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Experiments demonstrated that sigmoid multilayer perceptron (MLP) 
networks provide slightly better risk prediction than conventional 
logistic regression when used to predict the risk of death, stroke, and 
renal failure on 1257 patients who underwent coronary artery bypass 
operations at the Lahey Clinic. MLP networks with no hidden layer and 
networks with one hidden layer were trained using stochastic gradient 
descent with early stopping. MLP networks and logistic regression used 
the same input features and were evaluated using bootstrap sampling 
with 50 replications. ROC areas for predicting mortality using 
preoperative input features were 70.5% for logistic regression and 
76.0% for MLP networks. Regularization provided by early stopping 
was an important component of improved perfonnance. A simplified 
approach to generating confidence intervals for MLP risk predictions 
using an auxiliary "confidence MLP" was developed. The confidence 
MLP is trained to reproduce confidence intervals that were generated 
during training using the outputs of 50 MLP networks trained with 
different bootstrap samples. 

1 INTRODUCTION 

In 1992 there were roughly 300,000 coronary artery bypass operations perfonned in the 
United States at a cost of roughly $44,000 per operation. The $13.2 billion total cost of 
these operations is a significant fraction of health care spending in the United States. This 
has led to recent interest in comparing the quality of cardiac surgery across hospitals using 
risk-adjusted procedures and large patient populations. It has also led to interest in better 
assessing risks for individual patients and in obtaining improved understanding of the pa­
tient and procedural characteristics that affect cardiac surgery outcomes. 
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Figure 1. Block diagram of a medical risk predictor. 
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This paper describes a experiments that explore the use of neural networks to predict the 
risk of complications in coronary artery bypass graft (CABO) surgery. Previous approaches 
to risk prediction for bypass surgery used linear or logistic regression or a Bayesian ap­
proach which assumes input features used for risk prediction are independent (e.g. Ed­
wards, 1994; Marshall, 1994; Higgins, 1992; O'Conner, 1992). Neural networks have the 
potential advantages of modeling complex interactions among input features, of allowing 
both categorical and continuous input features, and of allowing more flexibility in fitting 
the expected risk than a simple linear or logistic function. 

2 RISK PREDICTION AND FEATURE SELECTION 

A block diagram of the medical risk prediction system used in these experiments is shown 
in Figure 1. Input features from a patient's medical record are provided as 105 raw inputs, 
a smaller subset of these features is selected, missing features in this subset are replaced 
with their most likely values from training data, and a reduced input feature vector is fed to 
a classifier and to a "confidence network". The classifier provides outputs that estimate the 
probability or risk of one type of complication. The confidence network provides upper and 
lower bounds on these risk estimates. Both logistic regression and multilayer sigmoid neu­
ral network (MLP) classifiers were evaluated in this study. Logistic regression is the most 
common approach to risk prediction. It is structurally equivalent to a feed-forward network 
with linear inputs and one output unit with a sigmoidal nonlinearity. Weights and offsets are 
estimated using a maximum likelihood criterion and iterative "batch" training. The refer­
ence logistic regression classifier used in these experiments was implemented with the S­
Plus glm function (Mathsoft, 1993) which uses iteratively reweighted least squares for 
training and no extra regularization such as weight decay. Multilayer feed-forward neural 
networks with no hidden nodes (denoted single-layer MLPs) and with one hidden layer and 
from 1 to 10 hidden nodes were also evaluated as implemented using LNKnet pattern clas­
sification software (Lippmann, 1993). An MLP committee classifier containing eight mem­
bers trained using different initial random weights was also evaluated. 

All classifiers were evaluated using a data base of 1257 patients who underwent coronary 
artery bypass surgery from 1990 to 1994. Classifiers were used to predict mortality, post­
operative strokes, and renal failure. Predictions were made after a patient's medical history 
was obtained (History), after pre-surgical tests had been performed (Post-test), immediately 
before the operation (preop), and immediately after the operation (Postop). Bootstrap sam­
pling (Efron, 1993) was used to assess risk prediction accuracy because there were so few 



