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Abstract

We measure how accurately replication of experimental results can be predicted by black-

box statistical models. With data from four large-scale replication projects in experimental

psychology and economics, and techniques from machine learning, we train predictive

models and study which variables drive predictable replication. The models predicts binary

replication with a cross-validated accuracy rate of 70% (AUC of 0.77) and estimates of rel-

ative effect sizes with a Spearman ρ of 0.38. The accuracy level is similar to market-aggre-

gated beliefs of peer scientists [1, 2]. The predictive power is validated in a pre-registered

out of sample test of the outcome of [3], where 71% (AUC of 0.73) of replications are pre-

dicted correctly and effect size correlations amount to ρ = 0.25. Basic features such as

the sample and effect sizes in original papers, and whether reported effects are single-var-

iable main effects or two-variable interactions, are predictive of successful replication. The

models presented in this paper are simple tools to produce cheap, prognostic replicability

metrics. These models could be useful in institutionalizing the process of evaluation of

new findings and guiding resources to those direct replications that are likely to be most

informative.

1 Introduction

Replication lies at the heart of the process by which science accumulates knowledge. The abil-

ity of other scientists to replicate an experiment or analysis demonstrates robustness, guards

against false positives, puts an appropriate burden on scientists to make replication easy for

others to do, and can expose the various “researcher degrees of freedom” like p-hacking or

forking [4–20].

The most basic type of replication is “direct” replication, which strives to reproduce the cre-

ation or analysis of data using methods as close to those used in the original science as possible

[21].

Direct replication is difficult and sometimes thankless. It requires the original scientists to

be crystal clear about details of their scientific protocol, often demanding extra effort years
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later. Conducting a replication of other scientists’ work takes time and money, and often has

less professional reward than original discovery.

Because direct replication requires scarce scientific resources, it is useful to have methods to

evaluate which original findings are likely to replicate robustly or not. Moreover, implicit sub-

jective judgments about replicability are made during many types of science evaluations. Repli-

cability beliefs can be influential when giving advice to granting agencies and foundations on

what research deserves funding, when reviewing articles which have been submitted to peer-

reviewed journals, during hiring and promotion of colleagues, and in a wide range of informal

“post-publication review” processes, whether at large international conferences or small

kaffeeklatches.

The process of examining and possibly replicating research is long and complicated. For

example, the publication of [22] resulted in a series of replications and subsequent replies [23–

26]. The original findings were scrutinized in a thorough and long process that yielded a better

understanding of the results and their limitations. Many more published findings would bene-

fit from such examination. The community is in dire need of tools that can make this work

more efficient. Statcheck [27] is one such framework that can automatically identify statistical

errors in finished papers. In the same vein, we present here a new tool to automatically evalu-

ate the replicability of laboratory experiments in the social sciences.

There are many potential ways to assess whether results will replicate. We propose a simple,

black-box, statistical approach, which is deliberately automated in order to require little sub-

jective peer judgment and to minimize costs. This approach leverages the hard work of several

recent multi-investigator teams who performed direct replications of experiments in psychol-

ogy and economics [2, 7, 28, 29]. Based on these actual replications, we fit statistical models

to predict replication and analyze which objective features of studies are associated with

replicability.

We have 131 direct replications in our dataset. Each can be judged categorically by whether

it replicated or not, by a pre-announced binary statistical criterion. The degree of replication

can also be judged on a continuous numerical scale, by the size of the effect estimated in the

replication compared to the size of the effect in the original study. As binary criterion, we call

replications with significant (p� 0.05) effects in the same direction as the original study suc-

cessful. For the continuous measure, we study the ratio of effect sizes, standardized to correla-

tion coefficients. Our method uses machine learning to predict outcomes and identify the

characteristics of study-replication pairs that can best explain the observed replication results

[30–33].

We divide the objective features of the original experiment into two classes. The first con-

tains the statistical design properties and outcomes: among these features we have sample size,

the effect size and p-value originally measured, and whether a finding is an effect of one vari-

able or an interaction between multiple variables. The second class is the descriptive aspects

of the original study which go beyond statistics: these features include how often a published

paper has been cited and the number and past success of authors, but also how subjects were

compensated. Furthermore, since our model is designed to predict the outcome of specific

replication attempts we also include similar properties about the replication that were known

beforehand. We also include variables that characterize the difference between the original

and replication experiments—such as whether they were conducted in the same country or

used the same pool of subjects. See S1 Table for a complete list of variables, and S2 Table for

summary statistics.

