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INTRODUCTION 

Many discrete-behavior systems can be analyzed in a unified framework if combined into a class of so-called 

algorithmic processes (AP). Typical AP include transformation of information in computer systems, performance of scientific 

research and design projects, technological production processes, instruction processes, and so on. Each of these processes 

involves a sequence of operations (activities, jobs) unfolding in time whose execution leads to'the achievement of a goal, i.e., 

produces an end product, be it information, documentation, knowledge, etc. 
When designing a specific AP, we need to obtain quantitative estimates of the following reliability measures: 

PAP -- the probability of correct AP execution; this may be interpreted as the reliability of output information, 

defect-free quality of the output products, reliability of system operation; 
tAp -- the time or other resources required to execute the AP; this measure is used as an estimate of system 

productivity or timely goal achievement. 

The measures PAP and tap axe interrelated because the AP incorporates checking and support procedures that increase 

the probability of correct execution of the process but require additional resources. 

Models to estimate PAP and tap are widely used in reliability theory and analysis of man-machine systems [1-3]. In 

these studies, the modeling is based on the theory of semi-Markov processes [4] whose states correspond to the operators and 

logical conditions of the given algorithm. 
Successful application of AP reliability theory (as also of classical reliability theory [5]) envisages construction of 

databases with reliability characteristics of the basic elementary operations. However, new operations do not have ex-post 
statistical estimates of outcomes under real-life conditions. Complex-system designers are therefore often forced to make 

decisions on the basis of expert judgments, i.e., natural-language statements of the form "the probability of correct execution 

of the operation is between 0.9-0.99," or "if the equipment is properly maintained and is operated under appropriate 

conditions, then the reliability is high," or "if the human operator is tired, then the number of errors during the execution of 

the operation is approximately doubled." 

The probabilistic reliability theory [1-3] is incapable of utilizing input data expressed in the form of natural-language 
expert judgments. It is therefore relevant to try and develop a so-called "fuzzy reliability theory" [6], which in addition to the 

probabilistic apparatus also uses the tools of fuzzy set theory [7] that can manipulate linguistic expert information. 

In this article we propose an approach that generalizes the probabilistic AP reliability models to the case of fuzzy 

input data and allows for the dependence of data on influential factors through fuzzy logical inference. 

MODELING LANGUAGE FOR ALGORITHMIC PROCESSES 

For formal description of AP we use the language of Glushkov's algorithmic algebras [8]. In this language, the 

algorithm operators (statements) are usually denoted by Latin capital letters (A, B, C, ...) and logical conditions are denoted 

by Greek lower-case letters (c~,/3, 3, . . . .  ), indexed or not. By the regularization theorem [8], every algorithm is representable 

as a superposition of the following operator structures: the linear structure B = A1A2; c~-disjunction C = (A 1 v A2); or- 
iteration D = {A}. of 
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Example 1. The algorithm describing the operation of a ticketing information system can be represented by the 

formula 

Y - {A t } { {A 2 ( e V/13) A 4 } A 5 & } A, 7, (1) 
r I r 2 W 3 a )  4 

where A 1 stands for the submission of a request by a customer and its acceptance by the human operator; to1 is validity 

verification of the incoming request; A 2 is the keyboarding of the request; 602 is a visual check of the keyboarded request; 

E is the recording of the visual check result; A 3 is error correction; A 4 is submission of the request to the central computer; 

to3 is program matching of the request to an established template; A 5 is central computer's decision; A 6 is display of the 

central computer's decision on the screen; to4 is the human operator checking the computer decision; A 7 is printing the ticket 

and delivering it to the customer. 
Each operator A in formula (1) can be represented by a more detailed lower-level algorithm. 

PROBABILISTIC ALGORrI 'I t tM RELIABILITY MODELS 

We assume that the following events may occur when an operator A and a logical condition to are executed: 

A 1 (A ~ - correct (incorrecO execution of operator A; 

1 (600) condition to is a p r i o r i  t rue  (false); to 
11 to (00 1~ - an a p r i o r i  t rue  condition to is recognized as true (false) during a check; 

00 ~176 (60 ~ - an a p r i o r i  false condition 00 is recognized as false (true) during a check. 

The above-listed events are assumed pairwise mutually exclusive. 

The probability (Prob) of these events is denoted by 

pA l (pA 0) = Prob A I (Prob A , ;  p,,)(~,) = Prob o.)l (Prob co o); 

k l l ( k  10 )  = Probw 11 (Prob ~ 1 ~ --a)k00(k01)---a, = Pr~ ~ ~176 prOb m 01)" 

Mutual exclusivity of the events leads to the relationships 

. ,  + d = , . + - : = k . ,  + , $ 0  = k oo + : ,  = , .  

