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By varying the dynamics in a musical performance, the musician can convey structure and different

expressions. Spectral properties of most musical instruments change in a complex way with the per-

formed dynamics, but dedicated audio features for modeling the parameter are lacking. In this

study, feature extraction methods were developed to capture relevant attributes related to spectral

characteristics and spectral fluctuations, the latter through a sectional spectral flux. Previously,

ground truths ratings of performed dynamics had been collected by asking listeners to rate how

soft/loud the musicians played in a set of audio files. The ratings, averaged over subjects, were used

to train three different machine learning models, using the audio features developed for the study as

input. The highest result was produced from an ensemble of multilayer perceptrons with an R2 of

0.84. This result seems to be close to the upper bound, given the estimated uncertainty of the

ground truth data. The result is well above that of individual human listeners of the previous listen-

ing experiment, and on par with the performance achieved from the average rating of six listeners.

Features were analyzed with a factorial design, which highlighted the importance of source separa-

tion in the feature extraction.VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4978245]

[JFL] Pages: 2224–2242

I. INTRODUCTION

A. Performed dynamics

By varying the dynamics in a musical performance, the

musician can accentuate or soften different parts of the musi-

cal score. This is an effective way to convey structure and

expression to the listener. The listener’s perception of the

overall dynamics in the performance should thus be an

important perceptual feature to model and predict. Dynamics

is a broad concept, which comprises many different aspects

of music (Berndt and H€ahnel, 2010). This study is focused

on performed dynamics. What do we mean when we refer to

performed dynamics? While the term dynamics is used in

different musical contexts, we wish to directly refer to the

musical performance, thus distinguishing the term from

other similar meanings. For example, the audio engineer can

control the dynamics by varying the level of compression on

individual instruments or in the main mix; and researchers

can, e.g., investigate the effect of dynamical changes in

intensity or tempo in music. These aspects of dynamics are

not the subjects of this study, as we are solely referring to

the force, or energy, of the musicians when they play their

instruments. In this context, dynamics markings are used in

traditional music notation to inform the musician about the

desired performed dynamics (e.g., piano, fortissimo).

Performed dynamics is controlled differently on differ-

ent instruments. For example, on the violin it is accom-

plished by varying bow velocity, bow pressure, and bow

position, while on the piano it is ultimately the velocity of

the hammer as it reaches the string that controls the resulting

performed dynamics. In most acoustic instruments, the

sound level, the timbre, and the onset character (e.g., onset

velocity) all change in a rather complex way with varying

performed dynamics (Luce and Clark, 1967; Fastl and

Zwicker, 2006; Fabiani and Friberg, 2011). Generally, how-

ever, many musical instruments, as well as the voice, will

produce a spectrum with more high frequency content when

they are played with a higher performed dynamics (Luce,

1975; Fabiani, 2009). These variations of acoustical parame-

ters make it possible for humans to deduce the performed

dynamics regardless of listening volume when listening to

recordings of acoustic instruments (Nakamura, 1987). This

means that, given a set of sound examples where the listen-

ing level is normalized, listeners can still distinguish

between songs with a low or high performed dynamics.

The relationship between performed dynamics and loud-

ness becomes evident when measuring changes in loudness

within the same piece of music, or changes in loudness for

isolated tones from the same instrument. In one such study,

Geringer (1995) explored the perceived loudness changes in

musical pieces containing a crescendo or a decrescendo. In a

similar study of Baroque music (Berndt and H€ahnel, 2010),

dynamic transitions were connected to loudness changes in

the audio recordings. Dynamic transitions have also been

detected by modeling loudness changes in Chopin’s

Mazurkas (Kosta et al., 2015). In a study of isolated notes

from the clarinet, flute, piano, trumpet, and violin (Fabiani

and Friberg, 2011), it was found that both timbre and sound

level influenced the perception of performed dynamics with

about equally large effects. Here the pitch also influenced

the perceived performed dynamics in most of thea)Electronic mail: elov@kth.se
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investigated instruments. A recent study mapping MIDI

(Musical Instrument Digital Interface) velocities to dynamic

markings also found an interaction with pitch and note dura-

tion in the model (Chac�on and Grachten, 2015). This is per-

haps not surprising, as it has been found that instruments

playing the same dynamic markings will change in loudness

depending on pitch (Clark and Luce, 1965).

B. Loudness, timbre, and intensity

Loudness and timbre are closely related to performed

dynamics. Loudness is a psychological measurement of

sound strength, which is functionally related to sound pres-

sure level, frequency distribution, and duration (Olson,

1972). It is known from previous studies (Luce and Clark,

1967; Geringer, 1995; Berndt and H€ahnel, 2010; Fabiani and

Friberg, 2011), that an increase in loudness can be related to

an increase in performed dynamics. Furthermore, loudness

has been explicitly modeled in, e.g., time-varying loudness

models, such as those by Glasberg and Moore (2002) and

Chalupper and Fastl (2002). Could these methods then be

used to estimate the average performed dynamics of a music

audio file? Unfortunately, this is not the case. When music is

recorded, mixed, and mastered, the relationship between the

loudness of a performance and the loudness of that perfor-

mance in the musical mixture is removed. A model of per-

ceived performed dynamics, applicable to a set of recorded

multi-instrumental music examples, must therefore be

invariant with regards to the sound level (and ultimately

loudness) of these recordings. Although models that solely

try to detect relative performed dynamics (i.e., trying to

detect dynamic transitions or crescendos and decrescendos)

have used loudness as the independent variable (Berndt and

H€ahnel, 2010; Kosta et al., 2015), the task of estimating the

average perceived performed dynamics of a musical excerpt

(ME) involves the complexity of mapping a music audio file

to an absolute target value, regardless of the sound level of

the audio file. Additionally, the added complexity of multi-

instrumental music examples further blurs the relationship

between loudness and performed dynamics.

Although the connection to the real sound level that

each instrument generates is lost when music is recorded, the

timbres of the instruments are still captured in the recording.

Therefore, we are in this study focusing mainly on timbre

and timbre variations related to performed dynamics. There

has been a considerable amount of research about timbre,

where researchers have tried to model its main characteristic

features. Such studies have not been fully successful, poten-

tially because timbre can be described as a negation; the

attribute of a tone which is not pitch, loudness, or duration

(Hajda et al., 1997). However, in similarity-ratings of differ-

ent isolated musical tones, using a three-dimensional multi-

dimensional scaling solution, the obtained factors can be

interpreted to be related to the attack (e.g., the rise time), the

spectral characteristics, and the spectral changes of the tones

(e.g., MacAdams et al., 1995). Thus, relevant features for

the prediction of performed dynamics should arguably

describe spectral properties as well as spectral changes.

The related subject of perceptual intensity in music has

been explored in two studies. Perceptual intensity differs

from perceived performed dynamics in that the former is

more directly related to the impression of energy in the

music, while the latter is more directly related to the impres-

sion of the energy level of the performing musicians. In this

sense, performed dynamics may be more abstract in nature,

and hence more difficult to model. In a study by Zils and

Pachet (2003), the perceived intensity was first rated on a

scale ranging from “low energy” to “very high energy,” and

a mean value of listener ratings computed for each excerpt.

The study used Mpeg7 low-level audio descriptors (Herrera

et al., 1999) in combination with features from the Extractor

Discovery System to reach an R2 of 79.2 (expressed as a cor-

relation of 0.89 between annotated intensity and predicted

intensity from a combination of features). Sandvold and

Herrera (2005) classified musical intensity into five classes,

ranging from ethereal, through soft, moderate, and energetic,

to wild. The authors used basic features such as order statis-

tics of the distributions of sound levels along time, as well as

spectral characteristics such as spectral centroid and spectral

skewness. The reported classification accuracy was 62.7%.

C. Machine learning and feature extraction in MIR

There are various methods to model perceptual aspects

of music audio. A common approach in music information

retrieval (MIR) is to first extract some characteristics (fea-

tures) from the audio file with signal processing techniques,

and then to infer how the features relate to annotated ground

truth targets with machine learning methods. When dealing

with complex tasks or small datasets (such as the dataset

used in this study), the training instances will not be able to

fully specify the underlying mapping between input and

ground truth (Krizhevsky et al., 2012). In these cases, it is

beneficial to either incorporate prior knowledge into the con-

figuration of the machine learning algorithm, e.g., by using

weight sharing in artificial neural networks, or, as is also

common in MIR, to use a feature extraction process.

1. Feature extraction

Features in MIR are often extracted from a spectrogram

of the audio file by sampling the bin magnitudes, or by trying

to detect spectral characteristics or changes in the spectrum

over time, e.g., using Mel-Frequency Cepstrum Coefficients

(MFCCs) (Logan, 2000). For an up-to-date review of feature

extraction techniques in music we refer the reader to the

study by Al�ıas et al. (2016).

An important consideration for the feature extraction is

the type and extent of prior knowledge to incorporate. If a

lot of training data are available, it is possible to infer more

complex relationships between the data and the annotations,

and therefore not necessary to incorporate as much prior

knowledge. In these cases, it is common to use bin magni-

tudes from the spectrograms directly. If little training data

are available, it is necessary to make more assumptions

about what characteristics of the data that are relevant for

the task. This process is generally referred to as feature engi-

neering, and it is a relevant factor in the success of many
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models that rely on machine learning (Domingos, 2012). In

this study, prior knowledge (and assumptions) about the fea-

tures that human listeners associate with performed dynam-

ics will be applied. Given our assumption that timbre is

important, the features will be related to timbral

characteristics.