Predicting the Risk of Complications in Coronary Artery Bypass Operations 1057 

patients with complications in this data base. The number of patients with complications 
was 33 or 2.6% for mortality, 25 or 2.0% for stroke, and 21 or 1.7% for renal failure. All 
experiments were performed using 50 bootstrap training sets where a risk prediction tech­
nique is trained with a bootstrap training set and evaluated using left-out patterns. 
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Figure 2. Features selected to predict mortality. 
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The initial set of 105 raw input features included binary (e.g. MalelFemale), categorical 
(e.g. MI When: none, old, recent, evolving), and continuous valued features (e.g. Perfusion 
Time, Age). There were many missing and irrelevant features and all features were only 
weakly predictive. Small sets of features were selected for each complication using the fol­
lowing procedures: (1) Select those 10 to 40 features experience and previous studies indi­
cate are related to each complication, (2) Omit features if a univariate contingency table 
analysis shows the feature is not important, (3) Omit features that are missing for more than 
5% of patients, (4) Order features by number of true positives, (5) Omit features that are 
similar to other features keeping the most predictive, and (7) Add features incrementally as 
a patient's hospital interaction progresses. This resulted in sets of from 3 to 11 features for 
the three complications. Figure 2 shows the 11 features selected to predict mortality. The 
first column lists the features, the second column presents a fraction equal to the number of 
complications when the feature was "high" divided by the number of times this feature was 
"high" (A threshold was assigned for continuous and categorical features that provided 
good separation), and the last column is the second column expressed as a percentage. Clas­
sifiers were provided identical sets of input features for all experiments. Continuous inputs 
to all classifiers were normalized to have zero mean and unit variance, categorical inputs 
ranged from -(D-1)/2 to (D-1)/2 in steps of 1.0, where D is the number of categories, and 
binary inputs were -0.5 or 0.5 . 

3 PERFORMANCE COMPARISONS 
Risk prediction was evaluated by plotting and computing the area under receiver operating 
characteristic (ROC) curves and also by using chi-square tests to determine how accurately 
classifiers could stratify subjects into three risk categories. Automated experiments were 
performed using bootstrap sampling to explore the effect of varying the training step size 
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Figure 3. Fifty preoperative bootstrap ROCs predicting mortality using an MLP 
classifier with two hidden nodes and the average ROC (left), and average ROCS 
for mortality using history, preoperative, and postoperative features (right). 

from 0.005 to 0.1; of using squared-error, cross-entropy, and maximum likelihood cost 
functions; of varying the number of hidden nodes from 1 to 8; and of stopping training after 
from 5 to 40 epochs. ROC areas varied little as parameters were varied. Risk stratification, 
which measures how well classifier outputs approximate posterior probabilities, improved 
substantially with a cross-entropy cost function (instead of squared error), with a smaller 
stepsize (0.01 instead of 0.05 or 0.1) and with more training epochs (20 versus 5 or 10). An 
MLP classifier with two hidden nodes provided good overall performance across compli­
cations and patient stages with a cross-entropy cost function, a stepsize of 0.01, momentum 
of 0.6, and stochastic gradient descent stopping after 20 epochs. A single-layer MLP pro­
vided good performance with similar settings, but stopping after 5 epochs. These settings 
were used for all experiments. The left side of Figure 3 shows the 50 bootstrap ROCs cre­
ated using these settings for a two-hidden-node MLP when predicting mortality with pre­
operative features and the ROC created by averaging these curves. There is a large 
variability in these ROes due to the small amount of training data. The ROC area varies 
from 67% to 85% (cr=4.7) and the sensitivity with 20% false alarms varies from 30% to 
79%. Similar variability occurs for other complications. The right side of Figure 3 shows 
average ROCs for mortality created using this MLP with history, preoperative, and postop­
erative features. As can be seen, the ROC area and prediction accuracy increases from 
68.6% to 79.2% as more input features become available. 

Figure 4 shows ROC areas across all complications and patient stages. Only three and two 
patient stages are shown for stroke and renal failure because no extra features were added 
at the missing stages for these complications. ROC areas are low for all complications and 
range from 62% to 80%. ROC areas are highest using postoperative features, lowest using 
only history features, and increase as more features are added. ROC areas are highest for 
mortality (68 to 80%) and lower for stroke (62 to 71 %) and renal failure (62 to 67% ).The 
MLP classifier with two hidden nodes (MLP) always provided slightly higher ROC areas 
than logistic regression. The average increase with the MLP classifier was 2.7 percentage 
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Figure 4. ROC areas across all complications and patient stages for logistic 
regression, single-layer MLP classifier, two-layer MLP classifier with two hidden 
nodes, and a committee classifier containing eight two-layer MLP classifiers 
trained using different random starting weights. 

points (the increase ranged from 0.3 to 5.5 points). The single-layer MLPclassifier also pro­
vided good performance. The average ROC area with the single-layer MLP was only 0.6 
percentage points below that of the MLP with two hidden nodes. The committee using eight 
two-layer MLP classifiers performed no better than an individual two-layer MLP classifier. 

