
 Open access Proceedings Article DOI:10.1145/3204949.3204966

Predicting the performance of virtual reality video streaming in mobile networks
— Source link

Roberto Iraja Tavares da Costa Filho, Marcelo Caggiani Luizelli, Maria Torres Vega, Jeroen van der Hooft ...+4 more authors

Institutions: Universidade Federal do Rio Grande do Sul, Ghent University

Published on: 12 Jun 2018 - ACM SIGMM Conference on Multimedia Systems

Topics: Virtual reality, Quality of service and Quality of experience

Related papers:

 360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP Adaptive Streaming

 Optimizing 360 video delivery over cellular networks

 A Dataset for Exploring User Behaviors in VR Spherical Video Streaming

 An HTTP/2-Based Adaptive Streaming Framework for 360° Virtual Reality Videos

 MPEG DASH SRD: spatial relationship description

Share this paper:

View more about this paper here: https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-
4rk9e5u6d5

https://typeset.io/
https://www.doi.org/10.1145/3204949.3204966
https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5
https://typeset.io/authors/roberto-iraja-tavares-da-costa-filho-2mym650i6s
https://typeset.io/authors/marcelo-caggiani-luizelli-4kdweecgf9
https://typeset.io/authors/maria-torres-vega-2wii147287
https://typeset.io/authors/jeroen-van-der-hooft-2l01kpu12a
https://typeset.io/institutions/universidade-federal-do-rio-grande-do-sul-nkso9jfc
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/conferences/acm-sigmm-conference-on-multimedia-systems-3m7dgc5d
https://typeset.io/topics/virtual-reality-1sy0lbog
https://typeset.io/topics/quality-of-service-b7bgifmo
https://typeset.io/topics/quality-of-experience-6iwx2vhr
https://typeset.io/papers/360probdash-improving-qoe-of-360-video-streaming-using-tile-4txn3dombt
https://typeset.io/papers/optimizing-360-video-delivery-over-cellular-networks-65707f95uy
https://typeset.io/papers/a-dataset-for-exploring-user-behaviors-in-vr-spherical-video-3r12c2n4cd
https://typeset.io/papers/an-http-2-based-adaptive-streaming-framework-for-360-virtual-ibzf3mvrml
https://typeset.io/papers/mpeg-dash-srd-spatial-relationship-description-3s3uuxh8l7
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5
https://twitter.com/intent/tweet?text=Predicting%20the%20performance%20of%20virtual%20reality%20video%20streaming%20in%20mobile%20networks&url=https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5
https://typeset.io/papers/predicting-the-performance-of-virtual-reality-video-4rk9e5u6d5

Predicting the Performance of Virtual Reality Video Streaming
in Mobile Networks

Roberto Irajá Tavares da Costa
Filho

Federal University of RS - UFRGS
Porto Alegre, Brazil

roberto.costa@inf.ufrgs.br

Maria Torres Vega
Ghent University - imec

Ghent, Belgium
maria.torresvega@ugent.be

Marcelo Caggiani Luizelli
Federal University of Pampa

Alegrete, Brazil
marceloluizelli@unipampa.edu.br

Jeroen van der Hooft
Ghent University - imec

Ghent, Belgium
jeroen.vanderhooft@ugent.be

Stefano Petrangeli
Ghent University - imec

Ghent, Belgium
stefano.petrangeli@ugent.be

Tim Wauters
Ghent University - imec

Ghent, Belgium
tim.wauters@ugent.be

Filip De Turck
Ghent University - imec

Ghent, Belgium
filip.deturck@ugent.be

Luciano Paschoal Gaspary
Federal University of RS - UFRGS

Porto Alegre, Brazil
paschoal@inf.ufrgs.br

ABSTRACT

The demand of Virtual Reality (VR) video streaming to mobile de-

vices is booming, as VR becomes accessible to the general public.

However, the variability of conditions of mobile networks affects

the perception of this type of high-bandwidth-demanding services

in unexpected ways. In this situation, there is a need for novel per-

formance assessment models fit to the new VR applications. In this

paper, we present PERCEIVE, a two-stage method for predicting

the perceived quality of adaptive VR videos when streamed through

mobile networks. By means of machine learning techniques, our

approach is able to first predict adaptive VR video playout per-

formance, using network Quality of Service (QoS) indicators as

predictors. In a second stage, it employs the predicted VR video

playout performance metrics to model and estimate end-user per-

ceived quality. The evaluation of PERCEIVE has been performed

considering a real-world environment, in which VR videos are

streamed while subjected to LTE/4G network condition. The accu-

racy of PERCEIVE has been assessed by means of the residual error

between predicted and measured values. Our approach predicts the

different performance metrics of the VR playout with an average

prediction error lower than 3.7% and estimates the perceived quality

with a prediction error lower than 4% for over 90% of all the tested

cases. Moreover, it allows us to pinpoint the QoS conditions that

affect adaptive VR streaming services the most.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys’18, June 12ś15, 2018, Amsterdam, Netherlands

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5192-8/18/06. . . $15.00
https://doi.org/10.1145/3204949.3204966

CCS CONCEPTS

· Information systems → Multimedia streaming; · Human-

centered computing → Virtual reality; · Networks → Net-

work protocols; Public Internet;

KEYWORDS

Virtual Reality, HTTP Adaptive Streaming, Quality of Service, Qual-

ity of Experience, Mobile Networks

ACM Reference Format:

Roberto Irajá Tavares da Costa Filho, Maria Torres Vega, Marcelo Caggiani

Luizelli, Jeroen van der Hooft, Stefano Petrangeli, Tim Wauters, Filip De

Turck, and Luciano Paschoal Gaspary. 2018. Predicting the Performance of

Virtual Reality Video Streaming in Mobile Networks. InMMSys’18: 9th ACM

Multimedia Systems Conference, June 12ś15, 2018, Amsterdam, Netherlands.

ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3204949.3204966

1 INTRODUCTION

The number and variety of Internet-based video applications do not

cease to increase. In fact, IP video traffic is envisioned to experience

a 9-fold growth between 2016 and 2021, accounting for 78% of the

total mobile traffic by 2021 [5]. According to the same source, the

traffic generated by Virtual Reality (VR) is expected to increase 11-

fold by 2021 [5]. One key enabler for supporting such a consistent

growth is the diffusion of Head Mounted Devices (HMD). HMDs

are presenting high penetration rates as they (i) are becoming

effective and affordable (e.g., Google’s Cardboard1), (ii) are already

provided at no cost with certain smartphones (such as Samsung

Gear VR2) and (iii) are being pushed by industry (e.g., Facebook

recently announced a permanent price drop in Oculus Go headset

with the goal of reaching 1 billion VR users [3]).

In order to provide an immersive user experience, VR videos

demand significantly higher bandwidths when compared to tra-

ditional video applications. These ultra-high bandwidths are not

1Google Cardboard https://goo.gl/DSquZf
2Gear VR https://goo.gl/7JdQm7

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

always available in wireless networks and are not easy to process

by lightweight mobile devices. In fact, currently, the streaming of

VR videos through mobile networks is far from optimal. A VR video

contains a full 360◦ panoramic view, regardless of the fact that only

a fraction of it, namely the viewport3, is visible at any given instant.

In an attempt to optimize bandwidth usage, a recent research path

has proposed viewport-aware schemes for VR video streaming,

based on the HAS (HTTP Adaptive Streaming) paradigm [10, 27].

HAS approach is focused on encoding the source content at multiple

quality representations (bitrates), while each quality representa-

tion is time-segmented into small parts (i.e., segments). To further

optimize bandwidth usage, recent research investigations have pro-

posed HAS variants in which quality representations are not only

segmented in time but also spatially split into smaller pieces (i.e.,

tiles) [6].

Bringing the 2D adaptive streaming techniques to the VR arena

requires the VR videos to be encoded at different quality levels,

temporally divided in segments and spatially tiled [19]. Then, dur-

ing the streaming session, only the tiles within the viewport are

streamed in high quality, while others are maintained at the lowest

levels or not streamed at all [24]. To be effective, these techniques

rely on viewport prediction algorithms, since the player needs to

fill in a playout buffer with tiles that are expected to compose the

viewport in the near future [23].

Although the use of viewport-aware techniques leads to the

reduction of bandwidth consumption, the effects of network per-

formance on VR video streaming still plays an important role on

the user’s perception of the services. Since the full panoramic view

of a VR video usually demands a much higher bitrate, when com-

pared to regular videos [7], even a fraction of it (viewport) may

require high bitrates. Along these lines, recent investigations have

emphasized the importance of the network effects on the perceived

quality (Quality of Experience, QoE) of adaptive video streaming

applications [8, 10, 13, 14, 16]. However, state-of-the-art approaches

fall short in predicting the perceived quality for VR videos as they

do not consider the spatial segmentation.