A downside of feature engineering (besides being time

consuming to develop), is that it may remove relevant infor-

mation in the process, thus reducing the performance of the

subsequent learning algorithm. We will therefore try to

retain as much information as possible, by applying a large

variation of settings in the feature extraction.

2. Inference with machine learning

After a set of relevant features have been extracted,

machine learning is usually applied to learn from examples,

and infer associations between the features and the target

values. This is standard practice in MIR, and has been used

to, e.g., perform mood regression with a recurrent neural net-

work (Weninger et al., 2014) or to perform genre classifica-

tion with standard statistical pattern recognition classifiers

(Tzanetakis and Cook, 2002).

A successful machine learning model, a model with

high generalization capabilities, minimizes the error on the

training set (to prevent underfitting), while also minimizing

the gap between the training error and the error on the test

set (to prevent overfitting) (Goodfellow et al., 2016). These

two goals can be hard to achieve simultaneously due to the

bias-variance tradeoff, the fact that minimizing underfitting

(reducing bias) may lead to higher variance (overfitting). For

example, underfitting may be reduced by creating a model

with a sufficiently high complexity. On the other hand, a

model with a high complexity may make erroneous assump-

tions, and therefore overfit the training data. One way to con-

trol the complexity of a model is to balance the number of

input features, and in the case of neural networks (NNs), to

also regulate the size of the hidden layers of the network. An

effective technique to improve generalization is ensemble

learning, where multiple models are trained, and the average

of their predictions is used as a global prediction for the test

set. To achieve good results with ensemble learning, models

of the ensemble should make diverse predictions, because

the average predictions from these models can then be

expected to provide a better prediction than randomly choos-

ing one of them (Sollich and Krogh, 1996; Polikar, 2006). A

common way of achieving this is to use bootstrap aggregat-

ing (bagging) to train, e.g., multiple NNs from different fea-

ture subsets (Hansen and Salamon, 1990; Sollich and Krogh,

1996; Polikar, 2006).

In summary, constructing methods with high generaliza-

tion capabilities is a central factor for achieving good results

with machine learning. This can be achieved by incorporat-

ing appropriate assumptions about the data, controlling the

complexity of the models, and by using ensemble learning.

3. Global and local models

Another challenge in MIR is to handle the time-domain

in tasks where the annotations for the prediction is a single

class or value for the whole song, as in this study. One strat-

egy to handle this, called multiple-instance learning (Maron

and Lozano-P�erez, 1998), is to assign the global target

locally to each time frame, then make a prediction for each

frame, and finally compute, e.g., an average of the predic-

tions. This strategy is more suitable for tasks such as genre

detection and artist recognition (Mandel and Ellis, 2008),

where each frame can be expected to carry information that

is in accordance with the global prediction. For tasks that do

not have this property, such as vocal detection based on a

global binary annotation, an iterative procedure of threshold-

ing the local predictions during training to refine the annota-

tions has been tried (Schl€uter, 2016). The experiments

underlined the importance of frame-wise annotations for the

task. Arguably, performed dynamics is functionally some-

where in between these two tasks with regards to how well a

global annotation translates to accurate local annotations.

Timbre of most music is fairly stable over time (Orio, 2006),

but, e.g., MEs with sudden orchestral hits followed by inter-

mediate silence will be rated as having a high performed

dynamics globally, but the majority of local frames will not

support this rating. If a method can be developed to extract

features from the most relevant parts of each excerpt, it

would not be necessary to apply frame-wise estimates. Such

a method will be developed in this study, as it can be useful,

both for performed dynamics and other tasks in MIR.

D. Previous study of performed dynamics

Previously, we have studied performed dynamics as part

of a larger investigation of the concept of perceptual fea-

tures; both regarding basic perception and for computational

modeling in MIR applications (Friberg et al., 2011; Friberg

et al., 2014). The ground truth annotations consisted of lis-

tener ratings of overall performed dynamics for a variety of

music examples. The same listener ratings and datasets are

also used in the present study, as described in Sec. II. In the

previous study, 25 audio features were used for the predic-

tion (Friberg et al., 2014). The features were calculated

using the MIRToolbox (Lartillot and Toiviainen, 2007),

(number of features in parenthesis): MFCCs (13), zero cross-

ings (1), brightness (3), spectral centroid (1), spectral spread,

skewness, kurtosis, and flatness (4), spectral roll-off (2), and

spectral flux (SF) (1). Ratings of perceived dynamics were

predicted using linear regression (LR), partial least-square

regression, and support vector regression (SVR), on a dataset

consisting of 100 popular music clips and a dataset of 110

film music clips (See Sec. II A). For both datasets, the best

result was obtained using SVR, with an R2 of 0.58 for the

popular music dataset and 0.74 for the film music dataset,

using 10-fold cross-validation. The rated performed dynam-

ics was thus in general modestly well predicted.

E. Purpose of the present study

The main purpose of the present study is to build a com-

putational model that can predict the overall performed

dynamics in a music audio file. From previous research pre-

sented above, it is clear that several acoustical parameters

vary with performed dynamics. The characteristics of this
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variation have not yet been fully determined, and it also dif-

fers between instruments. Considering that the present study

aims at modeling performed dynamics for a mix of different

instruments, it is difficult to formulate a specific hypothesis

regarding the expected relationship between acoustical

parameters and the perception of performed dynamics.

Therefore, we will extract a broad range of features, and

then analyze how different transformations and settings

affect prediction accuracy and correlations between features

and listener ratings. By doing so, it becomes possible to

relate various aspects of the audio to the perception of per-

formed dynamics. This may give insight into what specific

characteristics in, e.g., spectral changes that are the most rel-

evant. The feature analysis of this study (Sec. VII) is there-

fore rather extensive. The previous study for the prediction

of performed dynamics only used one SF feature, although

various aspects of spectral changes should be important vari-

ables. It will therefore be especially interesting to give a

more in-depth analysis of this feature extraction technique.

Particularly challenging when using small datasets is to

minimize underfitting while also creating models that gener-

alize well, as outlined in Sec. I C. For many MIR-tasks, these

challenges are interconnected with the feature extraction, as

the large amount of data in the audio signal across time may

compel researchers to discard important information during

the signal processing stage. One purpose of the study is

therefore to explore how these challenges can be managed.

We will develop a sectional feature extraction of the SF,

engineered to capture performed dynamics while balancing

the focus to both local and global characteristics of the tar-

get. Relevant information will be retained during the signal

processing stage by using multiple settings for each transfor-

mation, computing features by applying all combinations of

settings. This process produces a large feature set, which

facilitates ensemble learning where individual models use

only a subset of the features. Bootstrapping the feature set in

such a way decorrelates the predictions of the models, which

improves generalization by satisfying the conditions for a

successful ensemble learning specified in Sec. I C 2.

Finally, two different ways to estimate the accuracy of

the best model in relation to the ground truth annotations are

presented in Sec. VI B. This should be useful also for future

studies, as the subject has been widely discussed in recent

MIR conferences.1

II. DATASETS

A. Music examples

Two different datasets of music audio recordings were

used in the study, for which perceptual ratings of performed

dynamics had been collected in two previous experiments

(Friberg et al., 2014). The first dataset contains 100 audio

examples of popular music (average length 30 s) that were

originally produced in the MIDI format and then converted

to audio. The second dataset was provided by Eerola and

Vuoskoski (2011) and consists of 110 audio examples of

film music (average length 15 s), selected for investigating

the communication of emotional expression. Both datasets

were almost exclusively polyphonic, containing a variety of

musical styles and instrumentations. In the present study, all

the examples in the datasets were normalized according to

the loudness standard specification ITU-R BS.1770 (ITU,

2006). For the first set this was done before the listeners

rated the MEs. The loudness normalization is useful as the

overall sound level of musical mixtures varies based on fac-

tors not directly related to the performed dynamics in the

audio (see Sec. I B for a discussion about this). The process-

ing implicitly enables the developed models to predict per-

formed dynamics without being influenced by the sound

level of the analyzed musical mixtures.

B. Perceptual ratings of performed dynamics

The overall perceived performed dynamics (as well as

eight other perceptual features) was rated for both datasets

on a quasi-continuous scale by two groups of 20 and 21 lis-

teners, respectively, in two previous experiments (Friberg

et al., 2014). In each experiment, the performed dynamics

(along with several other perceptual features) of each musi-

cal example was rated on a scale ranging from soft (1) to

loud (10). The listeners gave one global rating for each ME,

and the ground truth was then computed as the average rat-

ing of all listeners for each music example. The listeners

generally had some musical knowledge, such as playing an

instrument on an amateur level or being a music teacher, but

none of them were professional musicians. The music exam-

ples were presented over high quality loudspeakers, with a

calibrated sound pressure level at the listening position. The

resulting reliability of the mean estimate across listeners was

high [Cronbach’s alpha (CA)¼ 0.94–0.95 for both groups].

For more details about the datasets and procedure we refer to

the studies by Friberg et al. (2014), Friberg et al. (2011), and

Friberg and Hedblad (2011).

