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Pervious concrete is an environmentally friendly material that improves water permeability, skid resistance, and sound absorption
characteristics. Permeability is the most important functional performance for the pervious concrete while limited studies have
been conducted to predict permeability based on mix-design parameters. .is study proposed a method to combine the beetle
antennae search (BAS) and random forest (RF) algorithm to predict the permeability of pervious concrete. Based on the 36
samples designed in the laboratory and 4 key influencing variables, the permeability of pervious concrete can be obtained by
varying mix-design parameters by RF. BAS algorithmwas used to tune the hyperparameters of RF, which were then verified by the
so-called 10-fold cross-validation. Furthermore, the model to combine the BAS and RF was validated by the correlation pa-
rameters. .e results showed that the hyperparameters of RF can be tuned by the BAS efficiently; the BAS can combine the
conventional RF algorithm to construct the evolved model to predict the permeability of pervious concrete; the cement/aggregate
ratio was the most significant variable to determine the permeability, followed by the coarse aggregate proportions.

1. Introduction

Pervious concrete is similar to conventional concrete but
designed without fine aggregates (i.e., sand) and has a po-
rosity andmedian pore diameter in the range of 0.15–0.3 and
2–4mm, respectively [1–4]. Pervious concrete is an envi-
ronmentally friendly material that improves skid resistance
and sound absorption characteristics and reduces the “heat
island effect” [5–10]. Further, pervious concrete displays
better water permeability characteristics due to connected
pore structure through the fluid [2, 11].

Permeability is the most important functional perfor-
mance for the pervious concrete, and it has been confirmed
to be closely related to the pore structure, which determines
the permeation rate per unit area. .e permeability is tra-
ditionally characterized by the so-called permeability

coefficient, and its value is typically between 0.1 and 2 cm/s
[12, 13]. According to whether it is directly related to
permeability performance of pervious concrete, pore-
structure parameters can be divided into two categories:
nonconnected related parameters and connected related
parameters. Nonconnected related parameters include total
porosity, pore diameter, and distribution, and connected
related parameters include connected porosity and pore
tortuosity [14–16]. .e total porosity of pervious concrete
can be defined as the ratio of the voids volume to the
specimen volume, which mainly depends on the ratio of
mortar to aggregate and the compactness degree of the
concrete, usually between 15% and 25% [17]. Studies have
shown that the total porosity of pervious concrete decreases
with the increase of the ratio of mortar to aggregate [18].
Besides, as the pressure load or vibration load increases, the
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skeleton of pervious concrete tends to be dense, and the total
porosity gradually decreases [19]. Connected porosity is also
called effective porosity, that is, pores that can effectively
pass air and liquid. Cosic et al. used X-ray tomography
technology to study the effects of aggregate type and size on
the pore structure and found that the interconnected po-
rosity is a function of aggregate size, accounting for about
50% to 70% of the total porosity [20]. Also, another study
confirmed that the connected porosity decreases with the
increase of the amount of mortar [13]. Kuang et al. defined
the ratio of the effective length of the pore to the total length
of the pervious concrete specimen as the pore tortuosity,
which can more intuitively reflect the characteristics of the
pore structure [21]. Zhong et al. defined the pore tortuosity
as a function of the average pore diameter and the aggregate
size and believed that the fluidity of the mortar and the
aggregate size directly affects the pore tortuosity. .e pore
tortuosity increases with the decrease of aggregate size and
the increase of mortar fluidity [22]. It can be confirmed from
the previous research that the parameters affecting the
permeability of pervious concrete have been studied, in-
cluding aggregate size and mortar content [14, 17, 19].
However, from the author’s knowledge, few studies can
predict the water permeability based on these variable pa-
rameters. Although some studies can propose models for
predicting permeability from a microscopic perspective
(pore structure, the effective length of pores, etc.) [21, 22],
these models often require the acquisition of concrete cross-
section information firstly (e.g., CTscan), and it is difficult to
predict from the perspective of mixture design. .erefore,
systematical investigations are required to evaluate the
permeability of pervious concrete in a way of more eco-
nomic and efficient technology as per the permeability
database including varying parameters.