Note that kta 10 and kta 01 are. the probabilities of type I and type II errors when checking condition to. 

The time (or other resources) required to execute the operator A and check the logical condition to are denoted by t A 

and t,~, respectively. 
Given the logic of error-free execution of operator structures, we obtain the following rules for estimating algorithm 

execution reliability- 

(2) 

f I .ll I I 

c = ( ,q v .,.2).. I pc = p" *" + k p  
. . 

(3) 

." k" 

o =  {A} 
a, tA + ta) 

, _  + o  

(4) 
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The application of these rules replaces the original algorithm by a single operator with equivalent cost characteristics 

and equivalent probability of correct execution. 

REPRESENTATION OF UNCERTAIN INPUT DATA BY FUZZY SETS 

Let q be an uncertain parameter that corresponds to the probability of error-free execution or the cost of executing 

the operator A or logical condition oJ. 
The uncertain parameter q is treated as a linguistic variable [7] whose levels are formalized by fuzzy sets with convex 

membership functions defined on the universal set t / =  [q, q I ,  where q ,  q are the smallest and greatest allowed values of 

the parameter q. In this case, the uncertain parameter q is identified with the fuzzy number ~. 

Defimtion 1. The/-form of the uncertain parameter q is the triple 

~" = (q, ~, ,9, (5) 

where I is the linguistic estimate of the parameter q in the range U = iq, ~ l, selected from the term set L = {l z, 12 . . . . .  Ira} 

such that 

ti = f Pt,(q) I q, 
u 

where/~z/(q) is the membership function of the value, q E [q, ~ i in the term ~ E L, j = 1, m. 

Definition 2. The tx-form of the uncertain parameter q is the union of the pairs 

~- U (qa, qa), (6) 
a ~ [ O , l ]  

where qa~a)  is the smallest (greates0 allowed value of q at the tx-level of the membership function, i.e., 

~, (q,,) =p  (~,,) = a .  ~, (q) =~, ~ =o. 

Assertion 1. If the membership functions #~.(q) of the terms 11, l 2 . . . . .  1 m are given, then the/-form (5) transforms 

to the tx-form (6). 
This assertion follows from the definition of the cx-level representation of fuzzy sets [7]. 

Example 2. Assume that the linguistic estimate is selected from the term set L = {low (L), below average (bA), 

average (A), above average (aA), high (H)} with piecewise-linear membership functions from [6] (Fig. 1). Then we have the 

following transformation rules: 

<_~,V,--,ow >- (_,.~o ~ (_~,_~+ ~)o., o ~,_~),, 

<_q, ~, ~,ow ~vor~o >- (_~, ~o U C~'-~ + ~)o.," (-~ + "'-~ § "),' 

<-~'~' ~'~176 >= (-q'~o ~ (_~+~,~-,,)o., u (~+~,,,_~+~),, 
(_q,q, above average ) =  (_q,q-)0 U (_q+2A, q-)0.$ U ( ' ~ - -A ,~_A) !  ' 

_ = u ( ~ , ~  , (q,q, high ) (--q' q-')O LI ('q A, q--)O.$ I 

where A _  

m q - - q  
�9 

Definition 3. The/(x)-form of the uncertain parameter q is the triple 

ff = (q, ~t (x)), (7) 
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where l(x) is the expert knowledge base in the form of systems of fuzzy logical propositions 

IF (x I = ~1)  AND (x 2 = a)21) ... AND (x n = ~ 1 ) O R  

(x I = a{~/) AND (x 2 = a2Jk/)... AND (x n = an%), 

(8) 

THEN l = /j, 

where 4 p = f i~JP(xi)lxi, i = i ,  n, j = 1, m, p = 1, Icy. These propositions link the level 1 of the parameter q Ei [q, q] 
v, 

with the vector (x 1, x 2 . . . . .  x n) of influential factors, where kj is the number of disjunctions (OR) in the j-th logical 

proposition and t~ iY(xi) is the membership function of the variable x i E U i to the fuzzy term a~ p estimating the factor x i in 

disjunction jp ,  i = "1, n, j = i ,  m, p = 1, kj. 

The l(x)-form (6) given above is transformed into/-form (5) by the following assertion. 