C. Final dataset

To get a bigger and more varied dataset, the audio exam-

ples from the two datasets were pooled into one dataset con-

sisting of 210 MEs. Pooling two different datasets annotated

by different people effectively decorrelates the noise in the

annotations, which is good for getting accurate models. The

effect is that the developed model will be less likely to model

any individual preferences of the annotators. As previously

mentioned, the reliability of the ground truth average was esti-

mated by the standardized CA (Cronbach, 1951; Falk and

Savalei, 2011). This measure determines the extent to which a

set of items (corresponding to listeners in this study) have

been measuring the same concept. If a listener does not under-

stand the concept that is being rated, they will decrease the

reliability of the final average rating, resulting in a lower CA.

The reliability of the ratings will influence how well the two

datasets can be used for the same model after pooling. A pro-

cedure of removing items that decrease CA can be used to

increase the reliability of a construct (Santos, 1999).

Therefore, in order to use a reliable estimate, ratings from

subjects that decreased the CA were removed in an iterative

procedure. The change in CA was calculated for the listeners

depending on if they were included or not. For each iteration,

if there were any listeners that decreased the value, the listener
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that decreased it the most was removed. This procedure

resulted in two listeners being removed from the first dataset

(increasing CA from 0.937 to 0.940) and seven listeners being

removed from the dataset of film music (increasing CA from

0.951 to 0.957). The practice could be especially useful for

pooled ratings from different listeners on different datasets. In

this case, internal consistency could also increase consistency

between datasets. At the same time, the risk that the predicted

concept drifts when listeners are removed is reduced, as the

procedure is performed on two separate datasets.

III. FEATURES

What kind of audio features can be used to model the

perception of performed dynamics? As discussed in Sec. I,

the overall spectrum and the spectral changes are important

parameters that vary in relation to the performed dynamics

(disregarding sound level). Given that the MEs are poly-

phonic, with several simultaneous instruments, it is not pos-

sible to use any specific instrument model. Instead, a broad

range of audio processing transformations was used, and fea-

tures computed by varying the settings of the transforma-

tions. Two groups of features were extracted. The first group

was spectral features related to the overall spectrum of the

audio. The second group was features computed from the

SF, capturing spectral changes mainly related to the onset

characteristics in the audio.

As information in percussive and harmonic sounds may

be related to the perception of performed dynamics in differ-

ent ways, it seems reasonable to separate these sounds with

source separation before the feature extraction. Source sepa-

ration has previously been used as a pre-processing step for,

e.g., the estimation of perceived speed and tempo in audio

(Elowsson and Friberg, 2013; Elowsson and Friberg, 2015).

An overview of the feature extraction is shown in Fig. 1.

Harmonic/percussive separation was applied first in the

processing chain, as described in Sec. III A. This was fol-

lowed by the extraction of spectral features described in Sec.

III B, and the SF-based feature extraction described in Sec.

III C. The features were used to build a machine learning

model to predict performed dynamics, as described in Sec.

IV, with results presented in Sec. VI. In Sec. VII, an analysis

of the 2105 extracted features is provided.

A. Source separation

Before calculating features, harmonic/percussive sepa-

ration was performed on the audio file based on the method

proposed by FitzGerald (2010). In summary, by applying

median filtering on a spectrogram separately across both the

time and frequency direction, harmonic and percussive

sounds are detected. The resulting harmonic and percussive

spectrograms (H and P) are used to create soft masks

through Wiener filtering. The ith frequency of the nth frame

of the harmonic mask (MH) is given by

MHi; n
¼

H2
i; n

H2
i; n þ P2

i; n

: (1)

To compute the percussive mask, the relationship between H

and P is reversed. Subsequently, the harmonic and percussive

audio files are generated by taking the Hadamard product of

the masks (MH or MP) and the complex valued original spec-

trogram (FitzGerald, 2010). The resulting complex spectro-

grams can then finally be inverted back to the time domain by

applying the inverse short-time Fourier transform (STFT). In

this study we repeated the procedure twice, with the second

iteration applied to the percussive audio waveform from the

first iteration to remove any remaining harmonic information

in the percussive waveform.

For the first iteration, the STFT was used to compute the

spectrogram, with a window size of 4096 samples (the audio

file was sampled at 44 100 samples/s) and a hop size 1024

samples (about 23ms). Some frequencies were not filtered

with exactly the median value, but the order statistic instead

varied with frequency. The exact values and details are

specified by Elowsson and Friberg (2015), which give a

more detailed overview of this source separation procedure.

In the second iteration, the percussive waveform from

the first iteration was filtered again. This time the constant-Q

transform (CQT) was used, which produces a spectrogram

with logarithmically spaced frequency bins (Sch€orkhuber

and Klapuri, 2010). The frequency resolution was set to 60

bins per octave and each frame was median filtered across

the frequency direction with a window size of 40 bins. The

resulting spectrograms were then inverted back to the time

domain after filtering, resulting in a percussive waveform

without harmonic traces, as well as a waveform consisting of

these harmonic traces.

The result of the harmonic/percussive separation is five

different waveforms. The waveforms extracted in the second

filtering step will be denoted as Harm2 and Perc2, whereas

the waveforms from the first step will be denoted Harm1 and

Perc1, and the unfiltered waveform will be denoted Org. In

this study, features are extracted from each of the wave-

forms. The relevance of using the different waveforms is

analyzed in Sec. VII, and further discussed in Sec. VIII.

Note that the harmonic part that is the result of the second

filtering step on the percussive waveform will mostly consist

of audio from instruments that change pitch suddenly. This

has been observed previously and used to extract vocals in a

similar setup (FitzGerald, 2012).

B. Spectral features

Spectral features were extracted from all five wave-

forms. In summary, the band-wise spectrum was extractedFIG. 1. (Color online) Overview of the feature extraction process.
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from the STFT and a root-mean-square (RMS) value of each

band was computed for each ME. The sound level of these

bands was then used to compute features.

First the STFT was computed from the source separated

audio waveforms (sample frequency 44.1 kHz), with a window

size of 1024 samples and a hop size of 441 samples. With this

window size, each frequency bin covers about 43Hz of the

spectrum. The magnitudes in the frequency bins of each frame

were transformed into bands by multiplication with overlap-

ping triangular filters, uniformly distributed on the log-

frequency scale (up to 14 kHz). This is a common technique;

see, for example, the study by Heittola et al. (2009) for a simi-

lar approach. The result is one RMS-value for each band of

the complete ME. The frequencies were divided into 2, 3, 4, 6,

and 9 bands, respectively (see Fig. 2), which resulted in a vec-

tor of 24 RMS-values for each waveform. Features were

extracted from the RMS-values as described below. An over-

view of the three feature types and the distribution of bands

across the log-frequency spectrum is shown in Fig. 2.

• The sound level was computed from each RMS-value (A),

by taking 10 log10ðAÞ. With 24 bands and 5 waveforms,

this resulted in 120 features. Observe that the prior nor-

malization of the audio file (Sec. II A) has the implicit

effect that the sound level is computed in relation to the

sound level of the other bands.
• The difference in sound level between each band and the

corresponding band of the other waveforms was com-

puted. For example, the difference of the sound level of

the fourth band in the 6-band distribution of the original

waveform and the sound level of the fourth band in the 6-

band distribution of the percussive waveform. This corre-

sponds to the difference in sound level between the striped

triangle-band (green online) and the dotted triangle-band

(red online) in Fig. 2. With 24 separate bands and 10

unique waveform-pairs, this resulted in 240 features.
• Finally, features were computed by taking the difference

in sound level between all bands within the same band-

wise distribution (and not between different band-wise

distributions) for each waveform. Features of this type

were, e.g., computed as the difference in sound level of

the fourth band in the 6-band distribution of the original

waveform and the other five bands in the 6-band distribu-

tion of the original waveform. This corresponds to the dif-

ference in sound level between the striped triangle-band

(green online) and the shaded triangle-bands (blue online)

in Fig. 2. With 61 unique band-pairs (within the band-wise

distributions) and 5 waveforms, this resulted in 305

features.

Note that the features described in the two last bullet

points consists of linear combinations of the features in the

first bullet point. This is just a way to guide the machine

learning, by computing some representations that could be

useful in the predictions. It also makes it possible to show

how the sound level in different frequency bands interact to

affect the perception of dynamics, by measuring the correla-

tions between these features and listener ratings. This is

done in Sec. VII. The computations resulted in a total of 665

spectral features.

C. SF-based features

The SF-based features were computed from the CQT

(Sch€orkhuber et al., 2014) of each of the five waveforms.

We used 60 bins per octave, a frequency range of about

37Hz–14.5 kHz, and set the parameter that controls the

time-frequency resolution trade-off in the lower frequencies

to c¼ 11.6. The resulting magnitude spectrogram had 518

frequency bins and the hop size was 256 samples/frame.

There are a few different settings in the transformations

for computing the SF that commonly vary between authors,

such as the step size and if the computation is performed on

the magnitude spectrum or the decibel spectrum of the audio.

In this study, some transformations were given multiple set-

tings, using 1–6 different settings for each operation. All

possible combinations of the settings were then computed.

The feature extraction can thus be understood as a tree-

structure, with the transformations as nodes, the different

settings as children of these nodes, and the final features as

leaves.