Machine learning methods are gradually applied to the
evaluation and prediction of the mechanical performance of
cement materials [22–32]. .e punching shear capacity of
steel fiber reinforced concrete slabs was predicted by using
the sequential piecewise multiple linear regression and ar-
tificial neural network [33]. Jamal et al evaluated the pos-
sibility to predict the strength of recycled aggregate concrete
using machine learning methods, multiple linear regression,
and adaptive neurofuzzy inference system [34]. .e same
method was also used by Khademi et al. in a follow-up study
for the prediction of compressive strength after 28 days [35].
In the above-mentioned methods, the agreement between
the experimental results and the predicted results indicates
the feasibility of the machine learning algorithm for strength
prediction of cementmaterials. However, within the scope of
the author’s knowledge, the limited literature can provide
accurate and widely used machine learning algorithms
specifically for the functional performance (permeability,
workability, etc.) of cement materials.

Furthermore, the above machine learning methods have
been used for the specific predictions in cement-based
materials, but limitations still existed in these studies, such as
uncertain structure, time-consuming, and low efficiency.
Consequently, more efficient and simple machine learning
models need to be proposed and used to predict the

permeability of pervious concrete. In recent years, due to the
good performance of the random forest (RF) method in
nonlinear regression and classification, it has been used to
predict the mechanical and functional properties of con-
crete. Specifically, the coefficients of thermal expansion and
other properties of concrete were confirmed to be accurately
predicted using the RF method [36]. .e same method was
also employed to predict and evaluate the compressive
strength of high-performance concrete. However, no cor-
responding studies were reported to use RF to predict the
permeability of pervious concrete so far. Besides, as far as the
RF model employed in the previous studies, the hyper-
parameters were still required to be optimized to arrive at
their optimized predictive ability [37].

2. Research Objective and Overview

.epresent study aims to propose a robust machine learning
technique to be used as a tool to predict the permeability of
pervious concrete. An efficient global optimization algo-
rithm (called the beetle antennae search, BAS) proposed by
Jiang et al. was adopted in this study to obtain the optimized
parameters of RF [37]. In this way, the random forest (RF)
and beetle antennae search (BAS) algorithms were combined
to build a robust machine learning technique, named as BRF
method. To plant the database applied to the proposed BRF
method, varying mixes of pervious concrete were designed
considering four parameters (aggregate proportion %:
9.5∼13.2mm; aggregate proportion: 4.75∼9.5mm; aggregate
proportion %: 2.36∼4.75mm; cement-aggregate ratio) that
have significant effects on the permeability coefficient
according to the investigation based on known literature.
Using the obtained database of the permeability of the
pervious concrete, the training subset and the testing subset
were developed for machine learning, and finally, the pre-
diction of permeability can be realized. .e above research
process can be overviewed in Figure 1.

3. Methodology

3.1. BRF Model. BRF model combines BAS and RF, where
RF is used to determine the nonlinear relationship of the
dataset, and BAS is applied to adjust the hyperparameters of
RF..e detailed introduction for the BRFmodel is described
as follows.

3.1.1. Random Forest (RF) Model. .e RF model is a
modeling method that combines multiple independent
classification trees. .e algorithm can improve the predic-
tion accuracy on the premise that the calculation is not
significantly increased. .e principle framework of the RF
model is presented in Figure 2.

RF is a classifying method that uses a collection of
classification trees, and every classification tree is con-
structed by using guided samples of data. For the tree
construction, variables are randomly selected in each par-
tition as the candidate variable set.
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3.1.2. Beetle Antennae Search (BAS). .e design of the BAS
algorithm is inspired by the behavior of the beetle when
looking for a mate. Similar to intelligent optimization
algorithms such as genetic algorithm, particle swarm
algorithm, and simulated annealing, BAS does not need to
know the specific form of the function and does not need
gradient information to achieve efficient optimization.
Compared with the particle swarm algorithm, BAS only
requires one individual, that is, a long beetle, which
greatly reduces the amount of calculation. It simulates the
behavior of beetles, which can use the two antennae to
randomly explore nearby areas and transform them into a
higher concentration of odor. .e performance of the BAS
algorithm has been evaluated in various applications
[39, 40]. Figure 3 gives the work chart of the BAS
algorithm.

4. Experimental Testing and Model Validation

4.1. Experimental Testing. .e purpose of the laboratory
testing is to evaluate the influence of different variables in the
design of pervious concrete on the permeability coefficient
and then provide enough data to be assembled as the
training set and testing set. .e raw materials, mixture
design, sample preparation, and permeability test methods
used in the laboratory testing are introduced as follows.

