is 91.1% for new apps and 89.26% for existing apps,
also confirming that in this case the precision on existing
apps is not heavily hurt.

6.3 User Cold Start
Experimental results show that the Most Similar User

Strategy achieves an average precision of 32.7%. We present
the correlation between app inventory similarity and app
prediction precision in Figure 12. We observe that the app
inventory is useful yet not very effective. There are two main
reasons that may explain this result. First, it is not easy to
find a user with highly similar inventory. In our dataset,
the Jaccard similarity between two different app invento-
ries is typically low. We found an average value of 0.121465
(±0.038955) and a median of 0.117647. Second, even when
the similarity is high the corresponding precision increase is
not always satisfactory. In many cases, we observe that the
precision is almost zero even when similarity of the two app
inventories is relatively high.

Figure 12: App Prediction By Similar User.

On the other hand, the average precision of the Pseudo
User Strategy is 45.7%. Therefore we confirm that estimat-
ing usage data about apps in a new user inventory using this
strategy is effective to boost the performance of the predic-
tion model.

Besides reporting the effectiveness of the two proposed
user cold start strategies we also studied after how many
days the app prediction model can achieve acceptable pre-
diction precision. The result is presented in Figure 13 where
we show that even after just one single day of data about the
user has been collected the prediction’s precision increases
up to more than 56%. Precision further increases up to
81.5% when two days of historical data are considered.

We can conclude that Most Similar User Strategy and
Pseudo User Strategy are both useful but only in the very
same day the homescreen app has been installed. After that,
for a typical user, high-precision prediction models can be
trained using the real (i.e., collected) usage data from that
user.

Figure 13: App Prediction Precision v.s. Number of Days.

7. CONCLUSIONS
In this paper we have proposed a new methodology to

predict what is the next mobile app that a user is going to
open. We conducted a comprehensive analysis on a very
large scale mobile log containing events recorded by Aviate,
the Yahoo’s homescreen app. We proposed a set of basic
and session features that are designed to capture the se-
quential correlation between different actions involving mo-
bile apps; e.g., plugging the charging cable. Based on these
features, we built a Parallel TAN model to efficiently solve
our app prediction problem. We further studied how to al-
leviate the app cold start problem and the user cold start
problem. We conducted a wide spectrum of experiments to
study the parameter sensitivity and effectiveness of the pro-
posed method. Experimental results demonstrated that app
usage is predictable even though a naive strategy based on
popularity features fail to achieve high effectiveness. The
proposed method outperformed the state of the art by a
large margin.

In the future we plan to further improve the prediction
performance at cold start. In particular the problem to im-
prove the performance of user cold start app prediction re-
mains open. Regarding app cold start it is an open problem

that of optimizing the performance of the predictor in the
presence of a mix of cold and non-cold apps. Finally, it is
related the problem of finding the top-k applications that
a user would open instead of the next one. The problem,
then, could be cast into a learning to rank rather than into
a classification one.

8. REFERENCES
[1] George EP Box and George C Tiao, Bayesian inference in

statistical analysis, vol. 40, John Wiley & Sons, 2011.

[2] David Eppstein, Spanning trees and spanners, Handbook of
computational geometry (1999), 425–461.

[3] Nir Friedman, Dan Geiger, and Moises Goldszmidt, Bayesian
network classifiers, Machine learning 29 (1997), no. 2-3.

[4] John C Gower and GJS Ross, Minimum spanning trees and
single linkage cluster analysis, Applied statistics (1969), 54–64.

[5] Niels Henze, Martin Pielot, Benjamin Poppinga, Torben
Schinke, and Susanne Boll, My app is an experiment:
Experience from user studies in mobile app stores,
International Journal of Mobile Human Computer Interaction
(IJMHCI) 3 (2011), no. 4, 71–91.

[6] Ke Huang, Chunhui Zhang, Xiaoxiao Ma, and Guanling Chen,
Predicting mobile application usage using contextual
information, Proceedings of the 2012 ACM Conference on
Ubiquitous Computing, ACM, 2012, pp. 1059–1065.

[7] Di Jiang, Jan Vosecky, Kenneth Wai-Ting Leung, and Wilfred
Ng, Panorama: A semantic-aware application search
framework, Proceedings of the 16th International Conference
on Extending Database Technology, ACM, 2013, pp. 371–382.

[8] Shonali Krishnaswamy, Joao Gama, and Mohamed Medhat
Gaber, Mobile data stream mining: from algorithms to
applications, Mobile Data Management (MDM), 2012 IEEE
13th International Conference on, IEEE, 2012, pp. 360–363.

[9] Zhung-Xun Liao, Po-Ruey Lei, Tsu-Jou Shen, Shou-Chung Li,
and Wen-Chih Peng, Mining temporal profiles of mobile
applications for usage prediction, Data Mining Workshops
(ICDMW), IEEE 12th International Conference on.

[10] Jovian Lin, Kazunari Sugiyama, Min-Yen Kan, and Tat-Seng
Chua, Addressing cold-start in app recommendation: latent
user models constructed from twitter followers, Proceedings of
the 36th international ACM SIGIR conference on Research and
development in information retrieval, ACM, 2013, pp. 283–292.

[11] , New and improved: modeling versions to improve
app recommendation, Proceedings of the 37th international
ACM SIGIR conference on Research & development in
information retrieval, ACM, 2014, pp. 647–656.

[12] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean, Distributed representations of words and phrases
and their compositionality, Advances in Neural Information
Processing Systems, 2013, pp. 3111–3119.

[13] Wei Pan, Nadav Aharony, and Alex Pentland, Composite social
network for predicting mobile apps installation., AAAI, 2011.

[14] Abhinav Parate, Matthias Böhmer, David Chu, Deepak
Ganesan, and Benjamin M Marlin, Practical prediction and
prefetch for faster access to applications on mobile phones,
Proceedings of the 2013 ACM international joint conference on
Pervasive and ubiquitous computing, ACM, 2013, pp. 275–284.

[15] Gamini Premaratne and Anil Bera, Modeling asymmetry and
excess kurtosis in stock return data, Illinois Research &
Reference Working Paper No. 00-123 (2000).

[16] Chang Tan, Qi Liu, Enhong Chen, and Hui Xiong, Prediction
for mobile application usage patterns, Nokia MDC Workshop,
vol. 12, 2012.

[17] Kai Xing, Di Jiang, Wilfred Ng, and Xiaotian Hao, Adi:
Towards a framework of app developer inspection, Database
Systems for Advanced Applications.

[18] Tingxin Yan, David Chu, Deepak Ganesan, Aman Kansal, and
Jie Liu, Fast app launching for mobile devices using predictive
user context, Proceedings of the 10th international conference
on Mobile systems, applications, and services, ACM, 2012.

[19] Peifeng Yin, Ping Luo, Wang-Chien Lee, and Min Wang, App
recommendation: a contest between satisfaction and
temptation, Proceedings of the sixth ACM international
conference on Web search and data mining.

[20] Xun Zou, Wangsheng Zhang, Shijian Li, and Gang Pan,
Prophet: what app you wish to use next, Proceedings of the
2013 ACM conference on Pervasive and ubiquitous computing
adjunct publication, ACM, 2013, pp. 167–170.