By introducing many different (but relevant) nonlinear

transformations it is possible to find settings for the SF that

are appropriate to model performed dynamics, and it is also

possible to combine them into a model with good prediction

accuracy, as discussed in Secs. I C and I E. If only one setting

is used for each transformation, the risk of discarding relevant

information in the feature calculation process increases. A key

notion here is to cover relevant and contrasting factors of

FIG. 2. (Color online) The band-wise distribution (shown across the log-

frequency spectrum) of the spectra. The spectra are divided into 2, 3, 4, 6,

and 9 bands, respectively. The figure shows which bands are used to com-

pute features for the fourth band in the 6-band distribution, which is the

striped triangle-band (green online). The features are computed as the sound

level of the RMS-value of this band as well as the difference in sound level

of this band and the shaded bands (blue online) of the same waveform and

the dotted bands (red online) of the other waveforms.
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variations in the audio. For example, some MEs do not con-

tain percussive instruments, which results in less information

in the percussive waveforms, and subsequently rather low cor-

relations with listener ratings for these features. But the per-

formance of the final machine learning model may still be

increased by including the percussive waveform, if these fea-

tures capture properties uniquely related to the percussive

instruments that can complement features from the other

waveforms. However, settings that give lower correlations

without covering any relevant factors of variations should still

be avoided, as these settings just give extra noise in the fea-

tures, and lower results overall.

We extracted a total of 1440 SF-based features. A flow-

chart of the feature calculation for the SF-based features is

shown in Fig. 3, and in Secs. III C 1–III C 10, we describe the

operations performed. The abbreviations in parentheses for

the headings of Secs. III C 1–III C 10 are the same as those

used in the circles of Fig. 3.

1. Computing the log of the magnitude spectrogram (SL)

In the first step, the input magnitude spectrogram was

either unchanged or transformed to sound level. With this

transformation, the magnitude spectrum was converted to

the decibel spectrum. The transformation is common

(Elowsson and Friberg, 2015), as the decibel scale is more

closely related to the perception of loudness than the raw

magnitude values (Olson, 1972). If conversion to sound level

is not applied, the SF will however be more sensitive to

changes in magnitudes for the louder sounds, and this may

be perceptually desirable to model performed dynamics.

The sound level was restricted to a range of 50dB. This

was done by normalizing the maximum sound level of the

spectrogram to 0dB and setting any bins below �50dB rela-

tive to the maximum sound level to �50dB. Note that the MEs

were normalized previously according to the ITU-R BS.1770

loudness standard specification (as described in Sec. II). If this

had not been done, the subsequent SF computations (when the

magnitude spectrum is kept) would have been affected by the

specific magnitude level of the original waveform.

2. Computing the SF with varying step sizes (SS)

Spectral fluctuations are often tracked in MIR, e.g., to

detect onsets (Dixon, 2006). As outlined previously, the

onset characteristics are an important property of timbre, and

therefore the focus for the SF-based features. Let Li, j repre-

sent the input to the SF function at the ith frequency bin of

the jth frame. The SF for each bin is given by

SFi; j ¼ Li; j � Li; j�s; (2)

where the variable s is the step size. We used three different

step sizes of 1, 2, and 4 frames (5.8, 11.6, and 23.2ms).

3. Applying vibrato suppression (VS)

Vibrato suppression was used to discard changes in the

SF that occur due to small pitch fluctuations (e.g., vibrato),

while retaining changes that occur due to onsets. It was

applied as an alternative setting during the SF calculation,

using the technique of max filtering described by Elowsson

and Friberg (2013). In summary, the SF-step from Eq. (2)

was changed by including adjacent bins and calculating the

maximum value before applying the subtraction

SFi; j ¼ Li; j �maxðLi�1;j�s; Li;j�s; Liþ1;j�sÞ: (3)

The usefulness of a log-frequency resolution for suppressing

vibrato consistently over the entire frequency spectrum is the

main reason for using the CQT for the SF-based features

instead of the STFT.

4. Frequency filtering (Filt)

Previous studies indicate that both spectral characteris-

tics and spectral changes are important properties of timbre

(MacAdams et al., 1995). Therefore, frequency filtering

(Filt) was applied within the SF-based feature extraction to

provide information about spectral changes in different fre-

quency bands. Three different filters were applied, and as a

fourth alternative, filtering was omitted. The filters F1,2,3,

constructed from a Hann window with a width of 780 fre-

quency bins, are shown in Fig. 4. The centers of the Hann

windows were equally distributed over the log-frequency

scale and located at bins 130, 260, and 390, corresponding to

frequencies of approximately 160 Hz, 740 Hz, and 3.3 kHz.

The filtered spectral flux, _SF, was computed by applying the

Hadamard product between a filter Fx and each time frame

SFi, of the SF matrix

_SFi ¼ SFi � Fx:

5. Half-wave rectification (HW)

Half-wave rectification has been proposed many times

for the SF computation, see, e.g., Dixon (2006). Half-wave

rectification enables the subsequent one-dimensional SF-

FIG. 3. (Color online) Overview of the transforms used to compute the SF-

based features. The input is the magnitude spectrograms from any of the five

waveforms. Each circle corresponds to a transformation performed on the

signal. The number in the shaded circles (blue online) corresponds to the

number of different settings for these transformations. Each setting splits the

feature extraction into multiple “nodes” for the next processing steps, as

indicated by the black lines. The numbers above each circle correspond to

the total number of nodes in the tree structure at the beginning of that proc-

essing step. The number of nodes at each processing step grows as all com-

binations of the different settings are applied, and finally results in 1440

features.
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curve to account for increases in energy in some frequency

bands, regardless of any decrease in energy in other bands.

The half-wave rectified response for each frequency bin i

and each frame j is given by restricting the response to non-

negative numbers, after adding the threshold lim to the corre-

sponding SF-bin

SFHWi; j
¼ maxðS _Fi;j þ lim; 0Þ: (4)

We set lim to 0, after first experimenting with small negative

values.

6. Computing the mean across frequency (Mean freq.)

After the half-wave rectification step, the two-

dimensional matrix SFHW was converted to a one-

dimensional vector over time, by computing the mean across

frequency. This operation is commonly applied to facilitate

further processing on the one-dimensional vector (see, e.g.,

Elowsson and Friberg, 2015).

7. Low pass filtering (Low pass)

The one-dimensional SFHW curve was low pass filtered

over time with a zero-phase second order Butterworth filter,

with a cutoff frequency of 2.56Hz. This filtering results in a

smoother SF-curve, as shown in Fig. 5. The effect of the

smoothening is that the subsequent processing in Sec. III C 9

is less susceptible to short, noisy peaks. This type of process-

ing is common to get well-defined peaks in the SF-curve

(Elowsson et al., 2013; Elowsson and Friberg, 2015).

8. Subtracting the mean (MS)

As the next step, the mean was subtracted from the low

pass filtered curve (SFS).

SFMS ¼ SFS � SFS: (5)

9. Extending the analyzed region (Ext)

Positions in the SF-curve that are far away from any

peaks will generally consist of stationary sounds or silence.

For the SF-based features, these stationary or silent parts of

the audio should arguably be discarded. This was done by

restricting what parts of SFS to average over when comput-

ing the mean across time, by only taking the parts where the

corresponding regions in SFSM was above zero. The process-

ing chain can therefore be understood as a sectional SF, as it

specifically targets regions around the onsets. Before com-

puting the average, the targeted regions were however

extended with 0, 25, 75, and 175 frames (corresponding to 0,

0.15, 0.44, and 1.02 s). We extended each region both before

the positions where SFSM rises above 0, and after the posi-

tions where SFSM falls below 0, as shown in Fig. 6. These

positions can be thought of as the beginning and the end of

any non-stationary parts in the music.

After this operation, the mean of the SFS will not only

focus on the “onset”-sections of the audio (corresponding to

an SFSM above 0), but also on energy fluctuations just before

and after these parts. The big variations in settings was a

way to minimize the risk of discarding important informa-

tion, as we were not sure in the beginning of this study as to

which parts of SFS that are the most relevant. At the same

time, we were reasonably certain that removing parts of

silence in the audio before computing the mean SF removes

noise in the features; it is not likely that a song starting with

FIG. 4. The filters that were used to change the importance of different fre-

quency bins in the SF. The centers of the Hann windows are at bins 130,

260, and 390, corresponding to frequencies of approximately 160Hz,

740Hz, and 3.3 kHz.

FIG. 5. (Color online) Low pass filtering of the SF curve.

FIG. 6. (Color online) An illustration of the extension step used for deciding

what parts of the SFs curve that the Mean time operation should be applied

to. This is done by extending the regions of interest in the SFSM curve

beyond the positive regions.
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a few seconds of silence would be rated much different than

when that silence is removed.

Recognizing that sections of the ME before and after

onsets may contain different kinds of information related to

performed dynamics, the extension was also applied sepa-

rately to either side (using 75 frames in this case, corre-

sponding to 0.44 s). This resulted in a total of six different

settings for the extension. Note that the example in Figs. 4–6

is from an orchestral piece. For music tracks with drums, the

extension will quite often make the whole SFS curve used.

During the development of the feature extraction we tested

to omit the MS and Ext steps, but that resulted in a few per-

centage points lower correlations with listener ratings for

most features.

10. Computing the mean across time (Mean time)

Finally, the mean across time was computed from the

SFS-curve to generate the feature values. This operation was

restricted to specific parts of the ME, as described in Sec.

