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Predicting the outcomes of organic 
reactions via machine learning: are 
current descriptors sufficient?
G. Skoraczyński1, P. Dittwald2, B. Miasojedow1, S. Szymkuć2, E. P. Gajewska2,  

B. A. Grzybowski2,3 & A. Gambin1

As machine learning/artificial intelligence algorithms are defeating chess masters and, most recently, 
GO champions, there is interest – and hope – that they will prove equally useful in assisting chemists 

in predicting outcomes of organic reactions. This paper demonstrates, however, that the applicability 

of machine learning to the problems of chemical reactivity over diverse types of chemistries remains 

limited – in particular, with the currently available chemical descriptors, fundamental mathematical 

theorems impose upper bounds on the accuracy with which raction yields and times can be predicted. 

Improving the performance of machine-learning methods calls for the development of fundamentally 

new chemical descriptors.

With the dawn of the big-data era1–4, high hopes have been pinned at the ability of machine learning, ML, algo-
rithms5 to analyze the large body of existing chemical data, and to derive from it models predictive of various 
aspects of chemical reactivity. ML methods have already proven very successful in applications ranging from 
speech or image recognition6, to medical diagnostics7, bioinformatics8, and economics9. �ere have also been 
some encouraging examples of using ML to predict biological activities of small molecules10–12, solubilities13, 
crystal structures14, properties of organic photovoltaics15 and, recently, compositions of reaction mixtures and/
or reaction conditions leading to templated vanadium selenites16. �is last example is quite spectacular in that 
machine-learning performed better than the collective knowledge and intuition of chemists who had previously 
worked on the problem. On the other hand, demonstrations in organic synthetic chemistry are few in number 
and limited to narrow datasets of similar and/or very simple reaction classes17–21. What is largely missing are 
studies that would quantify the general applicability of ML methods to diverse chemistries.

�e main objective of this work is therefore to assess in a quantitative manner whether ML methods can pre-
dict the outcomes of diverse organic reaction with practically-relevant accuracy. In particular, we use a wide range 
of currently available chemical descriptors and various ML algorithms to examine whether they can predictively 
categorize two quantities which are important in organic-synthetic practice and for which ample training exam-
ples are available (here, close to 0.5 million reactions each): (i) reaction yields (binary classi�cation high vs. low) 
and (ii) reaction times (binary classi�cation rapid vs. slow). It is important to note that the training set we use 
comprises reactions not necessarily accounting for full stoichiometry (i.e., no atomically balanced; see examples 
in Fig. 1). For reactions with manually curated full stoichiometry, thermodynamic models have recently been 
shown22 to achieve ± 15% accuracy of yield prediction, However, organic reactions are typically drawn by chem-
ists without accounting for all small reagents or side-products – in this light, the current work is a real-world test 
for the machine learning methods to extract reactivity trends from reactions as they are deposited in the chemical 
literature or in reaction databases.

�e results of our work are somewhat negative but, we believe, thought-provoking. Irrespective of the spe-
ci�c ML method applied, the number of molecules in the training set, or the nature and the number of features/
descriptors used to train the model, the accuracy of binary yield prediction is only c.a. 65 ± 5% (i.e., error ~35%) 
and that of reaction-time prediction, c.a. 75 ± 5% (error ~25%). Another important conclusion of this work is 
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that it can be proven rigorously – by the so-called Bayes classi�er error estimates – that with the currently avail-
able representations of molecules, (i.e., chemical descriptors), these outcomes cannot be signi�cantly improved. 
Naturally, it can always be argued that “better” representations of molecules can be developed, though it is some-
what unclear how to account for the immense structural and mechanistic diversity of organic reactions23, their 
o�en-encountered sensitivity to reaction conditions, or even inherent day-to-day irreproducibilities in reaction 
outcomes. We will touch upon these interesting issues in the last part of the paper. In the meantime, we see the 
main virtue of our work in potentially stimulating new research on molecular representations and their use in 
chemical machine-learning24.