QoE has shown to be a critical factor for video applications [1, 18].

As such, both network operators and VR content providers are re-

quired to answer an important question: considering the wide range

of performance levels of IP networks, to which extent are the currently

observable network conditions able to provide users of VR applications

with adequate QoE? Answering this question is remarkably complex

due to two constrains. First, the influence of the network on VR

video performance is unknown; and second, the state-of-the-art on

video QoE estimation modeling does not consider the VR context.

In this paper, we present PERCEIVE (PERformanCe EstImation

for VR vidEos), a method that aims to provide answer to both

aspects. PERCEIVE is a two-stage adaptive VR performance as-

sessment model that employs machine learning algorithms to first

predict VR video playout performance, using network QoS indi-

cators as predictors. Then, it uses the video playout performance

metrics to model and estimate the end-user perceived quality. Eval-

uated in real-world 4G/LTE network conditions, PERCEIVE not

only accurately predicts the VR videos performance over networks,

3Also referred to as Field of View (FoV)

but also allows us to pinpoint the QoS conditions that affect VR

streaming services the most.

The remainder of this paper is organized as follows. In Section 2,

we discuss the related work. In Section 3, we introduce the approach

used for the tile-based adaptive VR video streaming. In Section 4, we

describe PERCEIVE, the two-step performance prediction scheme

that we propose. In Section 5, we report the evaluation carried out

to prove concept and technical feasibility of the proposed approach.

It includes details on the evaluation methodology, the generation

of the dataset, analysis of the training set and results. Finally, our

conclusions and key findings are presented in Section 6.

2 RELATED WORK

In this section, we provide a thorough description of the state-of-

the-art. In Section 2.1, we present a brief introduction to adaptive

streaming applied to the VR context and review the state-of-the-art

approaches. In Section 2.2, we highlight the most significant QoE

estimation models in literature.

2.1 Adaptive Tile-based and Viewport-aware
Video Streaming

An aspect to consider in adaptive tile-based VR streaming ser-

vices is viewport prediction, which allows to considerably optimize

bandwidth usage. Since a full VR video can easily reach 8K video

resolution [7], most video players rely on heuristic algorithms to

predict near-future user’s head movements. By considering next

position prediction, the video player is able to request only tiles that

are likely to be inside the viewport, which leads to reduced band-

width utilization. To provide this prediction, heuristic algorithms

consider variables such as the angular velocity of the user’s head,

movement patterns for previous viewers, video content (e.g., in a

football match users will most likely follow the ball’s movements),

among other factors [2]. By performing such prediction, the video

player can reduce in up to 72% in bandwidth utilization [12].

In practice, the viewport prediction algorithm is responsible for

keeping a small video playout buffer (e.g., 2 seconds) with the tiles

that are more likely to belong to the viewport in the near-future. To

illustrate how the viewport prediction interacts with the playout

buffer, consider the example of a user watching a tile-based VR

video using a head-mounted display. Consider a given temporal

segment Sk and a respective viewport Vk , as depicted in Figure 1

(a). At this moment, the video player is requesting high-resolution

chunks only for tiles inside the viewport Vk . Then, based on the

near-future viewport prediction for the next segment (Sk+1), the

video player starts requesting high-resolution tiles for the viewport

Vk+1 (delimited by the right dashed square in Figure 1 (b)). As

predicted, the viewer slightly moves to the right (see Figure 1 (c)).

At this point, driven by the viewport predictor, the VR player starts

requesting high-resolution chunks for the predicted viewport on

the segment Sk+2 (Figure 1 (d)), and so forth.

Several recent investigations [11, 23, 24] have focused on a com-

monmain objective: devising bandwidth-efficient adaptive VR video

players while keeping QoE at acceptable levels. Taking viewport

prediction information as input, most approaches rely on per-tile

rate adaptation algorithms to reduce the amount of information to

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

be downloaded by keeping only the viewport’s tiles in high reso-

lution. Qian et al. [24] present a viewport prediction scheme that

considers users’ head movements (traces) and relies on Weighted

Linear Regression to predict users’ head position for the next sec-

ond. The same study indicates that the estimation accuracy can drop

from 90% to approximately 60% when increasing the prediction win-

dow to 2 seconds. Fan et al. [11] consider HMD sensor information

and content-related features (i.e., image saliency maps and motion

maps) to train two neural networks for prediction of viewport posi-

tion. In turn, Hosseini et al. [23] propose an efficient 3D geometry

mesh to represent tiled VR video in the 3D space, which is capable

of reducing bandwidth consumption in up to 30% when compared

to non-tiled videos. The work also relies on MPEG-DASH Spatial

Representation Descriptor (SRD) to describe the spatial relationship

of tiles in the 360-degree space, prioritizing tiles inside the viewport

to be downloaded in high quality. Petrangeli et al. [23] propose an

approach with the ability to reduce bandwidth consumption in up

to 35% by relying on both an HTTP/2-based push mechanism and

a viewport prediction scheme based on viewport speed.

As discussed, viewport prediction is a sensitive task, whichmight

affect the user’s perception in unexpected ways. Errors on the

prediction of the viewport (i.e. the FoV that the user will look at

in the next segment) may lead to partial or full degradation of the

perception, even if the network conditions are enough to guarantee

the user’s QoE. This means that, during the streaming, two different

processes (namely the viewport prediction and the effects of the

network on the adaptive streaming performance metrics) will have

a major influence on the user’s QoE. In this work, we are interested

on predicting the effects of networks on VR adaptive streaming in

an isolated manner, without the influence of errors derived from

wrong viewport prediction. Thus, for the analysis presented herein,

we have assumed perfect prediction, i.e., the adaptive streaming

player knows exactly where the user is looking at every point in

time.

2.2 Adaptive Video Streaming QoE Estimation

One of the biggest challenges of adaptive video streaming (2D,

3D or VR) applications is the accurate and real-time estimation of

quality perceived by the users. And, based on it, the provision of

a feedback loop to dynamically influence the quality adaptation.

In state-of-the-art adaptive streaming approaches, the modeling of

QoE has to rely on objective information obtained at the client, the

server or the network-side.

Mao et al. [16] present a model to estimate QoE considering

both network and application performance indicators measured

at client’s video player (e.g., average bitrate, video stall events and

bitrate changes) as inputs. Similarly, Jiang et al. [13] propose a

Content Delivery Network (CDN) node selection approach that em-

ploys a Critical Feature Analytics (CFA) design to provide accurate

QoE estimation. In this work, the authors also rely on information

provided by client video players as input. Conversely, Xianshu et

al. [14] propose a network path selection scheme that considers

the bitrate measured at the server-side to produce simplified QoE

estimation for adaptive video streaming applications.

Dimopoulos et al. [10] introduce a methodology for estimating

QoE based on the analysis of encrypted HTTPS video streaming

traffic observed in the network. Da Costa Filho et al. [8] propose

an approach for QoE estimation based on network QoS indicators

obtained through active measurements. Both investigations [8, 10]

demonstrate it is possible to estimate video streaming QoE based

on network-side information. Although these approaches may not

be as accurate as the ones based on client- or server-side measure-

ments, they have shown to result in a satisfactory level of accuracy

with a crucial advantage: in addition to end-to-end QoE estimation,

they allow for fast identification and isolation of network segments

responsible for QoE impairments. In spite of the recent fundamen-

tal contributions for the video streaming evolution, the work on

QoE modeling for adaptive video streaming has basically focused

on 2D videos. Unlike 2D video content, VR presents significantly

more complex elements to consider (e.g., spatially segmentation,

viewport prediction, and per-tile rate adaptation). Thus, the current

QoE models are not suitable to estimate QoE for VR videos.

3 ADAPTIVE STREAMING OF VR VIDEOS
USING TILES AND QUALITY ZONES

This section introduces the adaptive VR streaming approach for

which PERCEIVE is envisioned. In order to reduce the bandwidth

required for the streaming, it adopts a tiling structure, in which

the videos are not only divided in temporal segments but are also

spatially split in sections (tiles) [23]. In addition, tiles are grouped in

quality zones prior to the streaming. Each of the zones is assigned a

quality level according to the network conditions measured during

the previous segment. In the next two subsections, both the struc-

ture and the adaptive streaming technique adopted in this work are

presented.

3.1 Adaptive VR streaming structure: Spatial
Tiles and Quality Zones

A VR video V can be represented by a set of k spatially divided

zones Z = {Z1, ...,Zk } such that
⋂

∀k Zk = ∅. The same video

V is temporally split into a discrete number of m segments S =

{S1, ..., Sm } such that
⋃

∀m Sm = V . Each zone Zk is composed

of a set of tiles t ∈ Zk . A tile t is time-divided into m chunks

C = {Ct1 , ...,Ctm }, and may assume different bitrates (qualities)

R(Ctm) over time. Finally, we refer to a segment as the set of all

chunks for a given time frame such as Sm =
⋃

∀t Ctm . In tile-based

approaches, the encoding process defines how the video will be

spatially divided (i.e., tiling scheme), which bitrates will be available

in the HAS context (i.e., quality representations), and the segment

length (i.e., number of seconds).