The statistical and descriptive features are objective. In addition, for a sample of 55 of the

study-replication pairs we also have measures of subjective beliefs of peer scientists about how

likely a replication attempt was to result in a categorical Yes/No replication, on a 0-100% scale,
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based on survey responses and prediction market prices [1, 2]. Market participants in these

studies predicted replication with an accuracy of 65.5% (assuming that market prices reflect

replication probabilities [34] and using a decision threshold of 0.5).

Our proposed model should be seen as a proof-of-concept. It is fitted on an arguably too

small data set with an indiscriminately selected feature set. Still, its performance is on par with

the predictions of professionals, hinting at a promising future for the use of statistical tools in

the evaluation of replicability.

Materials and methods

The data are combined from four replication projects, The Reproducibility Project in Psychol-

ogy (RPP; [7]), the Experimental Economics Replication Project (EERP; [2]) and Many Labs

(ML) 1 and 3 [28, 29]. In most cases, one specific statistical test from each paper was selected

for replication, but four papers had multiple effects replicated. In RPP and EERP, each experi-

ment was replicated once. In the Many Labs projects all participating labs replicated every

experiment and the final results were calculated from the pooled data. A total of 144 effects

were studied (100 RPP experiments, 16 from ML1, 10 from ML3, 18 from EERP). After drop-

ping observations with missing values, our final data set contains 131 study-replication pairs.

For 55 of these observations we also have data on prediction markets prices [1, 2] that we use

as a benchmark when we evaluate the model.

1.1 Dependent variables

There is no single best replication success indicator. An active literature studies different strat-

egies to evaluate replicability (see e.g. [35, 36]). For this paper, we have chosen to prioritize

simplicity and focus on two measures, one binary and one continuous:

Replicated ¼

(
1 preplication � 0:05 and effect in same direction

0 otherwise

Relative Effect Size Estimate ¼
replication effect size ðrÞ
original effect size ðrÞ

The binary model defines replication success as a statistically significant (p� 0.05) effect

in the same direction as in the original study. This measure has often been criticized and is

indeed simplistic. We use it since it can be compared to prediction market estimates from pre-

vious studies (where subjects traded bets using the same measure). According to this defini-

tion, 56 replications are successful and 75 fail. 22 replication had effects going in the opposite

direction compared to the original, but all with p-values larger than 0.05. The continuous

model predicts a ratio between two estimates of the effect size, from the replication and origi-

nal study respectively, both standardized to correlation coefficients. It yields a more fine-

grained notion of replication that does not depend on the peculiarities of hypothesis testing.

In our data, the relative effect size varies between −0.9 and 2.38 with a mean of 0.49. As can be

seen in the left plot of Fig 1, most relative effect size estimates close to 0 are also “unsuccessful

replications” in terms of the binary metric.

1.2 Independent variables

For each original-replication pair, we have collected a large set of variables (see Fig 1B for the

variable names or S1 Table for descriptions). The feature set includes objective characteristics

of the original experiment, but also information about the replication that was known before it

Predicting the replicability of social science lab experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0225826 December 5, 2019 3 / 18

https://doi.org/10.1371/journal.pone.0225826


was carried out. For example, these variables include statistical information such as the stan-

dardized effect size and p-value of the original experiment, but also contextual information

such as the type of compensation used, the highest seniority and gender composition of the

replication team, as well the length of the paper are included. Note that the standardized origi-

nal effect size is included in the continuous model even though it is also the denominator of

the outcome variable. The model can therefore be thought of as predicting the change in esti-

mated standardized effect size between the original study and it’s replication.

The only transformations we have included are commonly used statistical variables (power,

standardized effect size and p-value are all non-linear transforms of each other), but we

decided against the inclusion of any other transformations as it would increase the feature

space too much. Some such transforms (like log citations) would probably help the linear mod-

els in our comparisons. Since the model we end up using is non-linear however, it should not

matter much for final performance.

We intentionally provide no theoretical justification for the inclusion of any specific feature,

but have simply gathered as many variables as possible. We leave it to the user of the model

to decide which of these variables are relevant for their specific implementation, and provide

information about the relative importance of each feature.

The heatmap of Spearman rank-order correlation coefficients in Fig 1B shows some correla-

tion between our two outcomes and other features (the top two rows). Most relationships are

weak. Ex-ante expected correlations are strong (e.g., sample size and p-value) but not many other

relationships are evident visually (see S1 Fig for a full correlation plot). Original effect sizes are cor-

related with binary replication and so are p-values, with Spearman ρ of 0.26 and 0.38, respectively.