4.1.1. Raw Materials. Cement and aggregate were used as
the rawmaterials to prepare the pervious concrete specimen.
.e ordinary Portland cement grade 42.5 was selected as the
cemented material. Table 1 gives the physical properties of
the cement.

Experimental testing Machine learning

Training

Mix design

• Agg. % (9.5~13.2 mm)
• Agg. % (4.75-9.50 mm)
• Agg. % (2.36-4.75 mm)
• Cement agg. ratio

RF

BAS Testing

Permeability
prediction

BRF

Figure 1: Research overview.

Tree 1

Tree 2

Input

Tree ...

Tree n

Prediction 1

Prediction 2

Average all predictions Random forest predictions

Prediction ...

Prediction n

Figure 2: Principle of the RF model.
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According to the standard CJJ/T135-200, four different
sizes of limestone gravel aggregates (G1, G2, and G3) were
adopted in the present study. .e physical indexes are given
in Table 2. To ensure that the performance of the prepared
pervious concretes to meet the requirements, the aggregate
used should be placed in a constant temperature oven in
advance to keep it clean and dry. A liquid modifier for the
pervious concrete provided by a local supplier in Jiangsu
Province was used.

4.1.2. Mix Design and Sample Preparation. To evaluate the
effects of different variables on the permeability coefficient,
the designed mix was divided into 69 groups according to
different aggregate proportions and cement-aggregate ratio
(C/A), as shown in Table 3.

Generally, the reasonable water-cement ratio (W/C) of
pervious concrete ranges from 0.29 to 0.33, and 0.3 was
determined in the present study for the mixing [7]. .ree
possible C/A values (0.22, 0.24, and 0.26) were chosen to
determine their effects on water permeability, based on the
results of previous studies conducted [18, 39, 40]. After
stirring and weighing, the mixture of pervious concrete was
poured into a cylindrical mold with a diameter of 100mm
and a thickness of 50mm to obtain samples for permeability
testing. Before demolding, cover the sample and mold with
damp geotextile in the laboratory at a temperature of 20°C
for 24 h. .en, the samples were placed in a standard curing
roomwith a temperature of 20°C and humidity of 95% for 28

days. It should be noted that three replicate samples were
prepared for each mixture to reduce the deviation.

4.1.3. Experimental Methods. As far as the permeability
testing methods concerned, the falling-head and constant-
head method were typically used in the previous studies
[41, 42]. For materials with poor permeability (perme-
ability coefficient < 10−3 cm/s) such as cohesive soil and
fine-grained soil, permeability is typically measured by the
falling-head method since the flow is too small to be
measured. However, for pervious concrete, its perme-
ability coefficient is relatively high (>0.35 cm/s) and the
constant-head method is more suitable to measure the
permeability coefficient. .erefore, the constant-head
method was selected for the determination of the per-
meability coefficient in the study. .e permeability co-
efficient was determined based on Darcy’s law, where the
amount of water passing through the concrete per unit
time is proportional to the surface area and inversely
proportional to the length of the permeable path, as given
in equation (1):

kt �
Q ·D

A ·H · Δt,
(1)

where kt (mm/s) represents the coefficient of permeability at
the given temperature t (°C),Q (mm3) is the amount of water
flowing through concrete in Δt (s) time; D (mm) and A
(mm2) are the thickness and area of the pervious concrete

Initialize the position of beetle Fitting function of beetle

Update the best position

Current fitting better
than the best position?

Unchanged

Set beetle direction and
calculate fitness of antennae

NoNo

Stopping criterion?
Yes

Best solution Fitness of le� antennae
> fitness of right

antennae?

Yes

A step to right

A step to right

No

Yes

Figure 3: Work chart of the BAS algorithm.

Table 1: Physical properties of the cement.

Coagulation
time (min)

Flexural
strength
(MPa)

Compressive
strength
(MPa)

Initial
solidification

Finial
solidification

3d 28d 3d 28d

165 330 5.1 7.1 20.9 44.3

Table 2: Physical properties of coarse aggregate.

Aggregates Size (mm)
Apparent density

(kg/m3)
Bulk density (kg/

m3)

G1 2.36–4.75 2787 1406
G2 4.75–9.50 2844 1513
G3 9.50–13.2 2840 1537
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Table 3: Mix proportions.