An example of this type of structure is shown in Figure 2.

There are three quality zones Z = {Z1,Z2,Z3}, each one com-

posed by a set of adjacent tiles. Z1 is a set of tiles adjacent to the

viewport center (t28, t29, t36, t37), Z2 is the border of the viewport

(t43, t44, t45, t46, t38, t30, t22, t21, t20, t19, t27, t35) and Z3 is composed

by all tiles outside the viewport.

3.2 Adaptive streaming heuristic

Algorithm 1 describes the adaptive streaming heuristic procedure

adopted for this paper (adapted from [23]). The bitrate in a specific

zone Zk is named as R(Ct)|
Zk . The algorithm receives as input (i)

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

Figure 1: Example of the working principles of the viewport prediction.

Figure 2: Example of an adaptive tile-based VR video struc-

ture split in 3 quality zones.

a reference to a VR video V , (ii) a set S describing the video seg-

mentation and (iii) the available zones in video V . The heuristic

described in Algorithm 1 works as follows. Once knowing the avail-

able bandwidth in the network, the VR player downloads tiles with

the highest possible bitrates. First, the heuristic tries to increase the

bitrates on the zones inside the viewport. Then, it repeats the pro-

cedure to stream tiles from the outer zones (observed in line 3). Ob-

serve that the heuristic does not increase the bitrate R(Ct)|
Zk+1 on a

subsequent zoneZk+1 in case the bitrate of zoneZk is strictly upper-

bounded by R(Ct)|
Zk+1 . In other words, it ensures that the bitrate of

zone Zk+1 is always lower or equal to that of zone Zk . Furthermore,

it ensures that tiles within the same zone Zk are streamed with the

same bitrate R(Ct), that is, R(C0)|
Zk = R(C1)|

Zk = · · · = R(Ct)|
Zk .

If the available bandwidth were insufficient to download all the

tiles in a zone on time (before display), the streaming would stall

until the buffers were filled. Hence, the player ensures that all tiles

are synchronized during the playout and that no black tiles appear.

For more information on the working principles of the streaming

heuristic, please refer to [23].

Algorithm 1 VR player heuristic adapted from [23].

Input: V : VR video

Input: S : discrete number of segments in VR video V

Input: Z = {Z1, ...,Zk }: k spatially divided zones in VR video V

1: for each video segment Si ∈ S from VR video V do

2: for each zone Zk ∈ Z do

3: gather tiles t ∈ Zk with maximum available bitrate

R(Ct)|
Zk , such that (∀k ≥ 2) : R(Ct)|

Zk ≤ R(Ct)|
Zk−1 and

(∀t ∈ Zk) : R(C0)|
Zk = R(C1)|

Zk = · · · = R(Ct)|
Zk

4 PERCEIVE: ADAPTIVE VR VIDEO
PERFORMANCE PREDICTION

Figure 3 presents the block diagram of the proposed two-stage VR

performance prediction method. The first stage is composed of four

predictors, one per VR video application performance metric (i.e.,

startup delay, quality, quality switches count and video stalls) [32].

As input, the predictors consider both the network Quality of Ser-

vice (QoS) (i.e., delay, packet loss and TCP throughput) and the

tiling scheme. In the second stage, the user QoE is estimated by

submitting the predicted application layer performance metrics to

the proposed QoE model. PERCEIVE can dissect VR video playout

performance by understanding two key processes, namely (i) the

influence of the network performance on VR video player outputs;

and (ii) how the user perceives the resulting video playout perfor-

mance. However, both the VR video player and the QoE model are

open questions in the sense that there is neither a reference player

implementation nor a QoE model for VR videos. Considering the

above, the proposed two-stage prediction allows both the playout

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

performance metrics predictors and the QoE model to be individu-

ally updated, without the need to rebuild the entire scheme. The

following two subsections provide details and insights on each of

the stages of which PERCEIVE is composed.

Figure 3: PERCEIVE two-stage quality prediction

4.1 Adaptive VR Video Playout Prediction

In the first stage of the method, the four most important playout

performance metrics associated with the adaptive VR streaming,

namely startup delay, quality level (bitrate), quality switches and

stall time [32], are predicted based on network QoS inputs and the

VR video structure. Each of them is independently predicted using

regression trees as predictors (taking advantage of and adapting

the 2D procedure proposed in previous research work [8]). Regres-

sion trees are employed due to three main reasons. First, they have

shown to be an accurate machine learning method in related inves-

tigations [8, 26]. Second, they permit understanding complex and

non-linear relationships between predictors and response variables

in an intuitive and visual manner. This is a very important feature

that allows to pinpoint the most influential inputs, which will be put

to the test in the analysis of Section 5.3. Finally, once the prediction

structures are generated, they can predict the response variable in

linear time complexity, and can be easily integrated in third-party

applications, which are fundamental aspects for network operators

and content providers.

The selection of the input QoS parameters has been made based

on state-of-the-art research studies on the QoS conditions that affect

video streaming services the most [8, 20, 28]. These studies also

concluded that TCP throughput is one of the most influential QoS

metric when prediction QoE. Also, both network losses and delays

have been demonstrated to be responsible for further degradation,

depending on the type of streaming application used. In addition

to these three network performance metrics, a fourth parameter,

namely the tiling structure of the VR streaming, was included. The

structure defines the number of tiles that need to be streamed to the

client, thus it will heavily influence the VR playout performance.

Once the four VR playout performance indicators are predicted,

they serve as input to the second phase, the QoE model as it is

presented in the next Section.

4.2 Adaptive VR QoE Estimation Model

The purpose of this second stage is to estimate the quality perceived

by the end users (their QoE), considering the VR video playout

performancemetrics obtained from the previous stage of PERCEIVE

(i.e., startup delay, quality level (bitrate), quality switches and stall

time).

The model proposed herein considers the state-of-the-art on QoE

modeling for adaptive streaming applications in general and HAS in

particular [16, 22, 32]. To the best of our knowledge, this is the first

model to consider the concept of zones and tiles in a QoE estimation

model for VR videos. These characteristics are crucial, given the fact

that they allow coping with VR video attributes while providing

flexibility to handle different video encoding strategies (e.g., tiling

scheme, viewport geometry and available quality representations).

Given the concepts of quality zones and tiles of the approach used

for Adaptive VR streaming (Section 3), the QoE function is defined

per zone as a function of the VR playout characteristics predicted

by the previous stage within that quality zone (Section 4.1). This

strategy is aligned with the notion that the influence of VR playout

characteristics on user perception is different depending on the

zone where they are observed (e.g., quality switches for tiles outside

the viewport are less important than quality switches inside the

viewport). Thus, the per-zone quality function (ϕ(Zk)) is defined as

the weighted sum of the four playout characteristics (Equation 1).

ϕ(Zk) =

Quality
︷ ︸︸ ︷
∑

∀t ∈Zk

∑

∀c ∈C(t)

q(R(Ctm)) −

Stalls
︷ ︸︸ ︷

µ ·
∑

∀t ∈Zk

∑

∀c ∈Ctm

(

dc (Rc)

Cc
− Bc

)

+

− λ ·
∑

∀t ∈Zk

∑

∀c ∈Ctm

�
�
�
�
q(R(Ctm+1)) − q(R(Ctm)

�
�
�
�

︸ ︷︷ ︸

Quality switches

− ω ·Ts
︸︷︷︸

Startup

(1)

In Equation 1, R(Ctm) R represents the bitrate (i.e., quality) of

a given chunk. Recall that a tile t is time-divided intom chunks

C = {Ct1 , ...,Ctm }, (adapted from [16, 32]). Function q is a map-

ping function that translates the bitrate of chunk Ctm belonging to

tile t to the quality perceived by the user (i.e., in terms of bitrate

sensitivity). The second term of the Equation is used to track stall

time. Stalls can be characterized either by tile (i.e., it is possible to

have stall in some tiles and video playout in other, for the same

segment) or by segment (i.e., the video will stall until all the tiles

for a given segment have enough buffer). To keep the model as

general as possible, we consider for each chunk c , that a stall event

occurs when the download time
dc (Rc)
Cc

is higher than the play-

out buffer length (Bc) when the chunk download started. Hence,

the total stall time is given by
∑
C

c=1

(
dc (Rc)
Cc

− Bc

)

+

. In addition,

|q(Rct+1)−q(Rct)| considers the quality switches between consecu-

tive chunks andTs tracks the startup delay. Finally, constants µ, λ,ω

are the non-negative weights used to tune the model for different

user importance regarding QoE events. For example, a higher value

of µ, with respect to the other weights, means that the user is more

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

susceptive to video stalls. Consequently, these events should affect

the QoE indicator more severely.