1.3 Model training

We use cross-validation to avoid overfitting. To simultaneously evaluate variability of the accu-

racy metric we nest two cross-validation loops, as shown in Fig 2. In the inner loop, we search

and validate algorithm-specific hyperparameters. Each such optimally configured model is

then tested on 20% of the data in the outer loop. Our limited sample size forces us to use these

Fig 1. Effect sizes and correlations. (A) A plot of effect sizes (r) in each study pair. Data source is coded by color. Symbol shape denotes whether a study replicated

(binary measure). Most points are below the 45-degree line, indicating that effect sizes are smaller in replications. Replications with a negative effect size have effects in

the opposite direction compared to the original study. (B) A heatmap showing Spearman rank-order correlations between variables. Y-axis shows most important

features with the two dependent variables on the top. O and R in the variable label correspond to original and replication studies, respectively. Plus and minus indicate

positive and negative correlations respectively. Most correlations are weak. See S1 Table for variable definitions and S1 Fig for a full correlation plot.

https://doi.org/10.1371/journal.pone.0225826.g001
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validation sets for both reported performance statistics and algorithm selection (see Fig 3 and

S3 Fig). Because we make decisions based on these performance statistics, also our cross-vali-

dated measures may suffer from some overfitting. We therefore evaluate pre-registered predic-

tions of the results of [3] as a supplement.

Fig 2. Model training, nested cross-validation (CV). First, the data is split into five parts. Four parts are used for

training. For each model a 10-fold CV is run on this training data to find optimal hyperparameters for each algorithm.

When training the LASSO, different values for λ (penalty to weakly correlated variables) are tested, for Random Forest

the number of randomly selected features to consider at each split changes. In each run the model is trained on 9/10th

of the data and tested on the last decile. The best version (with highest AUC) is trained on all of the training data and

its accuracy is estimated on the fifth fold of the outer loop. The process is repeated with a different outer fold held out.

After five runs, a new set is drawn, and the process is repeated until 100 accuracy metrics have been generated.

https://doi.org/10.1371/journal.pone.0225826.g002

Fig 3. Interquartile range (IQR) and median of Random Forest classifier (left) and regression (right) validation set performance. For the classifier, the optimal

model (first from top) has an average AUC of 0.79 and accuracy of 70% at the 50% probability cutoff (accuracy is mainly driven by a high true negative rate; unsuccessful

replications are predicted with an accuracy of 80%, while successful only with 56%). The optimal regression model has a median R2 of 0.19 and a Spearman ρ of 0.38. The

second bar from the top in each subplot shows unchanged model performance when dummy indicators for discipline (Economics, Social or Cognitive Psychology) are

removed. The third has excluded any features unique to the replication effort (e.g. replication team seniority) with no observable loss of performance. The less accurate

fourth model is only based on original effect size and p-value. Last, the model at the bottom is a linear model trained on the full feature set, for reference. See S3 Fig for

more models.

https://doi.org/10.1371/journal.pone.0225826.g003
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When training the binary classification models, we do so with the goal to maximize the area

under the curve (AUC) of a receiver operating characteristics (ROC) curve [37]. The metric

accounts for the trade-off between successfully predicting positive and negative results respec-

tively. Maximizing accuracy might result in a model that always predicts experiments to not

replicate, and thus accurately predicts all unsuccessful replications, but incorrectly classifies all

those that do replicate. The model with the highest AUC will instead be the one that minimizes

the effects of this trade off, achieving high prediction rates for both positive and negative

results simultaneously. The models estimating relative effect size are trained to minimize the

mean squared prediction error.

We compare a number of popular machine learning algorithms (see S3 Fig) and find that a

Random Forest (RF) model has the highest performance. The outcome predicted by an RF

algorithm is the result of averaging over a “forest” of decision trees. Each tree is fitted using a

random subset of variables, and employs a hierarchical sequence of cutoffs to predict observa-

tions [38]. A simple tree with depth 2 might fit 0-1 replication success by first dividing cases by

if sample size is below a cutoff, then, at each of those two branches, by whether the original

effect is a main effect or an interaction. Each end node is a prediction of the outcome variable.

The algorithm is popular because it performs well without much human supervision.