III C 9. Note that it is important that the Mean time operation

is calculated from the extended SFS curve and not the SFSM
curve. This is crucial, as the mean subtraction removes rele-

vant information (e.g., the amplitudes of the peaks) in the

SF. The last few processing steps (Secs. III C 8–III C 10) are

a straight-forward solution for handling the time domain in

MIR feature extraction; a problem previously discussed in

Sec. I C 3.

11. Settings

Several of the operations in Secs. III C 1–III C 10 had

different settings, and all combinations of settings were

used. In Table I the various settings are summarized. By

varying the settings as shown in Table I and Fig. 3, a total of

5� 2� 3� 2� 4� 6 ¼ 1440 features were extracted. The

665 spectral features and 1440 SF-based features resulted in

a total of 2105 features.

IV. MACHINE LEARNING METHODS

As only 210 MEs were available, it was necessary to use

methods that generalize well despite a limited number of

training instances. Three different machine learning models

were employed to predict dynamics; LR, bootstrap aggre-

gated decision trees (BRTs), and an NN in the form of a mul-

tilayer perceptron (MLP).

A. Ensemble learning

Ensemble learning was employed (see Sec. I C 2) by cre-

ating multiple instances of a model with the same parameters

and averaging their predictions. For all three machine learning

methods, an ensemble of 500 models was created. Features

were assigned to each model randomly, while ensuring that

all features were used an equal number of times. With this

setup, each model gets a subset of the features from the larger

pool of all features, a technique generally referred to as boot-

strap aggregating. As it was ensured that all features were

used an equal amount of times, the setup can also be described

as using several repetitions of the random subspace method

(Ho, 1998). By assigning subsampled features to the models,

the predictions of the different models will vary, and this can

result in good generalization capabilities (Polikar, 2006). The

random initialization of NNs further decorrelates the errors of

their outputs (Hansen and Salamon, 1990), which together

with their non-linearities and relatively lower generalization

capabilities (but higher predictive power) should make them

extra amenable to ensemble learning.

B. Configuration of the machine learning methods

For all methods, we tested a few different parameter set-

tings (manual grid search over the parameter space), to

determine optimal parameter values, e.g., the number of fea-

tures in each model.

1. Ensemble of LR models (ELR)

An ensemble of LR models was employed, which relied

on 40 features in each of the 500 models. Given the total of

2105 features, each feature was used in approximately 10

models.

2. Ensemble of BRTs (EBRT)

The second method was to use bootstrap aggregated

(bagged) regression trees (Breiman, 1996) in an ensemble.

For this method, 20 features were used in each of the 500

models, after first trying a few different feature sizes. Given

the total of 2105 features, each feature was used approxi-

mately 5 times. Each model had 20 regression trees, with the

minimum number of observations for each leaf set to 1. Note

that BRT is in itself an ensemble method, thus this method is

an ensemble of ensembles.

3. Ensemble of MLPs (EMLP)

MLPs were used as a representative of feedforward

NNs, in an EMLP consisting of 500 models. The generaliza-

tion capabilities of MLPs vary with, e.g., the number of hid-

den neurons, the number of input features for each network,

and the number of epochs for training. After performing a

manual grid search to determine satisfying parameter values,

the following structure of each MLP was used:

• Each model was assigned 40 features. This means that

with 500 models and 2105 features in total, each feature

was used in approximately 10 models.

TABLE I. The different settings when computing the SF-based features, as

outlined in Fig. 3 and described in Secs. III C 1–III C 10.

Wave SL SS VS Filt Ext

Org True 1 True False 0

Harm1 False 2 False Low 25

Perc1 4 Mid 75

Harm2 High 175

Perc2 Start

End
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• The network was trained with the Levenberg-Marquadt

optimization (Marquardt, 1963).
• Each network was trained for ten epochs. Early stopping

was not used, mainly because the small size of the dataset

makes validation performance unreliable for determining

when to stop training. Furthermore, as the MLPs were

used in an ensemble, an appropriate epoch to halt training

cannot be properly determined during the training of a sin-

gle MLP. Maximizing the test performance of individual

MLPs does not necessarily lead to a maximized perfor-

mance of the ensemble.
• The networks had three hidden layers, with 6 neurons in

each layer, giving an architecture (including input and out-

put layer) of {40, 6, 6, 6, 1}. This means that the MLPs

were relatively deep, although the number of parameters

was still small.
• Each input feature was normalized by the minimum and

maximum value to fit the range between �1 and þ1.
• The non-linearities in the first hidden layer were hyperbolic

tangent (tanh) units, and the non-linearities for the follow-

ing two hidden layers were rectified linear units (ReLUs).

The output layer had simple linear activation functions.

The unconventional architecture with a mixture of tanh

units and ReLUs gave the best results in a manual grid search

of different combinations of non-linearities, and has also been

used by Elowsson (2016). Here we will outline some of the

possible advantages of this architecture. The success of

ReLUs is often attributed to their propensity to alleviate the

problem of vanishing gradients, and to introduce sparse repre-

sentations in the network (Glorot et al., 2011). For vanishing

gradients, the effect should be the most prominent when, e.g.,

sigmoid or tanh units are placed in the later layers, as gra-

dients flow backwards through the network. With tanh units

in the first layer, only gradients for one layer of weight and

bias values will be affected. At the same time, the network

will be allowed to make use of the smoother non-linearities.

Concerning sparsity induced by ReLUs, it could be argued

that sparsity is more favorable in most tasks for later layers of

the network, when the representations are more high level.

Bayesian regularization (Foresee and Hagan, 1997;

MacKay, 1992) was also tried for the MLP, but this did not

improve the results. This is perhaps not surprising, as it has

been observed that under-regularized models should be used

to maximize the variance-reducing effects of ensemble

learning (Sollich and Krogh, 1996).

V. EVALUATION PROCEDURE

The small size of the dataset makes the training and test-

ing of the models difficult. When small datasets are directly

split into a training set and a test set, the results will depend

heavily on the composition of the few examples in test set

(Goodfellow et al., 2016). Thus, results with such a method-

ology will vary significantly if a new random split of the

dataset is done and the training and testing repeated. To alle-

viate this problem, a 40-fold cross-validation was used

instead, building the model from scratch for each new parti-

tion of the dataset as shown in Fig. 7. The cross-validation

procedure was also repeated 50 times (making a random

partition of the dataset each time) to ensure consistent results.

The design ensures that test folds are disjoint, and the perfor-

mance of each model was then computed as the average of all

test runs. When setting some of the parameters (e.g., the size

of the network), we did so by repeating the complete experi-

ment. In this case, we only tested a few combinations of

parameters.

VI. RESULTS

A. Main results

Prediction accuracy for all models was measured by

computing the coefficient of determination, R2. This measure

corresponds to the squared correlation between the ground

truth annotations and the predicted values. The results are

presented in Table II. To compute 95% confidence intervals,

the 50 test runs were sampled (with replacement) 106 times

and the distributions of mean R2s were calculated. Thus, the

confidence intervals show the reliability of the computed R2

based on its variation over the different test runs.

The EMLP was best at predicting performed dynamics.

One possible explanation for the success of this method in

comparison with the EBRT is the mid-level representations

that can be formed in the layer-wise structure of the MLPs.

The ability to model non-linear relationships is probably the

FIG. 7. (Color online) The procedure used in this study for evaluation.

Cross-validation was used multiple times, and for each partition and each

fold the complete system was trained and tested.

TABLE II. The coefficient of determination (R2) of the predictions in rela-

tion to ground truth annotations. The EMLP performed the best, with an R2

of 0.840 for the complete set. Confidence intervals are very narrow due to

the high number of test runs.

Results/Method ELR EBRT EMLP

Average R2 0.803 0.814 0.840

95% CI 0.802–0.803 0.814–0.814 0.839–0.840
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reason for the higher performance of the EBRT and the

EMLP in comparison with the ELR.

What were the effects of using ensemble learning? The

number of models in the ensemble of the different methods

in relation to explained variance (R2) is shown in Fig. 8.

Performance improved with more models for all methods,

although the improvement seems to level off after around 50

models have been added. The lowest result with a single

model was achieved by the MLP, with an R2 of 0.690 on

average over the 50 repetitions, while the corresponding

results were about 0.76 for the other two methods. Five mod-

els were required in the EMLP to reach the same perfor-

mance as an equal number of models for the EBRT. This is

not all that surprising, as the MLPs should be able to infer

more complex relationships between features and annota-

tions, while lacking generalization capabilities for smaller

datasets. The complexity enables the system to handle the

more complicated relationships at the cost of a larger vari-

ance, which then is reduced for each MLP added to the

ensemble.

The predictions from one random partition of the EMLP

are shown in Fig. 9. The deviations from the ground truth

targets are evenly distributed across the range, with a maxi-

mal deviation of about one unit. To get a better overview of

the distance between ground truth annotations and fitted val-

ues, the error distribution is shown in Fig. 10. These results

are the average over all 50 random partitions of the EMLP.

More than 90% (0.905) of the MEs were within one point

from the correct answer on the scale, the mean distance

being 0.43 points.

B. Results in relation to the performance of the human
raters

How does the performance of the EMLP compare to the

performance of the individual human raters? This was mea-

sured in two different ways.