Each of the zones within the VR video influences the perception

of the user in a different manner. For example, tiles within the

first or second zones (i.e., the closest to the FoV of the user) will

greatly steer the quality perceived by the user, while bad qualities

on tiles of the edge zones will potentially go unnoticed. For this

reason, the overall video QoE (ϕ(V)) is modelled as a weighted

linear sum of the QoE measurement per zone (Equation 2). Each

weight (α1,α2, ...,αk) allows defining the relative importance of

each zone when composing the video QoE. For example, the zones

belonging to the viewport should have higher weights compared

to the other zones.

The values for each αn parameter should be derived from sub-

jective tests. For example, considering a two-zone QoE scheme,

values for α1 (viewport) should be close to one, and values for α2
(outside viewport) should be close to zero. When the QoE model is

configured with more than two zones, it is necessary to determine

αn (testing values within a certain range) for each zone. In this

case, subjective tests should systematically include incremental

quality degradation, specifically in the intermediate zones, in order

to measure the user’s sensitiveness regarding quality issues in each

zone.

ϕ(V) =α1 · ϕ(Z1) + α2 · ϕ(Z2) + ... + αk · ϕ(Zk)
(2)

5 EVALUATION

In this section, the evaluation of the PERCEIVE method is dis-

cussed. We start by presenting the procedure followed to evaluate

the method in Section 5.1. Next, in Section 5.2, we introduce the

generation of the dataset used for training and testing. In Section 5.3

we discuss and analyze the resulting VR playout predictors. This

analysis provides insights on the dependency and predictability of

each of the VR playout performance metrics given the QoS and

tiling structure inputs. Finally, in Section 5.4 we present the predic-

tion evaluation results for each of the five outputs of PERCEIVE

(i.e., the four VR playout performance metrics and the perceived

quality).

5.1 Evaluation Methodology

In order to evaluate the performance of PERCEIVE, the procedure

outlined by Figure 4 is followed. First, the datasets for training

and testing have to be generated. Therefore, a VR video player is

required to measure the VR video application playout performance

metrics (i.e., startup delay, average bitrate (quality), bitrate switches

and video stalls) while subjected to real-world inputs, such as a

realistic wireless networks measurements, VR tile-based videos and

users’ head track traces.

Next, the resultant datasets are given as input to the machine

learning algorithm (responsible for learning the influence of the

network QoS parameters and tiling scheme onto the VR playout

characteristics). After the training phase, the resulting predictors

can estimate the application layer performance only by means of

the network parameters, and the considered tiling scheme. Finally,

based on the VR playout performance metrics, the QoE can be

Figure 4: General evaluation methodology for PERCEIVE

estimated. The performance of PERCEIVE is assessed by means of

the calculation of the normalized residual errors between predicted

and measured values (ri , Equation 3). In the equation, x is the

ground truth, x̂ is the prediction and N is the normalization factor

(in this case the video duration).

ri = |x̂i − xi |/N (3)

5.2 VR Dataset Generation

Each sample in the dataset contains the VR video tiling information,

the three network QoS features and the respective video perfor-

mance measured by the VR video player. To construct such dataset,

the procedure presented in Section 5.1 is followed. Experiments

are set, considering that a VR video player requests and processes

tile-based VR videos from a web server (Apache 2 2.4.18-2). The

network conditions are enforced by the Linux Traffic Control (TC)

mechanism according to real-world network performance inputs.

The experiments are built on top of a Linux Ubuntu 14.04 oper-

ating system, running on bare metal servers, where each server

consists of a quad-core E3-1220v3 (3.1GHz) processor, with 16GB

of RAM and two 10-gigabit network interfaces. Considering this

infrastructure setup, we performed 1,524 video execution rounds,

which resulted in more than 5,240 minutes of VR video playout.

Table 1 summarizes the input parameters values considered in

the experiments. As network throughput input, the 4G/LTE mea-

surements dataset of van der Hooft et al. [29] was selected. This

dataset presents TCP throughput ranging from 0 Kb/s to 95 Mb/s

as shown in Figure 5. For network packet loss, values between 0%

and 13% were selected, in line with [8]. The network delay range

was set from 1 to 130 ms. These values allowed us to assess the

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

TCP TP − downlink

D
e

n
s
it
y

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
.0

e
+

0
0

5
.0

e
−

0
9

1
.0

e
−

0
8

1
.5

e
−

0
8

2
.0

e
−

0
8

2
.5

e
−

0
8

Figure 5: TCP throughput histogram of the 4G/LTE dataset

of [29]

application performance from a very degraded delay performance

(130 ms) down to the expected 5G delay (1 ms) [9].

Table 1: Input parameter configurations.

Metric Short Unit Range

TCP throughput TCPTP Mb/s 0-95Mb/s ([29], Figure 5)
Packet Loss PLR % 0 − 13% (based on [8])

Delay Delay millisecond 1-130ms (based on [8, 9])
Tiling scheme Tile categorical 8 × 4 or 12 × 4 (based on [15, 24]

Two VR videos from Wu et al.’ s dataset [31] (namely łGoogle

Spotlight-HELP" and łFreestyle Skiing") were used for the stream-

ing under the above described network conditions. For each video,

we considered the available datasets regarding the users’ headmove-

ments while watching it. As the original videos are not tile-based,

they had to be re-encoded. After extracting the raw YUV files, mak-

ing use of the Kvazaar encoder [30], the videos were re-encoded in a

HEVC tile-based version, considering two tiling schemes: 8 × 4 and

12× 4 [15, 24]. In addition, each tiling scheme was encoded to three

quality representations, namely 720p (1.8Mb/s), 1080p (2.7Mb/s)

and 4K (6Mb/s). Next, we used the MP4Box4 application to pack the

re-encoded videos into MP4 containers. Finally, we defined the seg-

ment duration of 1 second and used MP4Box to extract per-tile files

and to generate the MPEG Dash Media Presentation Description

(MPD) files considering multiple quality representations (Table 2).

For the streaming heuristic (Section 3.2), there are three defined

zones, where Zone 1 is the viewport center tile, Zone 2 groups the

8 tiles surrounding Zone 1, and all other tiles belong to Zone 3.

Figure 6 shows the zone division for the 12 × 4 tiling scheme.

Table 2: Adaptive streaming configurations.

Videos Qualities (bitrates) Quality zones Segment Tiling

Google Spotlight 720p - 1.8Mb/s Zone 1: 1 tile (central FoV) 1 s 12 × 8
Freestyle Skiing 1080p - 2.7Mb/s Zone 2: 8 tiles (adj. Zone 1) 8 × 4
(Wu et al. [31]) 4K - 6Mb/s Zone 3: Rest

4MP4Box https://gpac.wp.imt.fr/mp4box/

Figure 6: Viewport detail for the 12x4 tiling scheme

5.3 Resulting Predictors: VR Playout vs
Network Conditions

Based on the dataset, the regression trees were trained using a 10-

fold cross-validation approach [15]. As each zone has independent

quality behavior, both the quality and quality switches need to be

learned per-zone. On the other hand, the startup and stall times are

independent from the quality zone under scrutiny. Hence, they can

be learned per video segment. Given the fact that there are three

quality zones, eight regression trees were trained: three for Quality,

three for Quality Switches, one for Stall time and one for Start time.

All trees are optimally pruned [17], which means pruning until the

cross-validation error is minimal and overfitting is avoided.

Before assessing the performance of the two-stage method, a

thorough analysis of the regression trees was performed. This anal-

ysis aims at characterizing the relationship between the input pa-

rameters (network conditions and VR video structure) and the VR

playout, allowing one to pinpoint to the most influential inputs.

Figures 7 to 9 present the outcome predictors derived from the

regression trees. All presented trees share two structural charac-

teristics. First, although inversions may occur, usually the leftmost

leaf node holds the lowest value for the predicted variable, and the

value increases while moving towards the rightmost leaf node. Sec-

ond, the closer to the root node, the more important the prediction

feature (i.e., delay, TCP throughput, loss and tile scheme).

Having a first look at the content of the trees, two observations

can be made. First, network packet losses are not included in any

of the trees. This means that the level of packet losses does not

have influence on the VR playout performance metrics. Its effect

will only be important as they affect the TCP throughput (higher

network packet losses = lower TCP throughput). Furthermore, net-

work delays turn out to be the most influential parameter on the

VR playout.

Regarding quality (by means of the average bitrate) (Figures 7(a)

to 7(c)), let us consider the following aspects. The first decision taken

in Zone 1, at the root node and, therefore, the most influential, is to

understand if the network delay is greater than 23 ms (Figure 7(a)).