Methods
Datasets. �e initial datasets, courtesy of GSI and Reaxys, comprised ~1,000,000 reactions for which the 
yields were reported and ~600,000 reactions reporting reaction times. �ese sets were pruned for incomplete 
entries and duplicate reactions. When the same reaction was reported with multiple yields, the highest value 
was taken; if the same reaction was reported with multiple times, the shortest one was chosen. Ultimately, each 
set comprised ~450,000 reaction entries of which 325,000 had both the yields and times reported (within this 
common subset, the values of yields and times had a nearly zero correlation, see Supplementary Information, SI, 
Figure S5).

ML methods. Various ML methods were implemented and tested including logistic regression25, support 
vector machines (SVM)26, neural networks27, 28, extremely randomized trees (ERT)29 and random forests (RF)30, 31. 
Of these, RF and ERT gave the best – and similar – results (i.e., highest accuracy of classi�cation). For clarity and 
consistency, RF is described in detail in the discussion that follows (for the results obtained with other methods, 
see SI).

Descriptors and fingerprints. In most calculations, two distinct and commonly accepted types of features 
were used to train the models: (1) Molecular descriptors, summarized in RDKit32 and capturing various charac-
teristics of individual molecules (from molecular weight, to the numbers of speci�c atoms, rings and structural 
motifs, to various topological indices, etc.; see list at the end of the SI) along with experimental parameters such 

Figure 1. Illustrative reactions from the training set. A small sample of eleven reactions chosen at random 
from the set of 450,000 reactions analyzed by machine learning methods. �e reactions are diverse and span 
di�erent types of chemistries. Shown here are: cycloaddition, synthesis of guanidines, alkylation of ketones, 
alpha-bromination of nitriles, substitution of primary alkyl chlorides with thiocyanate anion via SN2, synthesis 
of isatins, ester hydrolysis (in two reactions), �uorination of primary alcohols, reduction of nitro compounds, 
and esteri�cation of carboxylic acids).
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as solvents and temperature. Models up to almost 400 RDKit descriptors (~200 for substrates and ~200 for prod-
ucts) were constructed and tested. (2) Reaction �ngerprints re�ecting changes in the molecular features over the 
reaction process and calculated for each reaction by subtracting the sum of products’ �ngerprints from the sum 
of the reactants’ �ngerprints. �e �ngerprint vectors accounted for 800,000 binary features but were typically very 
sparse with only several dozen non-zero entries – accordingly, following the procedures from17, we condensed 
them into shorter vectors by hashing bit indices and summing colliding items (though the collisions were very 
infrequent, meaning that any information loss during compression was negligible). �is protocol gave 256-length 
AP3 �ngerprints (Atom-Pairs with maximum path length of three33).

Chemical-linguistic descriptors. In addition, we used descriptors that corresponded to the maximum 
common substructures between organic molecules. As we showed in ref. 34, the frequency of occurrence of 
these substructures in large collections of molecules followed the same power-law trend as the frequency of word 

Figure 2. Decision trees and random-forest classi�ers. (a) An example of a decision tree with simple chemical 
features classifying input molecules. Traversing the tree top-down, each diamond-shaped node assigns a 
molecule to a branch depending on its particular chemical feature of interest. For example, oxazole molecule 
is �rst classi�ed as having less than two nitrogen atoms (criterion at the purple decision node), then as having 
at least one oxygen atom (criterion at the dark-blue node), and then as having an aromatic ring (criterion at 
the light-green node). When sets of molecules are analyzed by such a tree, they are ultimately categorized into 
two classes – ‘class 1’ corresponding to azoles, and ‘class 2’ corresponding to azolidines. (b) Since the trees are 
relatively small (i.e., have only few decision nodes/layers) classi�cation accuracy for each individual tree can 
be poor. However, when large numbers of small trees with di�erent features (the so-called Random Forest) are 
constructed, and each provides its own classi�cation/“vote,” majority vote across all trees enhances classi�cation 
accuracy. For details of this algorithm please see ref. 18.
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Figure 3. Yield and time predictions based on molecular descriptors. Histograms with distribution of (a) yields 
(b) reaction times. Classi�er errors plotted as a function of the number of RDKit descriptors for (c) yields and 
(d) reaction times. �e errors stabilize above c.a. 100 descriptors. Similar analysis (i.e., with classi�ers built on 
descriptors) for di�erent sizes of the reaction sets evidences that errors (both for yields (e) and (f) times) do not 
signi�cantly decrease for larger datasets. Shaded, blue regions in panels (e) and (f) demarcate lower and upper 
estimates for the Bayes classi�er error (i.e. the best classi�er that can be used to discriminate between these 
datasets, see SI for theoretical details).
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fragments in English texts – hence, we refer to them as chemical-linguistic descriptors, CLDs. Importantly, such 
descriptors are more informative than isolated functional groups as they represent characteristic motifs encoun-
tered in organic molecules. In the present work, we used up to several thousands of CLDs, alone or in combina-
tion with descriptors from the RDKit collection.