2 Results

The Random Forest model trained on the full feature set predicts binary replication in the

hold-out sample with a median AUC of 0.79 (median accuracy of 69% at the 50% probability

threshold), shown in the top bars of Fig 3. The bar width is the interquartile range of 100 per-

formance resamples produced by the nested cross-validation. The median is depicted as a dot.

Note that we are predicting the outcome of a statistical test, an inherently noisy variable.

The upper bound for ideal replication forecasting is thus less than 100%; probably also below

90%. Why? Consider an artificial sample, measuring a, by construction, genuine effect with

tests that have 90% power to detect it. A perfect model predicting replication in a second sam-

ple will only be right nine out of ten times. This theoretical ceiling is important since we should

arguably normalize the distance between random guessing and the best possible level of pre-

diction. For 69% accuracy, the normalized improvement over a random guess (50%) to perfec-

tion is 69� 50

100� 50
¼ 0:38. However using a more accurate upper bound of 90%, it is 69� 50

90� 50
¼ 0:48.

The model predicting the Relative Effect Size estimates achieves a median root mean

squared error (RMSE) of 0.51 and R2 of 0.19. The predicted and actual effect sizes have a

median Spearman correlation of 0.36. It is important to note that similarly to the binary rep-

lication indicator, perfect prediction of the relative effect size is not possible, because the out-

come variable is the ratio of noisy estimates of effect sizes. The lower bound of the prediction

error in this case depends on the variance of the effect size measurement in the original

study and the replication, as well as the covariance between them. Deriving a theoretical

upper bound for the measure is beyond the scope of the current work, but see S2 Text for a

discussion.

In the pre-registered out of sample test, 71% of binary replications are predicted correctly

(AUC: 0.72). Relative effect size is estimated with a RMSE of 0.41 (Spearman ρ: 0.25; R2: 0.07).

A qualitative assessment of these results can be made in both relative and absolute terms.

First, binary classifier performance is substantially higher than that of a random model

(which by definition has an AUC of 0.5), and is more accurate than a linear model using the

same features (the last bar in each subplot of Fig 3, median AUC = 0.72). A constant model

that never predicts a paper to replicate would be far worse, with an accuracy of 57% in the

training set.
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The continuous model does not perform as well. Considering that the relative effect size

estimates range from −0.9 to 2.38, an RMSE of 0.51 is a substantial error. The range is smaller

in the out of sample test set (−0.12 to 1.3), something that could explain the smaller error of

0.41. While also the linear relationship and Spearman correlation are weak, an OLS regression

performs even worse in the training set, with an R2 of 0.06. The Spearman ρ of 0.36 (OLS:

0.27) between predicted and actual values is higher than the 0.21 correlation between original

and relative effect size estimate, indicating a performance improvement over this very simple

heuristic.

When performance is compared between validation set and the pre-registered test set, the

binary classifier achieves similar results. The continuous model, however, manages to explain

only 7% of the variation and has a Spearman correlation coefficient that is 30% smaller. Such

large differences between validation and test sets could be an indication of overfitting.

Second, the predictions of the binary classifier, based on objective features, can be com-

pared to subjective beliefs of replicability generated from prediction market prices. We get

these beliefs from earlier studies where social scientists traded on the probability of replication

success. Participants in these studies had access to both the original papers and pre-registered

replication plans, describing how the replications were going to be conducted. Participants did

not know the estimated replication probabilities, but could in theory have trained a model

themselves. In other words, all the features that were used in the model were in principle also

available to market participants. Out of the 55 replications we have both model and market

predictions for, the market predicted 65.5% correctly (accuracy was 68% for studies in [1] and

61% in [2]). While the model fares slightly better in this data, two follow-up papers have more

accurate markets. Including market performance from [3, 39] yields a prediction market accu-

racy rate of 73% (76/104 replications) (with an AUC of 0.73).

2.1 Predictive power

In Fig 3, we compare the performance of models in which certain classes of variables have

been excluded. The observation of similar patterns for both sets of models is not surprising,

given the high correlation of the two outcome measures (Spearman ρ = 0.79). The predictions

of relative effect size estimates are much noisier however, hinting at the general inaccuracy of

the model.