The left branch (Delay ≥ 23ms) is related to predicted quality not

higher than 3.9 Mb/s, regardless of any other input value. In other

words, even considering that the evaluated LTE network presents

TCP throughput of up to 95 Mb/s, it is not enough to achieve the

maximum bitrate (6.0 Mb/s - 4K), if the delay is higher than 23 ms.

The reasoning behind this behavior is that each video segment (1 s)

demands the download of 32 (8x4 tiling) or 48 (12x4) tiles. Despite

the reuse of the TCP connection avoids the TCP slow-start restart

[4]), the request/response overhead limits the throughput.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

DELAY >= 23

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TCPTP < 2.3

TILE = 12x4

TILE = 12x4

DELAY >= 14

TILE = 12x4

DELAY < 18

DELAY >= 9.5

0.19 0.29 0.42 0.51 0.65 1.1 2 3.9 2.6 3.6 4.6 5.5 5.8

yes no

(a) Quality (average bitrate) - Zone 1 (Mb/s)

DELAY >= 14

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TCPTP < 2.3

TILE = 12x4

TCPTP < 19 DELAY < 18

TCPTP < 19

TCPTP < 6.5

TILE = 12x4 DELAY >= 9

TILE = 12x4

0.19 0.29 0.42 0.51 0.79 1.6 2.1 2.3 3.6 4.2 4.2 5.2 5.2 5.6 5.8

yes no

(b) Quality (average bitrate) - Zone 2 (Mb/s)

DELAY >= 14

DELAY >= 26

DELAY >= 50

DELAY >= 100

TILE = 12x4

TILE = 12x4

TCPTP < 19

TCPTP < 9.7

TCPTP < 6.5

TILE = 12x4

DELAY >= 10

TILE = 12x4

DELAY >= 12 TCPTP < 14

DELAY >= 7.5

0.19 0.29 0.42 0.7 1.2 1.7 2.7 1.9 3.4 4.1 2.9 3.8 4 5.2 5.5 5.8

yes no

(c) Quality (average bitrate) - Zone 3 (Mb/s)

Figure 7: Regression tree representation for the predictors

of the VR playout performance metric: quality. Leaf node

colors go from dark green (for the lowest value for the pre-

dicted variable) to dark blue (the highest predicted value).

DELAY >= 50

DELAY < 14

DELAY < 9.5

TILE = 8x4

TCPTP >= 14

DELAY >= 26

DELAY < 36

TILE = 12x4

TCPTP >= 9.6

0 2.9 4.6 4.9 11 1.5 2.3 16 17 30

yes no

(a) Quality switch - Zone 1

DELAY >= 26

DELAY >= 50

DELAY < 36

TILE = 12x4

DELAY < 9.5

DELAY >= 3.5

DELAY < 7.5

TCPTP >= 8.7

DELAY < 17

TILE = 8x4

DELAY < 12

TILE = 8x4

TILE = 8x4

DELAY < 12 DELAY >= 12

0 0 0 4.4 2.3 3.9 4.1 5.2 12 17 19 26 16 29 18 38

yes no

(b) Quality switch - Zone 2

DELAY >= 26

TCPTP >= 25

TCPTP < 4.7

DELAY < 4.5

TCPTP >= 19

DELAY < 16

TILE = 12x4

DELAY >= 18

TILE = 12x4 TCPTP < 6.5

TILE = 12x4 TILE = 8x4

TCPTP >= 14 DELAY < 8

DELAY >= 12

0 3.1 0 2.8 8.3 19 53 9.6 31 16 37 15 45 28 45 58

yes no

(c) Quality switch - Zone 3

Figure 8: Regression tree representation for the predictors of

the VR playout performance metrics: quality switches. Leaf

node colors go from dark green (for the lowest value for

the predicted variable) to dark blue (the highest predicted

value).

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

For Zones 2 and 3 (Figures 7(b) and 7(c)), the quality predictors

follow a very similar trend. However, in order to achieve the same

level of average quality, they demand higher network performance

than Zone 1. The right-most leaf of Zones 2 and 3 are a clear example

of this behavior. To achieve the same quality (average bitrate of

5.8 Mb/s), Zone 2 requires a delay lower than 9 ms, and Zone 3

lower than 7.5 ms. Also, the values of TCP throughput to achieve

intermediate average bitrates are higher for Zones 2 and 3 when

compared with Zone 1. The main reason for such behavior comes

from the rate adaptation heuristic, which prioritizes high bitrates

for the tiles that are closest to the viewport’s center (Section 3.2).

Thus, intermediate network performance may be enough to keep

Zone 1 at the highest available bitrate, while high levels of network

performance allow increasing the bitrate for all zones.

Quality switches (Figures 8(a) to 8(c)) provide valuable infor-

mation in the context of HAS videos. For example, if no switches

occur, the full video playout occurs in the lowest available resolu-

tion, meaning that the video player is unable to switch to higher

bitrates, probably, due to insufficient network performance. In turn,

when subject to excellent network performance conditions, most

of HAS rate adaptation heuristics (including the one used in this

paper) will stabilize at the highest available bitrate within a few

switches. When considering real-world networks, if we have a look

at the quality switches trained trees (Figures 8(a), 8(b) and 8(c)),

it can be seen that the turning point from zero switches to max-

imizing the quality is a network delay of 50ms for Zone 1, and

26ms for Zones 2 and 3. However, by analyzing the rightmost leaf

nodes of the decision trees for Zones 1, 2 and 3, one can observe

that the maximum number of quality switches increases from Zone

1 towards Zone 3: (30, 38 and 58, respectively). This happens be-

cause, according to the considered heuristic for rate adaptation, the

tiles inside Zone 3 will be the first ones to be switched to a lower

resolution in case a network performance degradation is detected,

followed by Zone 2 and, if the network performance degradation is

severe, the Zone 1.

With respect to the cumulative stall time (Figure 9(a)), the result-

ing regression tree presents a wide range of predicted values (from

0.95 up to 384 seconds). One key aspect is related to the decision

taken at the root node. As one can observe, if the delay is higher or

equal to 18 ms, the minimum expected stall time is equal or higher

than 163 seconds, independent of the tiling scheme or the available

bandwidth (TCP throughput). Such high values would inflict a dra-

matic degradation on the perceived quality. In turn, for network

delays lower than 9.5 s and TCP throughput equal or higher than 25

Mb/s, the expected stall time is minimal (0.95 seconds). It is worth

mentioning that, even if the delay is lower than 9.5 s, if the TCP

throughput is lower than 25 Mb/s, the expected stall time is 16

seconds. Also, in line with the aforementioned findings, the 12x4

tiling scheme leads to a significative higher amount of stall time

for intermediate levels of network performance.

Finally, the regression tree for predicting startup delay is shown

in Figure 9(b). In the considered VR video player, the startup delay is

characterized as the elapsed time between the arrival of the request

for the first tile and the completion of the buffer filling for all tiles

for the first two segments. As the segment is relatively small, and

considering the small file size of the tile chunks (on average 23 KB

for 4K video resolution), the startup delay exclusively depends on

DELAY < 18

DELAY < 9.5

TCPTP >= 25 TILE = 8x4

DELAY < 14 TCPTP >= 4.7

DELAY < 12

DELAY < 50

DELAY < 26

TILE = 8x4 TCPTP >= 2.3

TILE = 8x4

DELAY < 36

DELAY < 100

TILE = 8x4

DELAY < 76 DELAY < 76

DELAY < 128

TILE = 8x4

0.95 16 33 75 84 118 173 163 241 235 265 302 325 330 348 357 369 365 378 384

yes no

(a) Cumulative start time (seconds)

DELAY < 76

DELAY < 26

DELAY < 14 DELAY < 50

TILE = 8x4

DELAY < 128

TILE = 8x4

DELAY < 92 DELAY < 92

DELAY < 108

TILE = 8x4

DELAY < 156 DELAY < 148

DELAY < 156

0.54 1.7 3.2 4.6 6.9 5.7 7.4 8.4 10 12 11 14 16 18 21

yes no

(b) Startup delay (seconds)

Figure 9: Regression tree representation for the predictors of

the VR playout performance metrics: stall time and startup

delay. Leaf node colors go from dark green (for the lowest

value for the predicted variable) to dark blue (the highest

predicted value).

the network delay. A delay lower than 26 ms is enough to provide

an acceptable startup delay (smaller than 1.7 s). However, the best

performance is achieved when the delay is lower than 14 ms (0.54

s).

5.4 PERCEIVE Results

Aiming at determining the accuracy of the proposed predictors, the

trained regression trees were used on unseen samples of the gener-

ated dataset, according to a 10-fold cross-validation scheme [15].

We considered as ground truth the performance measured by the

reference VR video player when subjected to real-world network

performance traces. In light of this, each test sample i contains the

predictor variables (i.e., TCP throughput, delay and tiling scheme),

and the respective measured values for the performance metrics

(i.e., average bitrate, stall time, quality switch and startup delay).