Decision trees and Random Forests. Any machine learning necessitates a collection of examples which 
in the so-called supervised ML methods serve as the training set – in our case, the set of published reactions 
characterized by certain features/attributes and outcomes. In the so-called decision trees that gave the best results 
in our study, one splits the dataset into branches corresponding to the presence of certain features until reaching 
subsets that contain highly homogeneous entries (see example in Fig. 2). �e decision trees have been known for 
a long time but they su�er from high variance of their predictions – a much more precise method is the so-called 
Random Forest, RF30, 31, approach in which the training set is split into subsets, and each is trained on its own 
decision tree (Fig. 2b). �e results are then averaged over the trees decreasing the variance and increasing the 
accuracy of prediction against data in the test set (i.e., not in the original training set). All results discussed below 
were based on RF algorithms performed with four-fold cross-validation scheme whereby the entire reaction set is 
divided into four equal parts, and various combinations of three of these parts are used as training sets (with the 
remaining, fourth part being a test set); the results are then averaged over these combinations.

Results
With these methods, we wished to perform two binary classi�cations – namely, whether reaction yields and times 
could be predicted as being above or below certain threshold values. �e speci�c thresholds were 65% for yield 
(chosen as a median of all yields in the reaction set; see Fig. 3a for the distribution of yields) and 12 hrs for times 
(chosen as a boundary between reactions with well speci�ed times and those “le� overnight” as o�en conven-
iently reported; see Fig. 3b for the distribution of reaction times). We emphasize that (i) the results did not di�er 
signi�cantly for other threshold values and (ii) were only worse when more than two outcomes were considered 
(e.g., low, moderate and high yield classes) or when regression models were used. For instance, the root mean 
square error in predicting yields via regression based on RF with four-fold cross-validation was as high as 25% 
on a yield scale 0–100%.

Figure 3c plots the accuracy of yield classi�cation as a function of the number of RDKit descriptors, Ndescr, 
used to train the model. Although the error (red markers) gradually decreases with Ndescr, it levels o� at ca. 37% 
(i.e., accuracy is, at most, 63%) even when as many as 400 descriptors are used. Figure 3d has a similar plot for the 
accuracy of reaction-time prediction – in this case, the error remains at ca. 26%. Red markers in Fig. 3e and f plot 
the error as a function of the size of the reaction set used. As seen, even for 450,000 reactions, the errors are still 
ca. 35% for yields and ca. 25% for times, with the improvements becoming marginal upon increasing the dataset 
(especially for reaction times).

�e results for the analyses based on �ngerprints are summarized in Fig. 4. Here, the number of �ngerprints is 
constant (800,000) so the trends are shown as a function of the reaction set size. �ere is no signi�cant improve-
ment over descriptor-based analyses and the errors are above 35% for yields (Fig. 4a) and 25% for times (Fig. 4b).