For both replication measures, the second bar shows that removing the dummy variables

encoding the discipline of the study (Economics, Social Psychology or Cognitive Psychology)

has little bearing on the results. The 64 Social Psychology replications have smaller effect

sizes (mean of 0.33 compared to 0.47 for cognitive psychology), slightly larger p-values

(0.017 compared to 0.01). In [40], the author argues that the association between contextual

sensitivity (as measured on a scale from 0-5) and replicability found by [8] is spuriously iden-

tified from the difference in replication rates between fields. We show that many other vari-

ables also mediate these differences. For example, by construction, holding sample size

constant, interaction effects will have lower statistical power. Included social psychology

experiments test interaction effects almost twice as often (44% vs 27% in cognitive psychol-

ogy). If studies of interactions do not increase sample size appropriately, replicability will be

lower.

The third bar shows no reduction in accuracy for a model in which all replication-specific

features are excluded. The reason is likely that replication characteristics were standardized

between experiments. No replication is conducted with a really small sample size, for example.

The fourth bar uses only original effect size and p-value. The decrease in accuracy shown in

this bar implies that also other features are informative.
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2.2 Feature importance

The previous section summarized the general accuracy of the models, using different feature

subsets. This section explores which objective features of experimental designs and results are

important for replicability, extending the analysis in RPP [7] with more variables, non-linear

interactions, and a larger data set.

The action-packed Fig 4 reports two metrics of feature importance for both the binary

(blue) and continuous (red) models. The length of horizontal bars (x-axis) represents Random

Forest variable importance, measured as the relative frequency at which features are selected

in individual decision trees. Features that are included in a large proportion of the individual

trees will have a long bar. The variables are sorted by their importance in predicting binary

replication. The three most important variables are post-hoc power, p-value, and effect size of

the original studies. They are the same for both the binary and continuous model. Since effect

size is standardized, all three of these variables are actually non-linear transformations of each

other.

Since the RF model is hierarchical and nonlinear, a single variable can be included in many

different individual trees with both positive and negative effects on predicted outcome. While

we can identify the most important variables in the model, we cannot determine the direction

of their influence. We therefor also present the average marginal effect of each variable in lin-

ear models (Logit for binary, OLS for continuous). These are shown in small boxes between

the variable names (on the left) and the bars on the right. This analysis uses only variables

that have been selected as important by a LASSO, a regularization algorithm, that minimizes

squared errors (or deviance) while keeping the absolute value of coefficients constrained by a

penalty term. This method tends to shrink estimated coefficients that are unimportant towards

zero, removing some variables completely [31]. For the many variables that are common in the

RF trees but have zero LASSO weights, there are blank spaces between variable definitions and

RF-frequency bars. The features selected by the LASSO are then re-fitted in a regular Logit

model (to “unshrink” their weights) and the coefficients of that non-regularized model are pre-

sented Fig 4. Note that there is no clear mapping beteween the two measures of importance.

Logit estimates describe the average linear relationship between the coefficients and the log

odds of replication. A variable could have a positive linear estimate while the RF assigns a neg-

ative relationship for almost all cases.

2.3 Pre-registered out of sample test

The Social Sciences Replication Project (SSRP; [3]) replicated 21 systematically selected papers

published in Nature and Science published between 2011 and 2015. The authors also collected

beliefs through a survey and a prediction market. We registered the predictions of the model

before the replications had been conducted [41]. The results from this out of sample test are

summarized and compared to market and survey beliefs in Fig 5. The replications were con-

ducted in a two-stage procedure, where more data was collected if the results from the first

phase were not significant. Here, we use the results from the pooled data. If the model pre-

dicted a successful Stage 1 replication these predictions are used. If it predicted an unsuccsess-

ful first stage, predicted effect size and replication probability from Stage 2 are used instead. In

S4 Fig we test predictions on Stage 1 outcomes. The results are similar.

The out of sample predictions achieve accuracy similar to the median cross-validated level,

at 71% (AUC: 0.73). When compared to researcher beliefs, the model has a mean absolute

prediction error of 0.43, while the market achieves 0.30 and the survey 0.35. The difference

between model and market is significant (Wilcoxon signed-rank test, z = −2.52, p = 0.012,

n = 21), however more data is needed to verify these differences.
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Fig 4. Right side contains relative variable importance for all features used in the Random Forest, for both regression (red)

and classification (blue) models, sorted by decreasing contribution to the predictive power of the binary classifier. To the left

are average marginal effects for those variables selected by a LASSO and then re-fit in a linear model (Logit for binary, OLS for

continuous). Predictably, most of the top variables are statistical properties related to replicability and publication, but also other

variables seem to be informative, especially for the Random Forest. For example, whether or not the effect tested is an interaction

Predicting the replicability of social science lab experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0225826 December 5, 2019 9 / 18

https://doi.org/10.1371/journal.pone.0225826


The model predicts relative effect size estimates with a Spearman correlation of 0.25

(p = 0.274), lower than the cross-validated measure of 0.38. The mean absolute deviation is

0.33. A Wilcoxon sign-rank test cannot reject that the distributions of predicted and actual

effect sizes are the same, z = −1.00, p = 0.317.