Assertion 2. To a fixed vector (x 1 , x 2 . . . . .  x n ) of factors influencing the parameter q ~ [_q, q i, corresponds the 
level l* E L of this parameter such that 

(9) 

u t ' (  , ~ "  . . . .  , x ; ) =  max x t , ~  . . . . .  x , 
i -- i'7"~ 

~'t~(~,  x2 . . . . .  x,,)  = 
*'"{ 
V A sup [. ~"(~,) ̂ .  J"(<)] }- 

(10) 

This assertion follows from the notion of membership function in fuzzy set theory [7] as generalized in relationships 

(9) and (10) to the n-dimensional case using fuzzy logical operations ^ (min) and v (max). 
1 

Example 3. Consider the operator A 2 in algorithm (1). Assume that the probability Pa2 of error-free execution of the 

operator A 2 is in the range [0.95, 0.99] and depends on the following factors: the qualification of the human operator x 1, 

work stress x e, fatigue level x 3. The expert knowledge base has the following form: 
1 

IF (x 1 = H) AND (x e = L) AND (x 3 = L) THEN Pa2 = H, 
1 

IF (x 1 = A) AND (x 2 = aA) AND (x 3 = bA) THEN Pa2 = A, 
1 

IF (x I = L) AND (x, 2 = H ) A N D  (x 3 = H) THEN PA2 = L, 
and the fuzzy terms of the membership functions are shown in Fig. 1. 

lit * 

Assume that the following factor levels correspond to the current situation: x 1 = aA, x 2 = bA, x3* = L. It is 
19 required to find the level with probability Pa2" 

By Eq. (10), we find 

x, x 2 
., 

^ '~p [~,:('~) ^ ~ ,  ( ,~) I  : o. 7s ^ o. 7s ^ ~ : o. 75, 
xl k. J 

�9 ? ] [. ] ,/AA(X [ , X2*, X;) ---- SUp A(XI) A UaA(XI) A SUp aA(.l~ A P.bA(.Ir,2) A 
x~ . x 2 

x ~up r ~ ( , ~ )  ^ J"~L('~)l = o. 75 ^ o. 5 ^ o. 75 = o. s. 
X3 k J 

�9 - [, ] ? ] L (xl, xe, ~) = sup e(Xt) ^ ~RA(Xl) A SUp .(Xe) ^ UbA(Xe) ^ 
x x 2 

^ ~", [u,(~) "~'~(~)I : o. 43 ^ o. 43 ^ o. 33 : o. 33. 
L xl J 
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�9 1 

The term H has the highest degree of membership, and therefore the uncertain probability PA2iS described by/-form 

(11) and c~-form (12): 

_ t = ( 0 . 9 5 ,  0 . 9 9 ,  h igh)  ( 1 1 )  PA2 

p,,~-* = (o. 95, o. 99)o u (o. 98, o. 99)0. s u (o. 99,  o. 99h. (12) 

The transition from Eq. (1 I) to Eq. (12) is governed by the rules of example 2. 

GENERALIZING THE RELIABILITY MODELS TO THE FUZZY CASE 

Definition 4 (generalization principle [9]). If y = f l q l ,  q2 . . . . .  qn) is a function of n independent variables and the 

arguments ql ,  q2 . . . . .  qn are specified by fuzzy n/lmbers #1, q2 . . . . .  qn' then the value of the function y = J(#l, q2 . . . . .  tln) 

is the fuzzy number y: 

p ~ * ) - -  s u p  - r a i n  (,I/~ql(ql*)) , 
,'-/(~'. ~'. . . . .  C) ~-~-S 
q,'~ s,,. ~-t.--i 

(13) 

where Sqi is the support of the fuzzy number qi- 
The application of the generalization principle involves a large volume of computational procedures. Therefore for 

fuzzy numbers in , - form (6) we propose a modified generalization principle. 
Definition 5. If the function y = .[(ql, q2 . . . . .  qn) of n independent variables is given and its arguments qi are f u z z y  

numbers qi defined by the or-form (6) (i = 1, n), then the value of the function )7 = f(ql, q2 . . . . .  t~n) is the fuzzy number y 

represented in t~-form: 

where 

u 
a ~ l O .  l l  

(,( ) ) - ( , (  )). _Ya = inf  q l . ;  ~ , , . - . ,  qn.  : Y,, = sup  qt~ qL' . . . .  q,t,.  . 