It is important to ensure that the above analyses are not biased by having too many, con�icting, and/or irrel-
evant descriptors. Redundant descriptors (and consequent over�tting) are problematic when the number of 

Figure 4. Classi�er performance for Random Forests built on reaction �ngerprints. Errors – both for (a) yields 
and (b) times – do not signi�cantly decrease for large datasets. Blue, shaded regions demarcate lower and upper 
estimates for the Bayes classi�er error.



www.nature.com/scientificreports/

6Scientific RepoRts | 7: 3582  | DOI:10.1038/s41598-017-02303-0

descriptors is relatively high compared to the number of observations. In our case, we use 400 common descrip-
tors and/or up to few thousands of chemical-linguistic descriptors, which is small compared to ~0.5 million 
“observations”/reactions. Also, each of the data points we present in Figs 3 and 4 is for the subset of descriptors 
that give the highest correlation with either reaction yield or reaction time (e.g., there are multiple ways of choos-
ing 100 descriptors out of the total of 400 – the classi�cation error plotted is for those 100 descriptors that give 
the highest correlation). �is procedure clearly eliminates irrelevant descriptors. Finally, following the methods 
described in ref. 35, we performed additional tests in which we ran logistic regression with LASSO penalty for a 
subsample of 90, 000 reactions/”observations. We obtained ~74% accuracy for reaction times and ~60% accuracy 
for reaction yields, both of which agree with the results we present in the paper.

Additional analyses based on the so-called Gini index36 indicated that classi�ers’ performance stabilizes when 
large sets of descriptors are used with the feature-importance score being stable over di�erent algorithm runs 
(see SI, Figure S4). Principal component analysis, PCA, also con�rms the intrinsic complexity of the performed 
classi�cation task – in particular, data from di�erent classes cannot be separated in the Euclidean space (see SI, 
Figure S3).

�e above results suggest that simply increasing the size of the training set or the number of features/descrip-
tors is unlikely to lead to signi�cantly better results. Yet, one might always speculate that such an improvement 
were possible with a di�erent classi�er structure. However, mathematical methods exist that eliminate such spec-
ulation. Speci�cally, we calculated the so-called Bayes classi�er error rate which, in our case, is the probability 
that a reaction outcome is misclassi�ed by a classi�er (e.g., RF) that “knows” a priori the true class probabilities 
(i.e., here, whether the reaction is really low/high yielding or whether its time is long/short) given the molecular 
or �ngerprint predictors used. In other words, the Bayes classi�cation rate estimates the lowest possible error 
rate for our high-low yield/long-short time classi�cations and is analogous to the irreducible error. Based on 
the mathematical considerations detailed in the SI, Section S1, the lower and the upper bounds for the Bayes 

Figure 5. Classi�cation based on chemical-linguistic descriptors. (a) An example showing two organic 
molecules and their maximal common substructure – such substructures computed over millions of molecule-
molecule pairs can be used as chemical-linguistic descriptors, CLDs. (b) Examples of some smaller and 
larger CLDs used as descriptors to predict reaction yields and times. Dashed lines denote aromatic bonds. (c) 
Performance of a random forest classi�er based on various numbers of CLDs. Even for 5,000 descriptors, the 
misclassi�cation error is still ca. 40%.

http://S4
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error can be calculated – these are indicated by the blue lines in Figs 3e,f and 4a,b. As seen, the lower bound for 
yield-prediction error is ca. 20% and that for the time-prediction error is ca. 17%. �is means that while our RF 
classi�ers can be improved slightly, one cannot achieve classi�cation accuracy above ca. 80% which in ML prac-
tice is not considered a spectacular result.