Results are summarized in Fig 5. We see that the model produces quite conservative fore-

casts of effect size, often closer to 0.5 than the actual outcome. This results in large errors

whenever the actual effect is substantially different from half the original effect. This leads

to especially poor predictions of relative effect size estimates for unsuccessful replications.

While the market and survey perform better than the model in predicting binary replication

in this sample, the plot shows how the measures commonly yield the same prediction. When

they do not, it is often because the model incorrectly predicts that an experiment will not

replicate.

3 Discussion

We have derived an automated, data-driven method for predicting replicability of experi-

ments. The method uses machine learning to discover which features of studies predict the

strength of actual replications. Even with our fairly small data set, the model can forecast repli-

cation results with substantial accuracy—around 70%.

effect, as well as the number of citations are important. Last, note that the two top variables are basically non-linear

transformations of one another. Stars indicate significance: p� 0.01(���), p� 0.05(��), and p� 0.1(�).

https://doi.org/10.1371/journal.pone.0225826.g004

Fig 5. Predicted and actual results of the SSRP. Model predictions were registered before the experiments had been conducted. The left panel shows predicted

relative effect size in purple and actual in orange, sorted by increasing prediction error. Right panel shows replication probability as predicted by the model, a

prediction market, and a survey respectively. Data points are represented by a triangle when the replication was successful (p< 0.05 and an effect in the same

direction). To see when the model made a correct prediction at the 50% probability threshold study the right panel. Red triangles on the right side of the dashed line

and circles on the left side have been predicted correctly.

https://doi.org/10.1371/journal.pone.0225826.g005
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Predictive accuracy depends on the features of the model in interesting ways. The statistical

properties (p-value and effect size) of the original experiment are the most predictive. How-

ever, the accuracy of the model increases when variables such as the nature of the finding (an

interaction, compared to a main effect), number of authors, paper length, and the lack of per-

formance incentives are added. All those variables are linearly associated with a reduction in

the predicted chance of replicability.

The third bar in Fig 3 shows unchanged performance for a model with all replication-spe-

cific features excluded. There are a couple of possible reasons why removing replication fea-

tures has no impact on model performance. For one thing, most variables have a small impact,

which would be easier to identify in a larger data set. Second, a larger planned sample size has

a direct impact on replication probability, since with higher power it follows that there is a

higher probability of rejecting a false null hypothesis, and thus also the corresponding proba-

bility of replicating a true result (See e.g. [42] for a discussion of replication power). The reason

why we do not find such a relationship is probably because our data has little variation in

power, as most replications are designed to have larger samples, and do not include multiple

replications of the same experiment with different sample sizes. This makes it hard for the

model to capture any variation in replicability caused by changes in planned sample size. It

is also possible that the model is unable to separate the increase in power from the fact that

weaker effects required larger replication samples.

The fourth bar in Fig 3 presents the accuracy of a simple model that is only trained on effect

size and p-value of the original experiment. It is not quite as accurate as models with more

features, but still on par with the linear model trained on the full feature set. The analysis of

correlations in [7] indicated the opposite, that experience of the experimenters and other such

features are unimportant. With the substantial variability in out-of-sample accuracy, it is diffi-

cult to say for sure, but our results do indicate that these other features are correlated and

indeed contribute to higher accuracy.

We now probe a bit further into three results.

The first result is that one variable that is predictive of poor replicability is whether central

tests describe interactions between variables or (single-variable) main effects. Only eight of 41

interaction effect studies replicated, while 48 of the 90 other studies did. As Fig 4 shows, the

interaction/main effect variable is in the top 10 in RF importance and is predictive, for both

the binary and continuous replication measures.

There is plenty of room for reasoned debate about the validity of apparent interactions.

Here is our view: Interactions are often slippery statistically because detecting them is under-

mined by measurement error in either of two variables. In early discussion of p-hacking it was

also noted that studies which hoped to find a main effect often end up concluding that there is

a main effect which is only significant in part of the data (i.e., an interaction effect). The lower

replication rates for interaction effects might be spurious, however. Tests of interactions often

require larger samples, which could mean that the replications of these studies have lower

power relative to those studies evaluating non-interacted effects. Nonetheless, the replicability

difference is striking and merits further study. It is possible that the higher standard of evi-

dence for establishing interactions needs to be upheld more closely.