Mixes
Aggregate proportion

Cement-aggregate ratio (C/A) Water-cement ratio
G1 G2 G3

M1 1 0 0 0.22

0.3

M2 1 0 0 0.24
M3 1 0 0 0.26
M4 0 1 0 0.22
M5 0 1 0 0.24
M6 0 1 0 0.26
M7 0 0 1 0.22
M8 0 0 1 0.24
M9 0 0 1 0.26
M10 0.1 0.9 0 0.22
M11 0.1 0.9 0 0.24
M12 0.1 0.9 0 0.26
M13 0.2 0.8 0 0.22
M14 0.2 0.8 0 0.24
M15 0.2 0.8 0 0.26
M16 0 0.9 0.1 0.22
M17 0 0.9 0.1 0.24
M18 0 0.9 0.1 0.26
M19 0 0.8 0.2 0.22
M20 0 0.8 0.2 0.24
M21 0 0.8 0.2 0.26
M22 0.1 0.8 0.1 0.22
M23 0.1 0.8 0.1 0.24
M24 0.1 0.8 0.1 0.26
M25 0.1 0.7 0.2 0.22
M26 0.1 0.7 0.2 0.24
M27 0.1 0.7 0.2 0.26
M28 0.1 0.6 0.3 0.22
M29 0.1 0.6 0.3 0.24
M30 0.1 0.6 0.3 0.26
M31 0.1 0.5 0.4 0.22
M32 0.1 0.5 0.4 0.24
M33 0.1 0.5 0.4 0.26
M34 0.1 0.4 0.5 0.22
M35 0.1 0.4 0.5 0.24
M36 0.1 0.4 0.5 0.26
M37 0.15 0.7 0.15 0.22
M38 0.15 0.7 0.15 0.24
M39 0.15 0.7 0.15 0.26
M40 0.15 0.6 0.25 0.22
M41 0.15 0.6 0.25 0.24
M42 0.15 0.6 0.25 0.26
M43 0.15 0.5 0.35 0.22
M44 0.15 0.5 0.35 0.24
M45 0.15 0.5 0.35 0.26
M46 0.15 0.4 0.45 0.22
M47 0.15 0.4 0.45 0.24
M48 0.15 0.4 0.45 0.26
M49 0.2 0.7 0.1 0.22
M50 0.2 0.7 0.1 0.24
M51 0.2 0.7 0.1 0.26
M52 0.2 0.6 0.2 0.22
M53 0.2 0.6 0.2 0.24
M54 0.2 0.6 0.2 0.26
M55 0.2 0.5 0.3 0.22
M56 0.2 0.5 0.3 0.24
M57 0.2 0.5 0.3 0.26
M58 0.2 0.4 0.4 0.22
M59 0.2 0.4 0.4 0.24
M60 0.2 0.4 0.4 0.26
M61 0.3 0.6 0.1 0.22
M62 0.3 0.6 0.1 0.24
M63 0.3 0.6 0.1 0.26
M64 0.3 0.5 0.2 0.22
M65 0.3 0.5 0.2 0.24
M66 0.3 0.5 0.2 0.26
M67 0.3 0.4 0.3 0.22
M68 0.3 0.4 0.3 0.24
M69 0.3 0.4 0.3 0.26
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specimen, respectively; H (mm) represents the hydraulic
head difference.

.e equipment used in the permeability tests was self-
made in the laboratory, and the schematic diagram is
presented in Figure 4. During the test, water was injected
above the steel mold, then flooded the pervious concrete
specimen below, and entered the tank, while the excess water
overflowed from the outlet pipe. When the flow was too
large, water can flow out through the vent pipe above the
steel mold. It should be noted that the water level inside the
steel mold should be kept constant and then the head dif-
ference can be recorded to calculate the permeability co-
efficient of the specimen.

4.2. Model Validation

4.2.1. Methods for Model Validation. In the present study,
the evolved random forest model was trained for the 70%
dataset while the remaining 30% was for the testing dataset.
It should be noted that all datasets should be split randomly
during the training and validating process. Besides, two
parameters (correlation, R; root-mean-square error, ERMS)
that were widely used in the previous studies were selected to
assess the predictive ability of the dataset. .e two pa-
rameters can be given as follows:

R �
∑Ni�1 y∗i − y∗( ) yi − y( )�������������

∑Ni�1 y∗i − y
∗( )2

√
·

������������
∑Ni�1 yi − y( )2
√ ,

ERMS �

�����
1

N
∑
N

i�1

√√
y∗i − yi( )2

, (2)

where N represents the collected numbers of the dataset; yi
and y∗i represent actual values and predicted values, re-
spectively; y and y∗ represent the mean of the actual values
and the predicted values. In addition, in order to minimize
the deviation, the so-called 10-fold cross-validation
method was adopted in the present study [43]. Under such
a validation system, the samples as training dataset are
divided into 10 subsets, one of these 10 subsets is applied to
verify the predicted results of the BRF method, and the
remaining 9 subsets are applied for training. Such a process
should be repeated 10 times as described above.

