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Abstract: Early identification of individuals at high risk of diabetes is crucial for implementing early
intervention strategies. However, algorithms specific to elderly Chinese adults are lacking. The aim of
this study is to build effective prediction models based on machine learning (ML) for the risk of type
2 diabetes mellitus (T2DM) in Chinese elderly. A retrospective cohort study was conducted using the
health screening data of adults older than 65 years in Wuhan, China from 2018 to 2020. With a strict
data filtration, 127,031 records from the eligible participants were utilized. Overall, 8298 participants
were diagnosed with incident T2DM during the 2-year follow-up (2019–2020). The dataset was ran-
domly split into training set (n = 101,625) and test set (n = 25,406). We developed prediction models
based on four ML algorithms: logistic regression (LR), decision tree (DT), random forest (RF), and
extreme gradient boosting (XGBoost). Using LASSO regression, 21 prediction features were selected.
The Random under-sampling (RUS) was applied to address the class imbalance, and the Shapley
Additive Explanations (SHAP) was used to calculate and visualize feature importance. Model perfor-
mance was evaluated by the area under the receiver operating characteristic curve (AUC), sensitivity,
specificity, and accuracy. The XGBoost model achieved the best performance (AUC = 0.7805, sen-
sitivity = 0.6452, specificity = 0.7577, accuracy = 0.7503). Fasting plasma glucose (FPG), education,
exercise, gender, and waist circumference (WC) were the top five important predictors. This study
showed that XGBoost model can be applied to screen individuals at high risk of T2DM in the early
phrase, which has the strong potential for intelligent prevention and control of diabetes. The key
features could also be useful for developing targeted diabetes prevention interventions.

Keywords: type 2 diabetes mellitus (T2DM); machine learning; prediction model; Chinese elderly

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia,
which can lead to serious complications such as chronic kidney disease, acute kidney injury,
cardiovascular disease, ischemic heart disease, stroke, or even death [1]. Type 2 diabetes
mellitus (T2DM) is the most common type of diabetes, accounting for around 90% of all
diabetes cases. According to the report of the International Diabetes Federation (IDF)
in 2021, about 537 million people worldwide are suffering from diabetes and the figure
is projected to rise to 643 million by 2030 and 783 million by 2045 [2]. In China, it was
estimated that there were 140.9 million adults living with diabetes, accounting for 25% of
patients with diabetes worldwide [3]. The rising incidence of diabetes imposes a heavy
burden on individual, health system, and the whole society [4,5].

T2DM is an irreversible but preventable disease [6]. Early diagnosis and effective
screening of high-risk populations can prevent or delay the occurrence or development of
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T2DM and related complications [7]. Therefore, it is critical to establish an effective predic-
tion model to assess individuals’ risk of T2DM, which would help the early identification
of individuals at high risk of T2DM.

Machine learning (ML) is a subfield of artificial intelligence (AI) in computer science,
which uses data-driven techniques to reveal patterns and predict behavior [8,9]. In recent
years, machine learning techniques have been widely applied in the medical and health
field, which have proven to be accurate and efficient in disease diagnosis, treatment, and
prognosis [10,11]. There are many barriers to predict the risk of diabetes, because most
of the medical data are nonlinear, nonnormal, correlation structured, and complex in
nature [12]. Compared with traditional statistical methods, machine learning algorithms
could learn the complex non-linear interactions between risk factors by minimizing errors
between predicted and observed outcomes [13]. Predictive models based on machine
learning algorithms can be useful in the identification of patients with diabetes and help
discover hidden patterns in risk factors of diabetes that might be missed [14]. Numerous
machine learning algorithms have been utilized for the prediction of T2DM, such as
logistic regression (LR) [15], support vector machines (SVM) [16], artificial neural network
(ANN) [17], k-nearest neighbors (KNN) [18], decision tree (DT) [19], random forest (RF) [20],
and extreme gradient boosting (XGBoost) [21]. A recent meta-analysis confirmed the good
discrimination ability of machine learning models to predict T2DM in community settings,
suggesting that artificial neural network performed best, followed by logistic regression,
decision trees, and random forests [22]. Xie et al. constructed several machine learning
models for T2DM prediction using cross-sectional data of 138,146 participants in the United
States, and the experimental results showed the neural network model gave the best model
performance with the highest area under the receiver operating characteristic (AUC) value
of 0.7949 [23]. The study of Katarya et al. based on Pima Indian diabetes dataset found
that random forest performed the best with 0.84 accuracy and 0.83 AUC [24]. Adua et al.
developed four machine learning classification algorithms (Naïve-Bayes (NB), KNN, SVM,
and DT) to screen for T2DM in an African population, in Ghana, and concluded that NB
algorithm performed best with the AUC of 0.87 [25]. A study in Luzhou, China utilized four
ML algorithms to build prediction models of diabetes mellitus by using hospital physical
examination data, and it revealed that random forest was the best performing model with
the highest accuracy of 0.8084 [26]. A cross-sectional study in Urumqi, China based on the
national physical examination data reported that XGBoost was the best classifier with AUC
of 0.9680 [27]. Obviously, prior studies demonstrated different results in T2DM prediction
even using the same machine learning algorithms [28]. Despite the extensive research
on T2DM prediction, there were existing obstacles to applying prior prediction models,
due to the disparity of study population, the difference of data sources, as well as the
unsatisfactory power of those predictive models [29]. Thus, further studies including larger
samples and elderly adults are still required to facilitate the research in this area.