The second result is that some features that vary across studies are not robustly associated

with poor replication: These include measures of language, location and subject type differ-

ences between replication and original experiments, as well as most of the variation in

compensation (except for having no compensation at all, which is correlated with lower

replicability).

Our third result is that the model performs on par with previously collected peer judgments

(subjective beliefs as measured by prediction market prices). In the sample used to estimate
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the model, it performed somewhat better than the prediction market, although we only had

prediction market data on a subset of n = 55 studies. On the other hand the prediction market

performed better than the model on the out of sample prediction test, but this was based on a

small sample of n = 21. More data is needed to compare statistical approaches with peer judg-

ments in prediction markets and surveys, to test which approach is associated with the most

accurate predictions, and to look for potential complementarities. If the goal is replication pre-

diction, the model has logistical advantages compared to running prediction markets, which

require both participants and costly monetary incentives.

Studying the differences between our algorithmic predictions and expert scientific judg-

ment adds to a long literature comparing machine and man. For at least seventy years, it has

been known that in many domains of professional judgment, simple statistical models can

predict complex outcomes—PhD success, psychiatric disorders, recidivism, personality—as

accurately as humans do subjectively [43–46]. Today, with the tremendous increase in data

availability and development of more sophisticated predictive models, statistical prediction has

become useful in many new areas (e.g. [47]). It is likely that in some form, statistical methods

will also increase the quality of human evaluation and prediction of scientific findings. The

results presented in this paper suggests that there could be room for statistical methods to aid

researchers when reviewing their peers’ experiments. An interesting avenue for future research

is to look for potential synergies. Do market participants who get access to model predictions

perform better? Does including market prices as a feature improve model performance?

3.1 Applications

Our method could be used in pre- and post-publication assessment, preferably after a lot more

replication evidence is available to train the algorithm. In the current mainstream pre-publica-

tion review process, the decision about whether to publish a paper is almost entirely guided

by the opinions of a small set of peer scientists and an editor. A systematic, fast, and accurate

numerical method to estimate replicability could add more information in a transparent and

fair way to this process. For example, when a paper is submitted an editorial assistant can code

the features of the paper, plug those features into the models, and derive a predicted replication

probability. This number could be used as one of many inputs helping editors and reviewers to

decide whether a replication should be conducted before the paper is published.

Post-publication, the model could be used as an input to decide which previously published

experiments should be replicated. The criteria should depend on the goal of replication efforts.

If the goal is to quickly locate papers unlikely to replicate, then papers with low predicted repli-

cability should be chosen. Since replication is costly and laborious, using predicted probability

can guide scarce resources toward where they are most scientifically useful.

Choosing an appropriate decision threshold is an important part of applying models such

as ours in practice. The cost of carrying out additional replication may vary between studies,

and so does the cost of publishing a false positive finding. For example, an editor could require

original authors to run a replication whenever the replication probability of their submission

is below 0.7. As can be seen in the receiver operating curve (ROC) plotted in Fig 6, such a

threshold would ensure that only 10% of non-replicable results would pass through unde-

tected. Had the editor used a threshold of 0.5 (like we do in this paper to calculate accuracy)

25% of the predictions about successful replication would be incorrect, but fewer (*30%)

unnecessary replications would be carried out. Moreover, changes to the machinery of the

algorithm could be introduced in order to optimize for specific trade offs between true and

false positives. We optimize AUC and leave the choice of threshold to the user of the model.

But another alternative is to optimize with asymmetric costs pre-assigned to different types of

Predicting the replicability of social science lab experiments

PLOS ONE | https://doi.org/10.1371/journal.pone.0225826 December 5, 2019 12 / 18

https://doi.org/10.1371/journal.pone.0225826


errors akin to the method of Masnadi-Shirazi & Vasconcelos [48]. We encourage any user to

think carefully about this decision rule, as the relative cost of making positive and negative pre-

diction errors might vary greatly between applications.

An important concern with any predictive algorithm is that its application will likely change

incentives, and impact how scientists design their studies, undermining the algorithm’s value.