Assertion 3. If the fuzzy wumbers are defined in t~-form, then Definitions 4 and 5 produce the same generalization of 

the models. 
Proof. Application of formula (13) gives 

b-I  

Since the membership function is convex, the oe-form of the fuzzy number y is written as 

u 
aElO,  i l  

where Ya = rain (Yb); Ya = max (Yb)" b = i' z. 
- v y~,- ,u;O,D = a v y~,"/.';0'~ = a 
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TABLE 1. Characteristics of Operators in Algorithm 1 

Operator 

A 2 

x, 

A4 

A s 

A t 

x, 
l, 

i 

"1  
P~ 

i 

<0.91. 0.95. low> 
<0.95, 0.99, average > 

<0.95, 0.99, above average> 

<0.9999, 0.999911, average> 

<0.9999, !, average> 

<0.9999, 0.999911, average > 

O.9999 

I 
i i , 

<tol 2+. tow> 
<7, I$. above average> 
<l, $. below average> 

<l 4, 20, average> 
<l, 2, below average> 
<1. 2, below average> 

<l 0, 111, above average > 
. . . .  

TABLE 2. Characteristics of Logical Conditions in Algorithm 1 

Logical 

condition 

41'12 

a t$  

O~ 4 

~.. 

,0.93. o.~. ',v~o > 

<0.93. 0.97. average > 

<0.9999, 0.999911, 
, below average> 

<0.96, O.911,' high> 

i . . . .  

<0.6, r average > <10, '26, 'low > 

<0.6, O.'7. below average > <1, 2, below average:> 

<0.9~, O.99996, I 
average> 

<0.6, 0.7, above average> <10, 18, above average>i 
.- ; , . .  , 

~lj(o.) 

' I 

0.'75 

OJ 

0.43 
0..13 

11 

L bA A 

, , , . /  

,, + 

aA H 

3 4 

! ! 
I 1 

\ 
/ 

Fig. 1. Piecewise-linear membership functions of fuzzy terms. 
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Fig. 2. Membership functions of fuzzy values of execution reliability of algorithm (1). 
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To prove the assertion, it suffices to show that all Yo such that tty(yt,) = ot (b = 1-'~) are determined by the arguments 

qi E [q_i q d  (i 1, n). In other words, using arguments at other or-levels does not add new values y = y with degree of 
L -1 

membership ~y--(y*) = ~. Indeed, by convexity of the membership function v~ 1, c~2:c~ 1 > ~2 =* , qi., c , qi., �9 

Hence it follows that new values y can be obtained by taking argument values qi at lower s-levels (lZgh(qi) < ~) . 

However, by formula (13),i - ~ . - ~ ( P ~ ( " ~  This proves Assertion 3. 

The modified generalization principie corresponding to Definition 4 easily produces fuzzy analogues of reliability 

models of algorithm execution. For instance, for fuzzy input data formula (4) takes the form 

- - , )  pal U ,pa., ro=U , , 
a~{O. II a ~ l l X t l  

s 

- I  - I I  
-t  pA. k2. 

- pAG 1 -- ,% -- 

l~ +!A. 
I t o =  -11)  ~ 

- . .  4 1 t  G 

m m t. +,,,.  
, . , . ,  

pl = ~ =  

Models (2) and (3) can be similarly generalized to the fuzzy case. 
Example 4. The/ - forms of the input data for estimating the execution reliability of algorithm Y are collected in 

Tables 1 and 2. Using models (2)-(4) generalized to the fuzzy case, we obtain t~-forms of the time requirements (fy) and the 

probability (fir I) of error-free execution of algorithm Y: 

Pr-l = (0.959, 0. 984)0 U (0. 962, 0. 974)0.$ o (0. 965, 0. 965)1 

t'~ = (49 .4 ,  104.2)0  U (59. 7, 82. 4)0.$ U (60, 60)~. 

These estimates are shown in Fig. 2 and may be interpreted in/-form as 

_ 1 = (0.959, 0.984, below average) fy (49.4, 104.2, below average) Py , = 

CONCLUSIONS AND POSSIBLE GENERALIZATIONS 

The main obstacle to the application of probabilistic reliability models is the absence of input data that reflect real-life 

conditions describing the operation of the system. The method proposed in this study for estimating the reliability of algo- 
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rithms is one of the formal approaches to resolving the difficulty with input data by means of linguistic expert information 
and the principle of fuzzy generalization of analytical models. Contrary to the theory of Markov and semi-Markov models 
used in reliability theory, the proposed technique is free from complex mathematical procedures that involve convolution of 
the distribution functions of the system sojourn time in a given state. The proposed system of def'mitions and assertions is 
applicable not only in reliability theory: it is also useful in other modeling problems where the input data depend on many 

factors and expert judgments are the only source of information about these factors. 
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