This study aimed to build effective prediction models for the risk of incident T2DM
among Chinese elderly adults based on four machine learning algorithms: logistic regres-
sion (LR), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost).
The purpose of this study was to provide evidence supporting the prevention and control
of diabetes.

2. Materials and Methods
2.1. Study Design and Participants

A retrospective cohort study was conducted using the health screening data of adults
older than 65 years from 17 districts in Wuhan, China. The Wuhan Municipal Government
would provide free physical examinations for the elderly aged 65 and above, which was
regarded as a normalized and standardized project to benefit people. A total of 388,420 el-
derly people participated in the health screening in 2018. The protocol was approved by
the Ethics Committee of Wuhan Center for Disease Control and Prevention (protocol code
WHCDCIRB-K-2018023), and written informed consent was obtained from each partic-
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ipant. Baseline data were collected in 2018, and follow-up data were collected in 2019
and 2020. For longitudinal analysis of incident T2DM, excluding criteria of participants
were: (1) Participants with prevalent T2DM at baseline (participants diagnosed by a fasting
plasma glucose ≥7.0 mmol/L or with a self-reported previous diagnosis by health care
professionals at baseline); (2) those who lost to follow-up; (3) those with duplicate data;
(4) those with missing laboratory values; (5) those with outliers. After applying the exclu-
sion criteria, a total of 127,031 participants were included in this study. The study flow
chart is depicted in Figure 1.
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2.2. Candidate Predictors

The health screening data were collected and recorded at the local community health
service centers in Wuhan by well-trained research staff. It included three parts: a health sta-
tus questionnaire, anthropometric measures, and laboratory measures. The questionnaire
included age, gender, education, marital status, medical history (hypertension, myocardial
infarction, coronary heart disease, angina pectoris, fatty liver), exercise, current smoking,
current drinking. Anthropometric measures were conducted by trained medical staff using
standardized procedures, including weight, height, waist circumference (WC), systolic
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blood pressure (SBP), and diastolic blood pressure (DBP). Body mass index (BMI) was
calculated as weight (kg) divided by height squared (m2). Laboratory measures were per-
formed at the central laboratory, including fasting plasma glucose (FPG), total cholesterol
(TC), triglyceride (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C),
alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TBIL), serum
creatinine (Scr), blood urea nitrogen (BUN), serum uric acid (SUA). The 27 candidate pre-
dictors from the health screening baseline data (Table 1) have been carefully selected based
on the available variables in our dataset, clinical expertise, and prior literature evidence of
their associations with T2DM [30–32].

Table 1. Baseline characteristics of the participants.

Characteristics
Total

(n = 127,031)

Incident T2DM
p-ValueYes

(n = 8298)
No

(n = 118,733)

Age, mean (SD), years 71.94 (5.10) 72.39 (5.31) 71.91 (5.08) <0.001

Gender, n (%) <0.001
Men 56,774 (44.69) 4114 (7.25) 52,660 (92.75)

Women 70,257 (55.31) 4184 (5.96) 66,073 (94.04)

Education, n (%) <0.001
Elementary school and below 75,828 (59.69) 5597 (7.38) 70,231 (92.62)

Junior high school 28,298 (22.28) 1522 (5.38) 26,776 (94.62)
Technical secondary school or high school 13,742 (10.82) 695 (5.06) 13,047 (94.94)

Junior college and above 9163 (7.21) 484 (5.28) 8679 (94.72)

Marital status, n (%) <0.001
Married 98,131 (77.25) 6046 (6.16) 92,085 (93.84)
Divorced 656 (0.52) 48 (7.32) 608 (92.68)
Widowed 27,350 (21.53) 2082 (7.61) 25,268 (92.39)

Single 894 (0.70) 122 (13.65) 772 (86.35)

Hypertension, n (%) <0.001
Yes 56,847 (44.75) 4347 (7.65) 52,500 (92.35)
No 70,184 (55.25) 3951 (5.63) 66,233 (94.37)