Some of these “corrupting” [49] effects will actually be good: For example, since testing inter-

action effects seem to negatively associated with predicted replicability, scientists may be moti-

vated to avoid searching for such interactions. But that could be an improvement, if such

effects are difficult to find robustly with sample sizes used previously. Alternatively, scientists

who are keen to find interactions can use higher-powered designs, which will increase pre-

dicted replicability.

Other changes in practice to “game” the algorithm will likely be harmless, and some

changes could reduce predictive accuracy. For example, longer papers tend to replicate less

well. If scientists all shorten their papers (to increase their predicted replicability), without

changing the quality of the science, then the paper length variable will gradually lose diagnostic

value. Any implementation will need to anticipate this type of gaming.

Some types of “gaming” could be truly unwanted. The trade off between algorithmic fair-

ness and accuracy is a highly important question that is currently being studied extensively.

In our case, including the gender composition or seniority of the author team potentially

increases the risk that the model is discriminatory. If needed, such variables could easily be

removed, with only a small penalty to accuracy. However, excluding a variable like gender

composition will not necessarily remove the model’s tendency to discriminate, as this variation

Fig 6. ROC curve for held-out validation sets from the best model during cross-validation and for the out of

sample predictions. The plot shows the trade off between true positives (predicting correctly that a study will

replicate) and false positives (predicting that a study will replicate when it in fact does not) as the decision threshold

varies. At a threshold of 0.5 the model identifies about 70% of the successful replications and 75% of the non-

replications correctly. If a user of the model wants to lower the risk of missclassifying a paper that would replicate as

not replicating they can use a threshold of e.g. 0.3. At this level, the model misclassifies less than 10% of the successful

replications. The price, however, is that almost 70% of non-replications will also be labeled as successful.

https://doi.org/10.1371/journal.pone.0225826.g006
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could still be captured through other features [50]. We included these variables here to make

this trade-off transparent.

Of course, there are limits to how much we can conclude from our results. The data we use

is not representative for all experimental social science—the accuracy level and variable impor-

tance statistics may be specific to our sample, or to psychology and economics. Our sample of

studies is also very small; having more actual replications, preferably selected randomly, is cru-

cial to ensure that the model functions robustly [51].

Moreover, the correlations we find do not identify causal mechanisms, so changing

research practices (as in the “gaming” scenarios above) may have unknown consequences.

Rather, our model is theory agnostic by design. We aim to predict replicability, not understand

its causes. The promising and growing literature taking a theoretical approach to this questions

(see e.g. [4, 35, 36]) should be seen as a complement to our work and could hopefully be used

to improve future versions of this predictive model. Simultaneously, our insights will hopefully

be useful for future theoretical investigations.

The future is bright. There will be rapid accumulation of more replication data, more out-

lets for publishing replications [52], new statistical techniques, and—most importantly—

enthusiasm for improving replicability among funding agencies, scientists, and journals. An

exciting replicability “upgrade” in science, while perhaps overdue, is taking place.
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S1 Table. Variable descriptions. Explanations of all variables in the data set.
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The ending prices for each asset are directly interpreted as replication probabilities and predic-
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S2 Fig. PCA plot. The two most important principal components that together explain 40% of
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tures differences in statistical variables such as p-value and effect size, while the first explains

author statistics.
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S3 Fig. Performance comparison of algorithms. Cross-validated hold-out sample perfor-

mance of different machine learning algorithms. For each model, the outer CV loop is run 100

times. Bands show interquartile range (IQR) and the dot is the median. The left panel shows

(binary) classification models, and the right includes the continuous outcomes. For each

model, we tune its hyperparameters to maximize the AUC and RMSE for the binary and con-

tinuous outcome measures respectively. For Random Forest, we evaluate how many variable

to randomly sample as candidates at each split and use a fixed number of trees (1001). For

LASSO we tune the shrinkage parameter λ, with a fixed σ at 0.02 and let the cost parameter C
vary. Last, for GBM, we vary the number of splits performed in each tree. The Random Forest

model is chosen for further analysis.

(EPS)

S4 Fig. SSRP prediction evaluation—Stage 1. A copy of Fig 5 but using the outcomes from

the first data collection stage instead of the pooled data. The SSRP had a two-stage design. For

replications that were found to be not significant in an initial test, more data was collected.

Sample sizes are thus smaller for those studies that continued to a second data collection. The

model is not very good at capturing this mechanical increase in replication probability from

increase sample size. For one thing, we do not have any within-study variation in sample size

in the data. While we could use the disaggregated Many Labs data to research within-study

variation, the sample sizes do not differ much between labs.

(EPS)
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