Furthermore, based on the predicted VR playout characteris-

tics, the QoE indexes were estimated by means of Equation 2. The

parametric constants shown by the model were set to the values

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

ri (Mbps)

(a) Quality (average bitrate) - Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
D

F

ri (Mbps)

(b) Quality (average bitrate) - Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

C
D

F

ri (Mbps)

(c) Quality (average bitrate) - Zone 3

Figure 10: Residual error CDFs for quality (average bitrate)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08

C
D

F

Normalized ri (switches count)

(a) Quality switch - Zone 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08

C
D

F

Normalized ri (switches count)

(b) Quality switch - Zone 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

C
D

F

Normalized ri (switches count)

(c) Quality switch - Zone 3

Figure 11: Residual error CDFs for the quality switch

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.03 0.06 0.09 0.12 0.15

C
D

F

Normalized ri (seconds)

(a) Cumulative Stall time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.008 0.016 0.024 0.032

C
D

F

Normalized ri (seconds)

(b) Startup delay

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

C
D

F

Normalized ri (QoE)

(c) QoE

Figure 12: Residual error CDFs for stall time, startup delay and QoE estimation

presented in Table 3. Based on the results shown by Mao et al. [16],

the q function was set to linear, where q is equal to the bitrate. In

addition (also according to [16]), the stall and startup weights (µ

and ω) were set to 4.3. The value of the quality switches constant

(λ) was tuned to 1 [32]. Finally, the zones weights (α1, α2 and α3)

were empirically set to 0.7, 0.3 and 0, for Zone 1, Zone 2 and Zone

3. The reason behind setting α3 to zero comes from the perfect

prediction scenario considered in the evaluation. In such cases, the

FoV will correspond 100% of tiles of Zones 1 and 2. Thus, there is

no influence of the quality of Zone 3 on the user’ s perception. In

the case that perfect prediction would not be possible, the weights

would need to be tuned accordingly.

The performance of the method is assessed by means of the resid-

ual error calculated between real data sample (entry in the training

set) and the predicted one (as already introduced in Section 5.1

and Equation 3). With the purpose of generalizing the method for

Table 3: Constants and function values assigned to the func-

tion to estimate QoE (refer to Equation 2)

Param. Value

q Linear

µ 4.3

ω 4.3

λ 1

α1 0.7

α2 0.3

α3 0

videos of arbitrary duration, the residual error for the metrics aver-

age bitrate, quality switch and startup delay are normalized by the

factor N of the residual error equation, which corresponds to the

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

considered video length (200 seconds). Figures 10, 11 and 12 show

the Cumulative Distribution (CDF) of the residual error for the four

VR playout performance metrics and the QoE estimation.

Looking at the quality prediction capacities of PERCEIVE (Fig-

ures 10(a) to 10(c)), it is possible to observe that the residual errors

are very small (224 Kb/s and 220 Kb/s for Zones 1 and 2, respectively,

for over 90% of the cases). If normalized by the maximum available

quality (6.0 Mb/s), it represents only 3.73% and 3.67% of residual

error. This means that in roughly 97% of the cases, the quality levels

are correctly predicted. Even though the residual error for Zone 3

is slightly higher (4.5%), it is still within the acceptability range.

The accuracy of the quality switch prediction (Figures 11(a) to

11(c)) shows even better results. For over 90% of the samples, Zones

1, 2 and 3 present a residual error of ri1 ≤ 0.00745, ri2 ≤ 0.01604

and ri3 ≤ 0.01877, respectively. In line with the findings for the

average bitrate prediction, Zone 3 presented a higher residual er-

ror (1.9%), as this is the zone with the highest number of quality

switches during the video playout. In Figure 11(b) it is possible to

observe that on over 80% of samples the residual error is zero. This

is because the quality switch behavior for both extreme cases of

the network performance is predictable: first, when the network

performance is sufficiently high, the rate adaptation will stabilize

at the highest representation, and no further quality switches are

expected. Second, when the network performance is degraded, the

rate adaptation will keep the video playout at the lowest avail-

able quality representation, and, similarly, no further switches are

expected.

The stalling time (Figure 12(a)) shows an error close to 13% for

over 90% of the testing samples. One main reason behind such in-

creased residual error is the wide range of the predicted variable (as

we saw in the regression tree of Figure 9(a)). Nevertheless, several

samples in the training dataset presented zero seconds of stall time.

We found that such predictable cases are associated with high levels

of network performance. For each of these samples, a residual error

of 0.95 was accounted (as 0.95 is the lowest predicted value). As

the presented regression tree is the optimal prune, further growth

would lead to overfitting, and thus a higher cross-validation error.

Due to the relatively high stall time for intermediate and degraded

network performance, the prediction performance is impaired as

the network performance degrades. However, at high levels of stall

time, the QoE is already completely degraded. Thus, the increased

error does not impair the accuracy of the QoE estimation.

The final VR playout parameter, the startup delay (Figure 12(b)),

is characterized as the elapsed time between the request of the video

and the playout of the first segment. In the considered context, the

startup delay prediction presented a well predictable pattern with

ri ≤ 0.00473 for over 90% of the cases. Also, the regression tree

presented a stable prediction performance across all the evaluated

samples.

Finally, Figure 12(c) depicts the residual error for the QoE es-

timation. By applying the QoE model defined in Section 4.2 to

each sample i , it is possible to estimate QoE for both the predicted

playout values and the original ones. Then, the residual error can

be calculated. Through this procedure, the QoE estimation error

induced by the proposed prediction scheme can be assessed. As

shown in Figure 12(c), the QoE estimation presents ri ≤ 0.03922

for over 90% of the cases.

6 CONCLUSION

Virtual Reality applications based on adaptive tile-based video

streaming are booming, as VR content becomes available to the

general public. To be able to cope with their ultra-high bandwidth

and low latency requirements, network and services providers are

required to assess the end-client perceived performance of such

services.

In this paper we presented PERCEIVE, a novel VR performance

evaluation method to assess the user’s perception of the VR con-

tent when streamed through the network. By means of machine

learning techniques applied to the network performance indica-

tors, it predicts the adaptive VR performance both in terms of VR

main playout parameters (quality, quality switches, stalling time

and starting time) and the perceived QoE. To our knowledge, this

is the first VR performance model.

PERCEIVE has been evaluated considering a real-world envi-

ronment, in which VR videos are streamed while subjected to an

LTE/4G network performance. Then, we assessed its accuracy by

means of the residual error between the predicted andmeasured val-

ues. PERCEIVE is able to predict the playout performance metrics

with an average prediction error lower than 3.7% and, the perceived

quality with a prediction error lower than 4% for over 90% of all

the tested cases. PERCEIVE not only provides very high prediction

accuracy, but also allows analyzing the influence of networks on

the VR streaming parameters. This feature has helped us pinpoint

the network delay as the QoS feature that affects the transport of

VR services the most.

We believe our work is one step forward in the assessment of

VR applications performance, which is an open subject in the state-

of-the-art on multimedia network management. Although the pro-

posed QoE model has not been validated through subjective tests,

we believe it is an acceptable approach considering the scope of this

work. As we are evaluating the predictability of the QoE indicator

based on the performance of the application layer, possible adjust-

ments in the weights of Equation 1 will not affect the prediction

error of the QoE indicator. Aiming at providing realistic weights for

Equation 1, as future work, we intend to perform subjective tests

of the proposed QoE model. We also intend to explore and improve

the estimation capabilities of our approach, focusing on viewport

prediction and on adaptive streaming heuristics.

ACKNOWLEDGEMENT

This research was performed partially within the project G025615N

"Optimized source coding for multiple terminals in self-organizing

networks" from the fund for Scientific Research-Flanders (FWO-V).

This work was also partially funded by CAPES, CNPq, FAPERGS

and IFSul PROPESP.

REFERENCES
[1] Arslan Ahmad, Alessandro Floris, and Luigi Atzori. 2016. QoE-centric service

delivery: A collaborative approach among OTTs and ISPs. Computer Networks
110 (2016), 168 ś 179. https://doi.org/10.1016/j.comnet.2016.09.022

[2] Y. Bao, H. Wu, T. Zhang, A. A. Ramli, and X. Liu. 2016. Shooting a moving
target: Motion-prediction-based transmission for 360-degree videos. In 2016 IEEE
International Conference on Big Data (Big Data). 1161ś1170. https://doi.org/10.
1109/BigData.2016.7840720

[3] BBC. 2017. Facebook: We want a billion people in VR. (2017). https://goo.gl/
2LNuAo Accessed 16-October-2017.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

[4] Ethan Blanton, Dr. Vern Paxson, andMark Allman. 2009. TCP Congestion Control.
RFC 5681. (Sept. 2009). https://doi.org/10.17487/RFC5681

[5] Cisco. 2017. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2016ś2021. Technical Report. Cisco Systems.