A rough estimate of how a similar model would trans-

late to other datasets was computed by taking the ratio

between the correlation (r ¼
ffiffiffiffiffi

R2
p

) of the model and the

mean CA of the two datasets. As CA can be interpreted as

representing the expected correlation between the annota-

tions and any reproduced annotations with new subjects,

r=CA can be interpreted as the correlation of the model in

relation to the maximum possible correlation. This interpre-

tation assumes that it is not possible (nor desirable) to

model any variance in the ratings that is due to noise. It is

thus a way to take the uncertainty of the ground truth data

into consideration when evaluating the performance of the

model. A value close to 1 indicates that the model is able

to explain as much of the variance as possible, whereas a

value well below 1 indicates that it should be possible to

build a better model, given the data. This ratio has been

used previously in a study of subjective well-being by

Headey and Wearing (1989). The result when inserting the

previously reported values is

r

CA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:83973
p

0:95721þ 0:93960ð Þ=2 ¼ 0:96622: (6)

FIG. 8. (Color online) The performance (R2) in relation to the number of models

in the ensembles. Results are shown as the mean of all 50 test runs, which gives

very small confidence intervals (as indicated in Table II). The x-axis is set to the

log-scale. When one model is used, the single BRT and LR model perform better,

but the ensemble of MLPs gives higher performance when adding more models.

FIG. 9. (Color online) The fitted predictions of the EMLP for one test run

(y-axis) in relation to the ground truth annotations (x-axis). The results are

from a random partition with an R2 of 0.842. The MEs are enumerated (to

give an overview for future researchers on the same datasets), with the 110

film clips added as numbers 101–210.

FIG. 10. (Color online) A histogram of the distance between ground truth

performed dynamics and predicted performed dynamics. The method used

was an EMLP, and results are presented as the average of all 50 test runs.
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This indicates that it should be hard to build a much more

accurate model.

We also compared the performance of the model with

the performance of the human listeners more directly, by

evaluating the performance of the individual raters as well as

the performance from using the mean of several raters. The

performance of n raters was computed by randomly sam-

pling (with replacement) n raters, computing their mean rat-

ing, and then calculating the R2 in relation to the mean rating

of the full ground truth from either 18 or 14 raters for the

two datasets (after removing raters as described in Sec. II C).

The procedure was repeated 104 times before the average R2

was computed, and the number of raters, n, was varied

between 1–10. The result in comparison to the EMLP is

shown in Fig. 11. The EMLP is approximating the ground

truth as well as the mean rating of about six human listeners.

VII. FEATURE ANALYSIS

In this section, the extracted features are analyzed. The

correlations between features and ground truth ratings are

presented in Sec. VII A. The features are further analyzed in

Sec. VII B to establish how important the different types of

features are for a high performance in the EMLP model. In

Sec. VII C, the findings are used to propose a reduced fea-

ture set, useful for future models.

A. Correlations

Correlations were computed using Pearson’s correlation

coefficient between features and ground truth ratings of the

complete dataset. The purpose is to provide insights into how

the features and feature groups relate to performed dynamics.

1. Spectral features

The spectral features were divided into three groups for

the analysis, based on the bullet points from Sec. IIIB. The first

group is the features that were extracted by computing the

sound level of each individual band. Table III shows the highest

correlated features from this group. Bands with center frequen-

cies in the range of 4–7kHz gave the highest correlations.

The second group is the features that were extracted by

computing the difference in sound level in different wave-

forms within the same bands. Table IV shows the highest

correlated features in this group. This feature group had the

smallest correlations among the three groups. A higher

sound level in percussive waveforms corresponded to a

higher performed dynamics.

Finally, the third group consists of the features that were

extracted by computing the difference in sound level

between all bands within the same band-wise distribution

and waveform. Table V shows the highest correlated features

in this group. This group had the highest correlations among

the spectral features. The difference in sound level between

low–mid frequencies and high frequencies gave high nega-

tive correlations. This shows that a high sound level in the

high frequencies and a low sound level in the low–mid fre-

quencies is related to higher perceived performed dynamics.

2. SF-based features

All SF-based features had a positive correlation with lis-

tener ratings. In Table VI we give the setting of the SF-based

feature (Sec. III C) from each of the five waveforms that had

the highest correlation with performed dynamics.

Overall, features extracted from the original waveform

had the highest correlations with performed dynamics, but

features from the harmonic waveform also had high

FIG. 11. (Color online) The R2 between the ground truth and averaged rat-

ings from various numbers of human raters, as well as the R2 of the EMLP

model. The EMLP gets a higher R2 than individual raters, and it takes about

six raters to produce an average prediction that has the same R2 as the pre-

diction of the EMLP.

TABLE III. The highest correlated features in the group that were computed

as the sound level of each individual band. Bands with center frequencies

around 5.5 kHz have a positive and rather high correlation with performed

dynamics.

Waveform Center freq. (X-band distr.) r

Org 5.5 kHz (6) 0.663

Org 3.8 kHz (9) 0.652

Harm1 7.3 kHz (9) 0.647

Org 7.3 kHz (9) 0.643

Perc1 3.8 kHz (9) 0.612

Harm1 5.5 kHz (6) 0.598

Perc2 3.8 kHz (9) 0.597

TABLE IV. The strongest correlated features that were computed as the dif-

ference in sound level of frequency bands in different waveforms. The nega-

tive correlations when features from the percussive waveforms were

subtracted indicates that more percussive content corresponds to a higher per-

formed dynamics.

Waveform Center freq. (X-band distr.) r

Harm1–Perc2 1.6 kHz (2) �0.557

Perc1–Harm1 1.6 kHz (2) 0.533

Harm1–Perc2 340Hz (6) �0.528

Harm1–Perc2 2.7 kHz (3) �0.527

Org–Perc1 1.6 kHz (2) �0.524

Harm1–Perc2 260Hz (9) �0.523

Org–Perc1 520Hz (3) �0.520
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correlations. The best explaining features from the original

waveform consistently had SL and VS set to false, whereas

the best explaining features from the harmonic waveform

consistently had SL and VS set to true. The extension of 75

frames (0.44 s) in both directions was the most common

among the highest correlated features, but 25 frames (0.15 s)

and 175 frames (1.02 s) also gave high correlations. All three

step sizes in the SF were equally common. Filtering to keep

mid and high frequencies generally gave higher correlations

than when including lower frequencies.

To give a more in-depth analysis of the effect of using

different settings in the SF computation, the already com-

puted features were used as experimental runs at factorial

points similar to a full factorial experiment (see, e.g., Fisher,

1949), with each processing step that had more than one set-

ting representing a factor, and each setting representing a

level. Given the variation in settings described in Table I,

this analysis for the SF-based features can be denoted as a

22� 3 � 4 � 5 � 6-factorial design. In contrast to a tradi-

tional factorial experiment, the response for each experimen-

tal condition became a vector, as the same features had been

computed for all 210 MEs. To get a single response variable

for each experimental condition, the correlations between

feature vectors and ground truth annotations were computed.

It was then possible to compute the impact of each setting

(similar to the main effect in factorial experiments) by taking

the average across the response variables from a specific set-

ting, and then to compare with features that had the other set-

tings in the same processing step. This was done across all

processing steps.

To compute approximate 95% confidence intervals on

the main effect, we used Monte Carlo bootstrapping, resam-

pling the 210 MEs with replacement and calculating the

correlation 105 times. The effect is that the response variable

will vary slightly, depending on the randomized composition

of the dataset in each resampling. The average response vari-

able for a specific setting was calculated within each boot-

strap, which resulted in 105 average responses for each

setting across all bootstraps. The vectors of responses for all

settings were sorted, and the values at 5% at 95% selected as

confidence intervals. The confidence intervals thus approxi-

mate how the correlations could be expected to vary in other

datasets with different compositions but similar types of

recordings. In Figs. 12 and 13, the results of the factorial

experiment concerning correlations for the SF-based features

is shown, and the computed confidence interval for each set-

ting is indicated with a black line.

Varying the source (waveform) had quite a big effect on

the correlations for the other settings, so we decided to use

only the Org waveform when testing all other processing

steps. After this, we tested the effect of using the different

waveforms separately. The variation in response variable

(correlation) for the settings (groupings of features) is shown

in Fig. 12, in relation to the average response (correlation) of

all the 288 SF-based features from the original waveform,

which was 0.692. For the settings, the effects of the vibrato

suppression (VS) and frequency filtering (Filt) were the

strongest. Applying vibrato suppression and filtering to keep

the bass frequencies reduced correlations with about 0.09 on

average over the different features. For vibrato suppression,

these results indicate that there is information related to per-

formed dynamics in the smaller pitch shifts that this process-

ing step suppresses. Shorter step sizes seem to give higher

TABLE V. The strongest correlations for features that were computed from

the difference in sound level between all bands within the same band-wise

distribution and waveform.

Waveform Band centers (X-band distr.) r

Harm1 520Hz–7.3 kHz (9) �0.69

Harm1 260Hz–7.3 kHz (9) 0.665

Harm1 1.0 kHz–7.3 kHz (9) �0.664

Harm1 860Hz–5.5 kHz (6) �0.660

Org 1.0 kHz–3.8 kHz (4) �0.655

Org 860Hz–5.5 kHz (6) �0.654

Org 340Hz–5.5 kHz (6) �0.651

TABLE VI. The settings for the highest correlated SF-based feature from

each of the different waveforms. The different settings are described in Sec.