4.2.2. Procedures of Hyperparameter Tuning. In order to
obtain the optimized RF structure, hyperparameter tuning
should be conducted. In the present study, the BAS al-
gorithm was applied to tune two important parameters (the
number of the trees, named as tree_num; the minimum
number of samples required at a leaf node in RF, named as
min_sample_leaf ). .rough the 10-fold cross-validation
method introduced above, the 9 subsets as the training set
were applied to search for the idealized hyperparameters of
RF..is process should be performed 50 times by BAS [37].
For the validation dataset, the smallest ERMS was selected
after 50 iterations and in this fold, it can represent the

optimized RF model. Consequently, the optimized RF
model and the corresponding optimized hyperparameters
(tree_num and min_sample_leaf ) can be selected after 10
times. Due to the possibility of overfitting, the performance
of the RF model should be verified by evaluating the testing
set. Figure 5 summarizes the flowchart of the hyper-
parameters for RF tuning by BAS during training and
testing.

4.2.3. Dataset Description. .e dataset of pervious concrete
from the experimental testing is applied to establish and
validate the proposed BRF model for permeability predic-
tion. A total of 36 mixes were used for the verification and
prediction of the proposedmodel. It should be noted that the
test results of the water permeability of each mixture are
derived from the average of three parallel samples. Four key
influencing variables (aggregate proportion of G1 and G1%;
the aggregate proportion of G2 and G2%; the aggregate
proportion of G3 and G3%; cement-aggregate ratio, C/A)
were determined in the present study, as given in Table 3.
.ese four variables have been confirmed in previous studies
to have significant effects on the water permeability of
pervious concrete and its clogging behavior [44–46]. Table 3
gives the influencing variables and their values in the design
of pervious concrete, which were used to construct the
dataset.

.emain goal is to predict the permeability coefficient of
pervious concrete, which is determined by the mix-design
parameters. .e relative importance of the mix-design pa-
rameters used for the input variables needs further analysis.
It should be noted that the collected dataset should be
normalized to [0, 1] in order to improve the efficiency of the
proposed model. According to the proportion of the dataset,
25 mixes (70%) were randomly selected as the training
dataset, and the other 11 mixes (30%) were used as the
testing dataset (Figure 5).

5. Results and Discussion

5.1. Results ofHyperparameterTuning. In order to obtain the
optimized RF structure, the hyperparameters were adjusted
on the testing set based on ERMS obtained from the 10-fold

1

2

3

4

5

6

7

H

Figure 4: Schematic diagram of the permeable test device.∗Notes:
1: steel mold; 2: vent pipe; 3: water tank; 4: concrete specimen; 5:
pad; 6: outlet pipe; 7: measuring cylinder.
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cross-validation. Figure 6 gives the relationship between
ERMS and iterations during BAS tuning, which was per-
formed 50 times in the present study.

It can be seen that ERMS was greatly reduced with the
increase of iteration, indicating that BAS can effectively
tune the RF structure. In addition, ERMS converged and
reached the minimum value after 25 iterations, indicating
that the optimized RF model was obtained in this fold.
During the 10-fold cross-validation process, the opti-
mized RF model in the whole calculation was determined
after 10-fold and the corresponding optimized hyper-
parameters can be obtained. It should be noted that the
prediction results of the RF should be verified through the
way of evaluating the testing set. Table 4 gives the final
hyperparameters of RF.

5.2. Assessing the Established Model. Figure 7 gives the
comparison of the predicted permeability of the pervious
concrete by the proposedmethod and the actual one in datasets.

Good agreement can be seen between the predicted
permeability of pervious concrete and the actual

permeability, indicating that the proposed method can well
establish the nonlinear relationship between the perme-
ability of pervious concrete and the input variables.

Furthermore, the statistical parameters of these
comparisons for training and testing datasets were ob-
tained, as shown in Table 5. .e low ERMS values of 0.0059
and 0.0131 can be observed for the training and testing
dataset, respectively. Also, the high R values for the
training set and test set were 0.9258 and 0.9208, re-
spectively. All the above results indicated that the pro-
posed RF model has no overfitting

5.3. Variable Importance of Pervious Concrete. Figure 8 gives
the relative importance of the 4 design parameters, which
were used as the input variables in the machine learning
process.