[6] C. Concolato, J. Le Feuvre, F. Denoual, E. Nassor, N. Ouedraogo, and J. Taquet.
2017. Adaptive Streaming of HEVC Tiled Videos using MPEG-DASH. IEEE
Transactions on Circuits and Systems for Video Technology PP, 99 (2017), 1ś1.
https://doi.org/10.1109/TCSVT.2017.2688491

[7] X. Corbillon, G. Simon, A. Devlic, and J. Chakareski. 2017. Viewport-adaptive
navigable 360-degree video delivery. In 2017 IEEE International Conference on
Communications (ICC). 1ś7. https://doi.org/10.1109/ICC.2017.7996611

[8] R. I. T. da Costa Filho, W. Lautenschlager, N. Kagami, V. Roesler, and L. P. Gaspary.
2016. Network Fortune Cookie: Using Network Measurements to Predict Video
Streaming Performance and QoE. In 2016 IEEE Global Communications Conference
(GLOBECOM). 1ś6. https://doi.org/10.1109/GLOCOM.2016.7842022

[9] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, and J. Sköld. 2014. 5G
wireless access: requirements and realization. IEEE Communications Magazine
52, 12 (December 2014), 42ś47. https://doi.org/10.1109/MCOM.2014.6979985

[10] Giorgos Dimopoulos, Ilias Leontiadis, Pere Barlet-Ros, and Konstantina Papa-
giannaki. 2016. Measuring Video QoE from Encrypted Traffic. In Proceedings of
the 2016 Internet Measurement Conference (IMC ’16). ACM, New York, NY, USA,
513ś526. https://doi.org/10.1145/2987443.2987459

[11] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying Huang, Kuan-Ta Chen, and
Cheng-Hsin Hsu. 2017. Fixation Prediction for 360 Video Streaming in Head-
Mounted Virtual Reality. In Proceedings of the 27th Workshop on Network and
Operating Systems Support for Digital Audio and Video (NOSSDAV’17). ACM, New
York, NY, USA, 67ś72. https://doi.org/10.1145/3083165.3083180

[12] M. Hosseini and V. Swaminathan. 2016. Adaptive 360 VR Video Streaming: Divide
and Conquer. In 2016 IEEE International Symposium on Multimedia (ISM). 107ś110.
https://doi.org/10.1109/ISM.2016.0028

[13] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui
Zhang. 2016. CFA: A Practical Prediction System for Video QoE Optimization. In
13th USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA, 137ś150. https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/jiang

[14] Xianshu Jin, Hwiyun Ju, Sungchol Cho, Boyeong Mun, Cheongbin Kim, and
Sunyoung Han. 2016. QoS routing design for adaptive streaming in Software
Defined Network. In 2016 International Symposium on Intelligent Signal Processing
and Communication Systems (ISPACS). 1ś6. https://doi.org/10.1109/ISPACS.2016.
7824694

[15] Ron Kohavi et al. 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Ijcai, Vol. 14. Stanford, CA, 1137ś1145.

[16] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural Adaptive
Video Streaming with Pensieve. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). ACM, New York,
NY, USA, 197ś210. https://doi.org/10.1145/3098822.3098843

[17] Sreerama K. Murthy. 1998. Automatic Construction of Decision Trees from Data:
A Multi-Disciplinary Survey. Data Min. Knowl. Discov. 2, 4 (Dec. 1998), 345ś389.
https://doi.org/10.1023/A:1009744630224

[18] H. Nam, K. H. Kim, and H. Schulzrinne. 2016. QoE matters more than QoS: Why
people stop watching cat videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1ś9. https://doi.org/10.
1109/INFOCOM.2016.7524426

[19] Omar A. Niamut, Emmanuel Thomas, Lucia D’Acunto, Cyril Concolato, Franck
Denoual, and Seong Yong Lim. 2016. MPEG DASH SRD: Spatial Relationship
Description. In Proceedings of the 7th International Conference on Multimedia
Systems (MMSys ’16). ACM, New York, NY, USA, Article 5, 8 pages. https://doi.
org/10.1145/2910017.2910606

[20] Pradrip Paudyal, Federica Battisti, and Marco Carli. [n. d.]. Impact of video
content and transmission impairments on quality of experience. Multimedia
Tools and Applications 2016 ([n. d.]). https://doi.org/10.1007/s11042-015-3214-0

[21] PERCEIVE. 2018. Performance Estimation for VR Videos. (2018). https://github.
com/rtcostaf/PERCEIVE Accessed 2-April-2018.

[22] Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Steven Latré, and Filip
De Turck. 2015. QoE-Driven Rate Adaptation Heuristic for Fair Adaptive Video
Streaming. ACM Trans. Multimedia Comput. Commun. Appl. 12, 2, Article 28 (Oct.
2015), 24 pages. https://doi.org/10.1145/2818361

[23] Stefano Petrangeli, Viswanathan Swaminathan, Mohammad Hosseini, and Filip
De Turck. 2017. AnHTTP/2-BasedAdaptive Streaming Framework for 360 Virtual
Reality Videos. In Proceedings of the 2017 ACM on Multimedia Conference (MM
’17). ACM, New York, NY, USA, 306ś314. https://doi.org/10.1145/3123266.3123453

[24] Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Optimizing 360
Video Delivery over Cellular Networks. In Proceedings of the 5th Workshop on All
Things Cellular: Operations, Applications and Challenges (ATC ’16). ACM, New
York, NY, USA, 1ś6. https://doi.org/10.1145/2980055.2980056

[25] R Core Team. 2017. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.
org/

[26] Muhammad Zubair Shafiq, Jeffrey Erman, Lusheng Ji, Alex X. Liu, Jeffrey Pang,
and Jia Wang. 2014. Understanding the Impact of Network Dynamics on Mobile
Video User Engagement. SIGMETRICS Perform. Eval. Rev. 42, 1 (June 2014),
367ś379. https://doi.org/10.1145/2637364.2591975

[27] Iraj Sodagar. 2011. The MPEG-DASH Standard for Multimedia Streaming Over
the Internet. IEEE Multimedia 18, 4 (2011), 62ś67.

[28] M. Torres Vega, C. Perra, and A. Liotta. 2018. Resilience of Video Streaming
Services to Network Impairments. IEEE Transactions on Broadcasting (2018).
https://doi.org/10.1109/TBC.2017.2781125

[29] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177ś2180.

[30] M. Viitanen, A. Koivula, A. Lemmetti, J. Vanne, and T. D. Hämäläinen. 2015.
Kvazaar HEVC encoder for efficient intra coding. In 2015 IEEE International
Symposium on Circuits and Systems (ISCAS). 1662ś1665. https://doi.org/10.1109/
ISCAS.2015.7168970

[31] Chenglei Wu, Zhihao Tan, Zhi Wang, and Shiqiang Yang. 2017. A Dataset for
Exploring User Behaviors in VR Spherical Video Streaming. In Proceedings of the
8th ACM on Multimedia Systems Conference (MMSys’17). ACM, New York, NY,
USA, 193ś198. https://doi.org/10.1145/3083187.3083210

[32] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. 2015. A Control-
Theoretic Approach for Dynamic Adaptive Video Streaming over HTTP. SIG-
COMM Comput. Commun. Rev. 45, 4 (Aug. 2015), 325ś338. https://doi.org/10.
1145/2829988.2787486

APPENDIX

This appendix provides a detailed description of the procedure to

be followed in order to allow reproducibility of the experiments

performed in this work. All the employed datasets and source code

are available at the PERCEIVE repository [21].

In Section 1.1 we present an overview of the experimental design

and its general setup. Next, the re-encoding procedure required to

generate tile-based VR-videos is explained in Section 1.2 Then, in

Section 1.3, the VR video player considered in this work is examined.

Subsequently, both the network and the VR video playout datasets

are thoroughly discussed in Section 1.4. Finally, in Section 1.5, we

give an overview of the R scripts responsible for performing the

machine learning task.

1.1 Experimental Procedure Overview and
Specifications

The experimental procedure is split into three steps, as explained in

Section 5.1 (Figure 4). First, the VR video player requests tile-based

videos, from a web server, while subjected to controlled network

conditions. The VR video player is responsible for measuring and

recording the VR video playout performance, while the network

conditions are enforced by Linux Traffic Control (TC) mechanism.

Second, the VR video playout performance indicators are given as

input to the machine learning process. At this stage, machine learn-

ing is responsible for characterizing how each network condition

impacts the video playout performance. Finally, in the third step, an

estimation of QoE is provided by giving the VR video performance

as input to the QoE model.