III C, and r is the correlation coefficient between the feature and the ground

truth ratings of performed dynamics for the 210 MEs. Rank is given by rank-

ing all the features from the highest correlated to the lowest correlated.

Waveform SL SS VS Filt Ext r Rank

Org False 1 False Mid 75 0.861 1

Harm1 True 2 True Mid 75 0.851 9

Perc1 True 4 False Mid 75 0.664 486

Harm2 False 2 False — 75 0.730 314

Perc2 True 2 False — 25 0.537 994

FIG. 12. (Color online) The main effect for different settings when comput-

ing the SF-based features. Bars indicate change in average correlation for

features computed with a specific setting and black lines indicate approxi-

mated 95% confidence intervals. Using vibrato suppression and focusing on

the bass frequencies reduced correlations significantly.
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correlations and using a two-sided extension of 75 frames

(0.44 s) gave the highest correlations on average for the

extension step.

The variations in correlation for features when using dif-

ferent waveforms are shown in Fig. 13, in relation to the

average correlation of all SF-based features (0.607). The

Org and Harm1 waveforms gave the highest correlations,

whereas the features from the two percussive waveforms had

the lowest correlations. Given that the waveform that con-

sists only of harmonic traces filtered out from the percussive

waveform (Harm2) had a higher correlation than any of the

percussive waveforms, it is evident that more harmonic

material in the audio source increased correlations.

B. Performance

The most important aspect of the computed features is

the potential they offer for predicting performed dynamics in

the actual models. The impact on performance of the differ-

ent feature calculation settings was therefore tested with the

EMLP described in Sec. IVB 3, using the evaluation proce-

dure described in Sec. V. The already computed features

were used as experimental runs for factorial points in a facto-

rial design, similar to when previously testing correlations

for the SF-based features. Features were divided into subsets

based on their corresponding setting in each processing step.

This means that all processing steps produced subsets that

spanned the complete feature space. For testing performance,

features in the subsets were not correlated individually with

ground truth ratings to compute a response variable as previ-

ously, but they were instead used to train the specific machine

learning method. One single response variable was thus pro-

duced for each subset, by training the EMLP with the features

in the subset, and then computing the R2 of the predictions for

the MEs in relation to ground truth ratings. As we will show,

the performance analysis provided additional information

about the relevance of the different processing steps.

Each MLP of the ensemble was assigned an input of 40

randomly selected features from the subsets, just as in the

main experiment of the study. However, one feature subset

only had 35 features in total (the 2-band distribution for

spectral features), and in this case these 35 features were

used as input for each MLP of the ensemble. Due to the com-

putational cost of training the EMLP, the evaluation was

limited to 20 test runs (down from 50 in the main

experiment), each with a randomized partitioning of the

dataset for the cross-validation. The number of MLPs used

in each ensemble was reduced to 50 (down from 500), due to

the limited performance gain when using more networks

(see Fig. 8). To compute 95% confidence intervals, the 20

test runs were sampled (with replacement) 106 times and the

distributions of mean R2s were calculated. Thus, the confi-

dence intervals show the reliability of the computed R2s

based on their variations over the different test runs. To be

able to calculate the change in R2 in relation to when training

on the complete feature set, the experiment was also run for

50 test runs on each of the two feature sets (the spectral fea-

tures and the SF-based features).

1. Spectral features

The spectral features were divided into three different

levels. The Type divides the features into those that were

computed as the sound level of the different bands (Only

sound level), the difference in sound level for all bands

between different waveforms (Diff - HP), and the difference

in sound level within each band distribution (Diff - WB). For

the other two levels, the features were divided into those

computed from different waveforms (HP), and finally those

computed from the different band-wise distributions (BD)

(see Fig. 2). The analysis was thus performed for a 3 � 52-

factorial design. The performance of the EMLP trained on

the specified subsets, subtracted from the performance of the

EMLP trained on all the spectral features (R2 ¼ 0.728), is

shown in Fig. 14.

It is clear from Fig. 14 that the highest performance was

achieved when training the EMLP with features computed

only from the sound level in each band (No Diff). This gives

each MLP more freedom to map how the relationships

FIG. 13. (Color online) The main effect for different sources when comput-

ing the SF-based features. Bars indicate change in average correlation for

features computed from a specific waveform and black lines indicate

approximated 95% confidence intervals. Features computed from harmonic

source material had higher correlations with ground ratings.

FIG. 14. (Color online) Change in the coefficient of determination (R2) for

the EMLP when using different subsets of the spectral features for training,

in relation to when all spectral features were used. Results and 95% confi-

dence intervals were computed by running the complete experiment 20

times. A positive change in R2 was achieved when using only the raw sound

level of each band to compute features (No Diff).
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between sound levels in different bands translate to the

ground truth ratings of performed dynamics. The perfor-

mance only decreased slightly when features computed from

the difference in sound level within each band-distribution

were used (Diff - WB). This indicates that this transformation

(directly comparing how the sound levels in different bands

relate to each other) is still rather relevant to the task.

However, when the features used were those extracted as the

difference in sound level between the different waveforms

(Diff - HP), the performance decreased more. These types of

features also had the lowest correlations, and it seems like

such representations are not as relevant to the perception of

performed dynamics.

Generally, “raw” features led to the best performance.

For example, when the frequency resolution was decreased

by using features from fewer and broader bands (e.g.,

2-band), the performance suffered considerably. It is also

clear that the source separation increased performance.

When the EMLP only had access to features from one of the

waveforms, performance was lower. The harmonic content

in the audio seems to be the most relevant for the spectral

features, as indicated by a relatively high result when only

features from the Harm1 waveform were used.

2. SF-based features

The already computed SF-based features were divided

into the same subsets as in Sec. VII A 2 when computing cor-

relations, and the same technique for analyzing performance

was used as in Sec. VII B 1. The performance of the EMLP

trained with these subsets, subtracted from the performance

of the EMLP trained with all SF-based features (R2¼ 0.824),

is shown in Fig. 15.

For some transformations, such as conversion to sound

level (SL) and vibrato suppression (VS), the performance

dropped in relation to the full feature set, regardless of which

feature subset that was included. Why is this? When the

MLPs do not have access to features with both variations of

these settings, they cannot use the variation in feature values

to train a model that accounts for these different factors in an

appropriate way. Varying these settings thus provides the

MLPs with information that they can use to learn more accu-

rate models of performed dynamics. One example, and pos-

sible explanation for the SL-transformation, is that

computing the SF from the log-domain spectrogram provides

relevant information about spectral fluctuations for fainter

sounds, whereas computing the SF of the magnitude spectro-

gram gives more information about fluctuations of the louder

sounds. The MLPs can then learn how to combine these dif-

ferent features to create a model for how fluctuations at vary-

ing levels of salience interact. Both the magnitude and log-

spectrogram have been used successfully for a lot of studies

and tasks when computing the SF, because there is no con-

sensus on the appropriate settings. Our results indicate that,

if compute time is not a restricting factor, both variations

can be employed to increase performance, by propagating

the decision on how to combine them to the machine learn-

ing stage.

Using only shorter, two-sided extensions (Ext¼ 0, 25 or

75) and only shorter step sizes during the SF (SS¼ 1)

increased the performance in relation to when all features

were included. For features where the extension had only

been applied to one side (Start or End) in the extension step,

performance dropped significantly. It is interesting to see

that performance was high when using features that had the

extension set to 0, as this is easier to implement. Smaller

step sizes in the SF seem to give better results. The features

from the mid frequencies in the frequency filtering (Filt),

provides the highest results, although results seem to fall

slightly in comparison to when all features with different fil-

tering settings were included.

The results when using features from the different wave-

forms, in relation to an EMLP trained on all the SF-based

features (R2¼ 0.824), are shown in Fig. 16. Variation across

waveform had the strongest effect for the performance of the

EMLP. The R2 decreased by around 0.05 when using fea-

tures from the Org, Perc1, or Harm1 waveforms, in relation

to when features from all waveforms were used. For the

Perc2 and Harm2 waveforms, the reduction in performance

was even greater. These results, together with similar results

for the spectral features shown in Fig. 14, highlights the

importance of the source separation.

C. Reduced feature set

The analysis in Sec. IVB indicates that the performance

of the system increases when using features from a variation

of settings applied to some transformations, while applying

varying settings to others may not improve performance (see

Figs. 14–16). Here we propose a reduced feature set by

selecting a single setting for some transformation, while

leaving all variations in settings for others. As features for

FIG. 15. (Color online) Change in the coefficient of determination (R2) for the

EMLP when using different subsets of the SF-based features for training, in

relation to when all SF-based features were used. Results and 95% confidence

intervals were computed by running the complete experiment 20 times.
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the reduced set have been selected based on performance,

results for this feature set are not to be interpreted as a test

results like those provided in Sec. VIA. Instead, the reduced

feature set is used to test how the results change when less

relevant features have been discarded, and as a starting point

for future studies.

For the spectral features (Fig. 14), the features from the

9-band distribution were selected and only the sound level

(No Diff) of each band was used. As the results were higher

when all waveforms were used, they were all included. This

resulted in a total of 45 spectral features. For the SF-based

features (Figs. 15 and 16), features with a 75-frame exten-

sion and a step size of 1 frame in the SF were selected. For

the other transformations, all settings were included. This

resulted in 80 SF-based features, and a total of 125 features

for the reduced set.