Obviously, C/A was the most important design variable
to determine the permeability of pervious concrete, since
the highest importance score of 1.7762 can be observed.
.e mechanism of the effect of C/A on water permeability
is that as C/A increases, the compaction resistance pro-
vided by the reduced aggregates decreases, resulting in a
decrease in the volume of intercrystalline voids. .is leads
to lower porosity and permeability. .e results of this study
indicated that the effect mechanism of C/A on permeability
exceeded the role of the aggregate proportion in deter-
mining permeability. Contemporaneously, the results were
consistent with the findings noted by Zhang et al.,
Chandrappa et al., and Wang et al. [18, 47, 48]. As the
largest aggregate used in the testing, the proportion of G3
(9.50mm to 13.2mm) also played an important role in
determining the permeability of pervious concrete. .is
result was in line with the permeability properties of
pervious concrete developed in the previous studies to
understand the effects of aggregate sizes [44, 49, 50]. Also, it
can be observed that the importance score of the G1
(2.36mm–4.75mm) aggregate is 0.8440, which ranks third
among all variables by virtue of this score, indicating that it
was more sensitive than the G2 (4.75mm–9.50mm) ag-
gregate in determining the permeability of pervious

Dataset

Training results

Testing results

RF

BAS
R and ERMS

R and ERMS

Training set (70%) 10-fold cross-validation

Testing set (30%)

Figure 5: Flowchart of the hyperparameters for RF tuning by BAS during training and testing.
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Figure 6: Relationship between the iteration and ERMS.

Table 4: Final hyperparameters of RF.

Parameters Initial Results Empirical scope

tree_num 6 9 [1, 10]
min_sample_leaf 6 1 [1, 10]
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concrete..erefore, in the future tests of pervious concrete,
more C/A and G3 aggregate proportion combinations
should be selected to optimize the target permeability. .e
results obtained can effectively guide the design of pervious
concrete and select appropriate parameters to optimize C/
A and aggregate gradation.
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Figure 7: Comparison of permeability. (a) Training dataset. (b) Testing dataset.

Table 5: Statistical parameters of actual and predicted permeability
in the datasets.

Datasets ERMS R

Training dataset 0.0059 0.9258
Testing dataset 0.0131 0.9208
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6. Conclusions

.e present study aims to propose a method to combine the
beetle antennae search (BAS) and random forest (RF) al-
gorithm to predict the permeability of pervious concrete.
Based on the 36 samples designed in the laboratory and 4 key
influencing variables, the permeability of pervious concrete
can be determined by the independent variables under the
RF model. .e BAS algorithm was used to tune the
hyperparameters of RF and the results were verified by 10-
fold cross-validation..e prediction results of the optimized
BRF were evaluated through R and ERMS. .e importance of
the variables that determine permeability is also revealed and
discussed. .e following are the conclusions drawn from the
above research process:

(i) .e BAS algorithm is effective for adjusting the
hyperparameters of RF and can be applied in
evolved RF to construct predictive models; it has
higher reliability and effectiveness than random
hyperparameter selection.

(ii) .e proposed RF model can accurately predict the
permeability of pervious concrete, which can guide
the functional designing for pervious concrete; for
the testing set, R and ERMS were 0.9223 and 0.0123,
respectively, indicating that the proposed RF model
showed good predictive ability on the collected
dataset.

(iii) .e C/A (cement/aggregate ratio) can be considered
as the most significant variable for determining the
permeability of pervious concrete, followed by the
coarse aggregate proportions. Among them, the
proportion of G3 andG1 aggregates is considered to
be the most significant variable affecting the per-
meability for pervious concrete. However, the
proportion of G2 aggregate has an almost negligible
influence on the permeability. .e results obtained
can effectively guide the design of pervious concrete
and select appropriate parameters to optimize C/A
and aggregate gradation.

It should be noted that the results obtained in this study
were limited by the number of samples. If more datasets and

more variables are considered, the predicted permeability
closer to the actual ones can be obtained. In the future, more
samples with different combinations will be designed,
mixed, and tested to obtain larger data sets for analysis
through machine learning methods to more widely and
effectively apply pervious concrete in the field of green
construction.
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