To perform the first step, we employ three dedicated virtual

machines deployed on the imec iLab.t Virtual Wall emulation plat-

form5. The first machine was used to run the VR video player, while

the second was used to host tile-based VR videos using a regular

Apache web server. Through traditional IP routing and Linux Traf-

fic Control (TC), the third machine was configured as a gateway

between the other two, acting as a network condition enforcement

point. Each virtual machine was configured with a quad-core Intel

5imec iLab.t: http://doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html

Predicting the Performance of VR Video Streaming in Mobile Networks MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

Xeon E3-1220 v3 CPU running at 3.10GHz, 15GB RAM, 16GB of

storage and running Linux Ubuntu 14.04 (3.13.0-33). The full list

of packages and its respective versions is available at PERCEIVE’s

repository [21] (Setup/packages.txt).

Steps two and three do not require any specific hardware or

software specification. Step two was performed using R (1.0.143)

[25], and for the third step we employed a simple electronic spread-

sheet to compute the QoE model (Section 4.2) over the VR video

playout performance indicators. After this overview, the remainder

of this section will cover practical details of the main elements of

the experiment.

1.2 Tile-based HAS VR-video Re-encoding

In order to generate tile-based HAS VR-videos, it was necessary

to re-encode the original VR videos from Wu et al.’ s dataset [31]

(namely łGoogle Spotlight-HELP" and łFreestyle Skiing"). Herein,

the re-encoding procedure is explained step-by-step.

After downloading the original VR-videos łGoogle Spotlight-

HELP"6 and łFreestyle Skiing"7, the raw videos must be first ex-

tracted using the following command of FFMPEG8:

$ f fmpeg − i i nV ideo . mkv −c : v rawvideo

outVideo . yuv

Next, the HEVC tile-based version of the videos is generated using

Kvazaar9. Kvazaar splits the videos based on the generated YUV

file, the desired tiling scheme, resolution and frames per second

(FPS), as shown in the following example. This command is to be

executed per video quality.

$ kvazaa r − i ou tVideo . yuv −− input − r e s

3840 x2160 −o outV ideo12x4 . hevc −− t i l e s

12 x4 −− s l i c e s t i l e s −−mv− c o n s t r a i n t

f r ame t i l ema r g i n −q 30 −−pe r i o d 30

−− input − f p s 30

Subsequently, each of the tiles of the VR-video is packed into an

mp4 container employing the MP4Box software 10.

$ MP4Box −add outV ideo12x4 . hevc : s p l i t _ t i l e s

− f p s 30 −new v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

Finally, based on the desired length of the HAS segment, the per-tile

per segment files of the VR-video are extracted. For example, the

following command defines one second for the segment length,

12x4 tiling scheme and three video resolutions (720p, 1080p and 4K).

This procedure also generates MPD files by using multiple quality

representations.

$ MP4Box −dash 1000 −rap − f r ag −rap

− p r o f i l e l i v e −out h a s _ t i l e d _ 1 2 x 4 . mpd

. . / SOURCE/ v i d e o _ t i l e d _ 7 2 0 _ 1 2 x 4 . mp4

. . / SOURCE/ v i d e o _ t i l e d _ 1 0 8 0 _ 1 2 x 4 . mp4

. . / SOURCE/ v i d e o _ t i l e d _ 4K_1 2 x 4 . mp4

6https://youtu.be/G-XZhKqQAHU
7https://youtu.be/0wC3x_bnnps
8FFMPEG: https://www.ffmpeg.org/
9Kvazaar: https://github.com/ultravideo/kvazaar
10MP4box: https://gpac.wp.imt.fr/mp4box/

1.3 VR Video Player

Both the source code and binary for the VR video player are avail-

able at the PERCEIVE repository [21] (VR-player/Source and VR-

player/bin respectively). The player provides support to variable

tiling scheme and can be adapted to several QoE zone schemes

(Section 3.1). Additionally, the player supports viewport traces (a

previously recorded log regarding the user’s head track) as input.

The player is written in C language and employs Curl library to

perform HTTP requests. The player also allows parameters to be

passed through command line arguments. It is particularly useful

when running large experiments, so that the player parameteriza-

tion can be done dynamically by an external script. The full set of

parameters is shown in Table 5. For example, the following player

call is used for requesting the first 60 segments of the video named

łvideo2ž, available at the IP ł10.0.0.251ž, using the viewport trace

stored in the file łuser1/video2.txtž, using 100 seconds timeout and

a 12x4 tiling scheme. In this case, the resultant VR-video playout

performance will be written in the file named łvideo2playoutž.

$ VR−p l a y e r 1 0 . 0 . 0 . 2 5 1 v ideo2 60

v i d e o 2p l a you t u s e r 1 / v i deo2 . t x t 100 4 12

Table 4: VR-video player command line arguments.

Sequence Description

1 IP address of the video server
2 Video filename
3 Number of segments to download
4 Output filename (to write playout performance results)
5 Viewport trace filename (head track logs)
6 Session timeout (max number of seconds)
7 Number of vertical tiles (tiling scheme)
8 Number of horizontal tiles (tiling scheme)

1.4 Video Playout and Network Datasets

The file łSample.csv" (directory łNetwork dataset" [21]) provides

the 48 network conditions considered in our experiments. The

conditions were extracted from [29] and adapted according the

procedure described in Section 5.2. The range for each input param-

eter is summarized in Table 1. The configuration ID is the leftmost

field in the file łSample.csv", followed by the fields throughput TCP

(Mb/s), delay (msec) and packet loss rate (%). After parsed, these

values are given as input to the Linux TC, which act as a network

condition enforcement point.

In turn, the file łplayoutPerformance.txt" (directory łPlayout

performance dataset" [21]) provides the resultant output of the

first step of the experimental procedure (described in Section 1.1).

Furthermore, this is the same file given as input to the machine

learning process (step two). Along with the network dataset, Table

5 summarizes the input parameters for generating the playout

performance dataset.

Table 6 shows the set of fields of the resultant VR-video playout

performance. Fields 1 - 5 are related to the video input parameters,

listed in Table 5. Fields 6 - 8 are related to the network conditions.

Fields 9 - 22 corresponds to the VR-video playout performance

measured by the VR-video player. Finally, fields 23 - 25 are calcu-

lated as the number of per-zone tiles times the average bitrate for

each video resolution. In the PERCEIVE repository, we provide a

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands R. I. T. da Costa Filho et al.

Table 5: PERCEIVE video input parameters.

Parameter Value/Range Details

VR video Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Head track traces Google Spotlight-HELP and Freestyle Skiing V1 and V2 (from [31])
Video format MP4 - HEVC tile-based and HAS Using MP4Box
Video encoder Kvazaar Kvazaar encoder [30]
HAS 720p (1.8Mb/s), 1080p (2.7Mb/s) and 4K (6Mb/s) Kvazaar encoder [30]
Segment size 1 second From [11]
Tiling scheme 8x4 and 12x4 From [24]
Considered viewport One central tile and eight border tiles Section 3.1

bash script ładdQuality.sh" (directory Scripts) which can be used

to perform this computation.

Table 6: Fields sequence of the file łplayoutPerformance.txt"

(Field 1 is the leftmost value in the file).

Field Description Type/unit

1 Video ID string
2 User ID string
3 Tile format horizontal X vertical
4 Network trace ID string
5 Experiment round integer
6 TCP throughput Mb/s
7 Delay msec
8 Packet loss %
9 Number of tiles 720p for Zone 1 integer
10 Number of tiles 1080p for Zone 1 integer
11 Number of tiles 4K for Zone 1 integer
12 Number of tiles 720p for Zone 2 integer
13 Number of tiles 1080p for Zone 2 integer
14 Number of tiles 4K for Zone 2 integer
15 Number of tiles 720p for Zone 3 integer
16 Number of tiles 1080p for Zone 3 integer
17 Number of tiles 4K for Zone 3 integer
18 Number of quality switches for Zone 1 integer
19 Number of quality switches for Zone 2 integer
20 Number of quality switches for Zone 3 integer
21 Stall time seconds
22 Startup delay seconds
23 Average bitrate for Zone 1 Mb/s
24 Average bitrate for Zone 2 Mb/s
25 Average bitrate for Zone 3 Mb/s

1.5 Machine Learning

The directory łR Scripts" [21] provides all the source code used to

generate the regression decision trees shown in Section 5.3. Each

of the eight decision trees has its own source code (R script). In

addition to the R tool [25], we employed the following packages:

stargazer 11, gdata 12, rpart 13, tree 14 and rpart.plot 15. Finally, it is

worth mentioning that the trees shown in this work were obtained

through their optimal prune. Which means that during the prune

stage, we selected the complexity parameter (CP) associated with

the minimum cross-validation error (xerror).

11https://cran.r-project.org/web/packages/stargazer/index.html
12https://cran.r-project.org/web/packages/gdata/index.html
13https://cran.r-project.org/web/packages/rpart/index.html
14https://cran.r-project.org/web/packages/tree/index.html
15https://cran.r-project.org/web/packages/rpart.plot/index.html