One of the possible reasons for this under-par performance is that the descriptors and/or �ngerprints used do 
not really capture the nuances of molecular structures. Inspection of the descriptors’ list in the SI indicates that 
they are generally of two types – focusing either on the properties of the entire molecule (electronic properties, 
topological indices, solubility measures) or on the presence/absence of traditional functional groups. Yet, mole-
cules are o�en characterized and recognized by the presence of features at an “intermediate” level – for example, 
when a chemist looks at a steroid, it is not only that presence of a certain number of rings he/she recognizes, 
but the larger-scale pattern of how these rings are arranged with respect to one another. In one of our recent 
publications34, we de�ned such characteristic patterns as the maximum common substructures shared by pairs 
of molecules (Fig. 5a). When millions of such pairs were inspected, they contained tens of thousands of unique 
substructures ranging from relatively simple fragments to larger motifs implicitly containing in themselves some 
information about three-dimensional structure (Fig. 5b). Remarkably, when the substructures were then ranked 
according to their popularity over all molecule pairs, they gave a distribution that was identical with that charac-
terizing the occurrence of common word fragments in the English language – hence, an analogy of the substruc-
tures to “chemical words”. Interestingly, these “words” of chemistry were quite informative in identifying most 
reactive bonds in the molecules to which they belonged (for details, see ref. 34). In the context of our present dis-
cussion, we hypothesized that these substructures could also be used as informative chemical-linguistic descrip-
tors, CLDs, carrying in them more information about the molecules than isolated functional groups or simple 
features such as rings. Accordingly, we tested whether the CLDs could predict reaction yields or times better than 
the RDKit descriptors. Still, even with as many as 5,000 CLDs, the machine learning methods described earlier 
showed no improvement. �is is illustrated in Fig. 5c which plots the error of yield classi�cation as a function of 
the number of CLDs used – as seen, the error stabilizes at ca. 40%. As a last attempt, we performed classi�cation 
with mixed sets of RDKit and CLD descriptors. In that case, the lowest errors we achieved were no better than 
~35%.

Discussion and Outlook
�e main conclusion from the above analyses is that ML methods are, at least at present, not performing well in 
predicting the outcomes of organic reactions. One might argue that the results would be improved with some 
other set of descriptors. On the other hand, we used here virtually all accepted chemoinformatic descriptors 

Figure 6. A challenge for Machine Learning: Minor structural changes in starting materials can dramatically 
in�uence the reaction outcomes. (a) Replacement of two O-protecting groups (orange OMe to green OBn 
and OMOM) in the intermediate in Danishefsky’s synthesis of (+/−)-FR-900482 changes the lability of ether 
groups and prohibits rearrangement of an epoxide to an aldehyde37. (b) Minute changes in temperature alter 
reaction mechanism and result in di�erent products38. (c) Small changes in electron density modify reactivity 
of N-pivaloyl and N-Boc protected anilines. �e upper substrate reacts into an intermediate that is impossible 
to isolate and thus leads to a product that is markedly di�erent than the one obtained from the lower substrate 
di�ering in only one atom (oxygen)39. (d) Presence of the epoxide ring in the tricyclic moiety allows for close 
proximity of the terminal iodides enabling double Pd-mediated coupling. In contrast, when the epoxide is 
replaced by a double bond, the iodides are further apart and no cyclization is observed40.
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and also large numbers of additional chemical-linguistic substructures – it is somewhat hard for us to imagine 
other sets that would have more chemical content and could o�er better predictive power. In fact, we believe the 
di�culty of the problem is not only in the descriptors but in the form in which organic reactions are presented 
in organic-chemical literature – namely, that they typically come without full stoichiometry, include some key 
reagents only as abbreviations, or do not report small by-products. In the thermodynamic model we reported 
in22, all reactions had full stoichiometry, and all bonds broken or made were considered – hence, the model could 
fully account for reaction enthalpies and performed well with only few hundred free parameters (i.e., less than 
the number of descriptors we used in current ML models). �e problem of incomplete stoichiometry is further 
compounded by the inherent ambiguity in the reported reaction outcomes (i.e., even for reactions performed 
by the same team, yields can vary signi�cantly, see ref. 22), calling for a systematic scrutiny and “cleaning-up” of 
reaction repositories such as Reaxys or SciFinder. In addition, there is a problem of insu�cient number of liter-
ature examples on which to train the ML models. As we estimated in ref. 23, there are on the order of 10 million 
known reactions but as many as 20,000–30,000 distinct reaction types, meaning that the statistics for learning are 
few hundred examples per reaction type, which is generally insu�cient for covering the combinations of possible 
substituents, steric and electronic e�ects, etc. Last but not least, it is unclear how to account for the cases in which 
very small alterations in the molecular structures of the reacting molecules can lead to dramatically di�erent 
reaction outcomes (cf. examples in Fig. 6). We believe that in order to capture such nuances, fundamentally new 
descriptors should be developed that account not only for the connectivity of molecular graphs, but also for the 
stereoelectronic properties and three-dimensional conformations of molecules.
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