The results when training the three ensemble models

with the reduced feature set and testing performance 50

times are presented in Table VII. To compute 95% confi-

dence intervals, the 50 test runs were sampled (with replace-

ment) 106 times and the distributions of mean R2s were

calculated. Results did not change much in relation to when

the complete feature set was used, and the highest results

were achieved with the EMLP. The small improvements in

results for the EBTR indicate that this model cannot discard

the irrelevant features as successfully as the other methods

when using the complete feature set. One possible explana-

tion is the smaller number of input features used for each

BRT (20), which could reduce performance for noisier fea-

ture sets.

VIII. CONCLUSION AND DISCUSSION

A system was developed to predict perceived performed

dynamics for two small music audio datasets. Novel audio

features were extracted and analyzed, and then used to train

machine learning algorithms based on ground truth ratings

previously collected. An ensemble of MLPs achieved an R2

of 0.840, a significant increase in comparison with a previ-

ous study on the same datasets (Friberg et al., 2014). The

study is therefore the first to present a successful way of pre-

dicting global absolute (i.e., not for transitions) performed

dynamics from poly-instrumental music. As the MEs in the

two datasets were distinctly different, this indicates that the

model should generalize well to other datasets (the authors

also found this to be the case when they informally tested

the EMLP on a new dataset after this study was concluded).

The results were well above those of the individual human

listeners that rated the MEs, so applying this model to get a

rating of performed dynamics would arguably give higher

accuracy than asking someone to manually annotate a data-

set. In fact, results indicate that it would take up to six raters

to approximate the population average with higher accuracy

than when using the model. By taking the uncertainty of the

ratings into consideration, it was found that r=CA ¼ 0:966,
which indicates that the results are close to the upper bound,

given the estimated uncertainty of the annotations.

A. Features and feature analysis

Due to the lack of prior art for the task, novel features

were developed and analyzed. The sectional SF-method of

subtracting the mean from the SF-curve, finding all regions

above 0, and extending these regions by a fixed number of

frames, produced the features that had the highest correlation

with dynamics. This processing scheme is a simple way of

handling the time-domain in MIR feature extraction. It could

easily be adapted to similar tasks where the dependent vari-

able is a global annotation, but where the annotated attribute

in the audio is not present during the entire ME.

In the feature analysis, the extracted features were used

as experimental runs at factorial points in a factorial design,

by dividing the features into different subsets. By doing this,

the effect of the different settings and transformations could

be determined. What does the feature analysis reveal about

the relationship between audio transformations and per-

formed dynamics?

1. Correlations

For the spectral features, higher sound level in the high

frequencies positively correlated with performed dynamics.

It seems like energy around 6 kHz has the strongest positive

correlations, whereas energy around 500Hz has the strongest

negative correlations (see Tables III and V for an overview).

More percussive information in the audio was also positively

correlated with performed dynamics (see Table IV). These

results for the spectral features have a straight-forward inter-

pretation in relation to performed dynamics. When more

force is used to produce sounds in musical instruments, the

spectrum generally has more energy in higher frequencies

(Luce, 1975; Fabiani, 2009). Features that cover the frequen-

cies of the f0s or first harmonics of common instruments

therefore have strong negative correlations, while features

that cover higher harmonics have strong positive correla-

tions. At lower bass frequencies the relationship is weaker,
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Change in R
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FIG. 16. (Color online) Change in the coefficient of determination (R2) for

the EMLP when using SF-based features from different waveforms for train-

ing, in relation to when all SF-based features were used. Results and 95%

confidence intervals were computed by running the complete experiment

20 times.

TABLE VII. The coefficient of determination (R2) of the methods when

trained on the reduced feature set. The EMLP performed the best—slightly

better than in the main test. The EBRT had the greatest improvement in rela-

tion to the main test, but results did not vary much overall.

Results/Method ELR EBRT EMLP

Mean R2 0.804 0.825 0.841

95% CI 0.803–0.804 0.825–0.826 0.840–0.841
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something that partly could be attributed to the higher vari-

ance of the long-term average spectrum in these frequencies

(Elowsson and Friberg, 2017). Also, percussive sounds are

generally associated with faster attack times, which is an

aspect of the timbre that should result in a higher perceived

performed dynamics.

For the SF-based features, Table VI and Fig. 13 show

that the SF from harmonic parts of the audio gave higher

correlations than the SF of the percussive parts. This indi-

cates that the SF of harmonic instruments is a more reliable

factor for measuring performed dynamics than the SF of per-

cussive instruments. For a comprehensive interpretation of

these results, it is however important to consider the compo-

sition of the dataset. About half of the MEs in the combined

dataset were from film music, which generally contains less

percussive instruments. Therefore, the harmonic parts of the

audio overall contained more information. But the percus-

sive waveform will generally have a lower sound level than

the harmonic waveform also for regular popular music. A

previous study has shown that the Perc2 waveform is around

15 dB lower than the Org waveform on average (Elowsson

and Friberg, 2017). Therefore, it is still reasonable to assume

that the results are similar also for other datasets of, e.g.,

popular music.

The correlations were generally higher in the SF-based

features than in the spectral features. The results however

demonstrate that both spectral fluctuations and spectral bal-

ance are related to perceived performed dynamics. The facto-

rial experiment also reveals that vibrato suppression reduces

correlations across features by approximately 0.08 (see Fig.

13). This indicates that fluctuations across both time (SF) and

frequency (vibrato) are related to perceived performed

dynamics.

2. Performance

The adequacy of the different feature calculation set-

tings was tested by measuring the performance (R2) of the

EMLP trained on different feature subsets, as outlined in

Sec. VII B. Variations in settings that transformed the signal

very little (such as using different step sizes), did not con-

tribute to an improved performance. However, some of those

settings seemed to give higher results than others, so com-

puting multiple settings also for these transformations may

still be useful to determine the optimal setting. Variations in

settings had a higher impact on performance for the transfor-

mations that changed the signal more drastically, such as

transforming the magnitude spectrogram to the log-domain.

As discussed in Sec. VII B, when settings for a transforma-

tion are varied and features computed from all variations, it

becomes possible for the MLPs to infer how an attribute

(e.g., vibrato, frequency), affected by that transformation,

relates to the task.

When comparing the performance of the SF-based fea-

tures from Fig. 15 with the correlations shown in Fig. 13, it is

evident that variations in correlation only to some extent trans-

lates to variations in performance. This observation underlines

that the interaction of features must be taken into consideration

in the feature extraction. The observation can also serve as a

starting point for a broader discussion considering the feature

extraction and its role in this and similar MIR tasks. To under-

stand an acoustical scene, the listener must infer the character-

istics of the sounding sources. This enables the listener to

estimate the performed dynamics of individual instruments as

well as the audio mixture. The MLPs ability to estimate per-

formed dynamics is in a similar way related to their possibility

to infer characteristics from audio features. It is therefore not

surprising that the harmonic/percussive source separation

was the most important transformation with regards to the

performance of the model. It is reasonable to assume that the

separated sources have different characteristics related to per-

formed dynamics. Without source separation, this information

will not become available to the machine learning models.

Although the correlations were higher for the features

filtered to keep high frequencies, the performance was higher

when using the mid-frequencies. There are possibly two dif-

ferent explanations. The first is that correlations were mea-

sured only for the features of the original waveform, and that

the correlations in the other waveforms could have changed

the results. The other explanation is that when only high fre-

quencies are used, more information is lost. Therefore, the

system is not able to deduce other interactions as effectively

when making predictions.

B. Future studies

1. Features

How can the feature extraction be improved for future

studies? The reduced feature set proposed in Sec. VII C is a

good starting-point, as it removes redundant variations in

settings. The feature analysis revealed that variations in

transformations that change the features in a more substan-

tial way results in measurable improvements. One possible

direction would therefore be to utilize MFCCs, as this trans-

formation effectively decorrelates the computed features.

The sectional process proposed in this study is however still

important, to produce good features that gives high results.

This leads us to propose that the performance of sectional

MFCCs (SMFCCs) should be investigated. This feature

extraction technique could be useful not only to preformed

dynamics, but to many related tasks where global and local

aspects of the signal must be balanced.

One aspect of performed dynamics that was not explic-

itly modeled with the features developed in this study is the

relation between the spectrum and ground truth pitches (f0s).

As the magnitude distribution of the harmonics of a tone is

related to the dynamics with which the instrument is played,

f0-tracking could provide useful information. This could also

be explored in future studies.

2. Dataset and listener ratings

For future studies, it would also be beneficial to create a

bigger dataset. This would enable more powerful machine

learning methods, instead of only relying on methods that

are known to generalize well on smaller datasets. One way

of artificially expanding the dataset is to partition the MEs

into overlapping sections of about 5–10 s. Predictions could
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then be made for each overlapping section. This is similar to

the technique of artificially expanding datasets for image

processing by discarding pixels at the edges of the image

(Krizhevsky et al., 2012). With overlapping sections of that

size (5–10 s), global annotations should still be sufficiently

accurate for each frame. This represents a compromise

between multiple-instance learning and global learning.

Furthermore, the perceptual ratings could also be collected

continuously during playback. This would result in annota-

tions with higher accuracy for each overlapping section.

Ratings between novice and expert musicians could

also be compared; they could potentially differ with regard

to the perception of performed dynamics and inter-rater

agreement.
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