Classifier outputs were used to bin or stratify each patient into one of four risk levels (0-
5%, 5-10%, and 10-100%) by treating the output as an estimate of the complication poste­
rior probability. Figure 5 shows the accuracy of risk stratification for the MLP classifier for 
all complications. Each curve was obtained by averaging 50 individual curves obtained us­
ing bootstrap sampling as with the ROC curves. Individual curves were obtained by placing 
each patient into one of the three risk bins based on the MLP output. The x's represent the 
average MLP output for all patients in each bin. Open squares are the true percentage of 
patients in each bin who experienced a complication. The bars represent ±2 binomial devi­
ations about the true patient percentages. Risk prediction is accurate if the x's are close to 
the squares and within the confidence intervals. As can be seen, risk prediction is accurate 
and close to the actual number of patients who experienced complications. It is difficult, 
however, to assess risk prediction given the limited numbers of patients in the two highest 
bins. For example, in Figure 5, the median number of patients with complications was only 
2 out of 20 in the middle bin and 2 out of 13 in the upper bin. Good and similar risk strati­
fication, as measured by a chi-square test, was provided by all classifiers. Differences be­
tween classifier predictions and true patient percentages were small and not statistically 
significant. 
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Figure 5. Accuracy of MLP risk stratification for three complications using 
preoperative features. Open squares are true percentages of patients in each bin 
with a complication, x's are MLP predictions, bars represent ±2 binomial 
standard deviation confidence intervals. 

4 CONFIDENCE MLP NETWORKS 

Estimating the confidence in the classification decision produced by a neural network is a 
critical issue that has received relatively little study. Not being able to provide a confidence 
measure makes it difficult for physicians and other professionals to accept the use of com­
plex networks. Bootstrap sampling (Efron, 1993) was selected as an approach to generate 
confidence intervals for medical risk prediction because 1) It can be applied to any type of 
classifier, 2) It measures variability due to training algorithms, implementation differences, 
and limited training data, and 3) It is simple to implement and apply. As shown in the top 
half of Figure 6, 50 bootstrap sets of training data are created from the original training data 
by resampling with replacement. These bootstrap training sets are used to train 50 bootstrap 
MLP classifiers using the same architecture and training procedures that were selected for 
the risk prediction MLP. When a pattern is fed into these classifiers, their outputs provide 
an estimate of the distribution of the output of the risk prediction MLP. Lower and upper 
confidence bounds for any input are obtained by sorting these outputs and selecting the 10% 
and 90% cumulative levels. 

It is computationally expensive to have to maintain and query 50 bootstrap MLPs whenever 
confidence bounds are desired. A simpler approach is to train a single confidence MLP to 
replicate the confidence bounds predicted by the 50 bootstrap MLPs, as shown in the bot-
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Figure 6. A confidence MLP trained using 50 bootstrap MLPs produces upper and 
lower confidence bounds for a risk prediction MLP. 
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tom half of Figure 6. The the confidence MLP is fed the input pattern and the output of the 
risk prediction MLP and produces at its output the confidence intervals that would have 
been produced by 50 bootstrap MLPs. The confidence MLP is a mapping or regression net­
work that replaces the 50 bootstrap networks. It was found that confidence networks with 
one hidden layer, two hidden nodes, and a linear output could accurately reproduce the up­
per and lower confidence intervals created by 50 bootstrap two-layer MLP networks. The 
confidence network outputs were almost always within ±15% of the actual bootstrap 
bounds. Upper and lower bounds produced by these confidence networks for all patients 
using preoperative features predicting mortality are show in Figure 7. Bounds are high (± 1 0 
percentage points) when the complication risk is near 20% and drop to lower values (±0.4 
percentage points) when the risk is near 1 %. This relatively simple approach makes it pos­
sible to create and replicate confidence intervals for many types of classifiers. 

5 SUMMARY AND FUTURE PLANS 

MLP networks provided slightly better risk prediction than conventional logistic regression 
when used to predict the risk of death, stroke, and renal failure on 1257 patients who un­
derwent coronary artery bypass operations. Bootstrap sampling was required to compare 
approaches and regularization provided by early stopping was an important component of 
improved performance. A simplified approach to generating confidence intervals for MLP 
risk predictions using an auxiliary "confidence MLP" was also developed. The confidence 
MLP is trained to reproduce the confidence bounds that were generated during training by 
50 MLP networks trained using bootstrap samples. Current research is validating these re­
sults using larger data sets, exploring approaches to detect outlier patients who are so dif­
ferent from any training patient that accurate risk prediction is suspect, developing ap­
proaches to explaining which input features are important for an individual patient, and 
determining why MLP networks provide improved performance. 
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Figure 7. Upper and lower confidence bounds for all patients and preoperative 
mortality risk predictions calculated using two MLP confidence networks. 
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