Myocardial infarction, n (%) 0.621
Yes 686 (0.54) 48 (7.00) 638 (93.00)
No 126,345 (99.46) 8250 (6.53) 118,095 (93.47)

Coronary heart disease, n (%) 0.413
Yes 7471 (5.88) 505 (6.76) 6966 (93.24)
No 119,560 (94.12) 7793 (6.52) 111,767 (93.48)

Angina pectoris, n (%) 0.711
Yes 506 (0.40) 31 (6.13) 475 (93.87)
No 126,525 (99.60) 8267 (6.53) 118,258 (93.47)

Fatty liver, n (%) 0.020
Yes 2279 (1.79) 176 (7.72) 2103 (92.28)
No 124,752 (98.21) 8122 (6.51) 116,630 (93.49)

Exercise, n (%) <0.001
Yes 74,741 (58.84) 4323 (5.78) 70,418 (94.22)
No 52,290 (41.16) 3975 (7.60) 48,315 (92.40)

Current smoking, n (%) <0.001
Yes 20,498 (16.14) 1515 (7.39) 18,983 (92.61)
No 106,533 (83.86) 6783 (6.37) 99,750 (93.63)
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Table 1. Cont.

Characteristics
Total

(n = 127,031)

Incident T2DM
p-ValueYes

(n = 8298)
No

(n = 118,733)

Current drinking, n (%) 0.908
Yes 21,429 (16.87) 1396 (6.51) 20,033 (93.49)
No 105,602 (83.13) 6902 (6.54) 98,700 (93.46)

BMI, mean (SD), kg/m2 23.70 (3.26) 24.47 (3.51) 23.65 (3.24) <0.001

WC, mean (SD), cm 84.12 (9.16) 86.30 (9.62) 83.97 (9.10) <0.001

SBP, mean (SD), mm Hg 137.12 (20.00) 140.63 (20.38) 136.87 (19.95) <0.001

DBP, mean (SD), mm Hg 80.09 (11.20) 81.63 (11.42) 79.99 (11.18) <0.001

FPG, mean (SD), mmol/L 5.12 (0.69) 5.71 (0.79) 5.08 (0.66) <0.001

TC, median (IQR), mmol/L 4.81 (4.20–5.45) 4.84 (4.20–5.49) 4.81 (4.20–5.44) 0.034

TG, median (IQR), mmol/L 1.17 (0.85–1.63) 1.28 (0.90–1.79) 1.16 (0.85–1.62) <0.001

HDL-C, median (IQR), mmol/L 1.36 (1.15–1.62) 1.32 (1.11–1.58) 1.37 (1.15–1.62) <0.001

LDL-C, median (IQR), mmol/L 2.60 (2.08–3.17) 2.64 (2.11–3.24) 2.60 (2.07–3.16) <0.001

ALT, median (IQR), U/L 16.00 (12.00–21.00) 17.00 (13.00–23.00) 16.00 (12.00–20.90) <0.001

AST, median (IQR), U/L 21.50 (18.00–26.00) 22.00 (18.00–26.00) 21.50 (18.00–26.00) 0.004

TBIL, median (IQR), µmol/L 11.90 (9.17–15.30) 12.40 (9.50–15.90) 11.90 (9.10–15.30) <0.001

Scr, mean (SD), µmol/L 76.82 (19.93) 79.21 (20.94) 76.66 (19.85) <0.001

BUN, median (IQR), mmol/L 5.71 (4.76–6.82) 5.67 (4.70–6.80) 5.71 (4.77–6.83) 0.037

SUA, mean (SD), µmol/L 323.80 (91.90) 333.01 (94.31) 323.15 (91.70) <0.001

SD, standard deviation; IQR: Q1–Q3 values; T2DM, type 2 diabetes mellitus; BMI, body mass index; WC, waist
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting plasma glucose; TC,
total cholesterol; TG, triglycerides; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; ALT, alanine aminotransferase; AST, aspartate transaminase; TBIL, total bilirubin; Scr, serum creatinine;
BUN, blood urea nitrogen; SUA, serum uric acid.

2.3. Outcome

Incident type 2 diabetes mellitus (T2DM) was diagnosed if at least one of the following
two criteria were satisfied according to the American Diabetes Association (ADA): (1) a
self-reported diagnosis that was determined previously by a health care professional, or
(2) fasting plasma glucose (FPG) ≥ 126 mg/dL (7.0 mmol/L) [33]. In this study, self-
reported T2DM was defined by asking participants whether a health care professional had
ever told that he/she was diagnosed with diabetes. Fasting blood samples were collected
after at least 8 h of overnight fasting and were analyzed by trained research staff at the
central laboratory. Fasting plasma glucose (FPG) levels were measured using the glucose
oxidase procedure.

2.4. Machine Learning Algorithms
2.4.1. Logistic Regression (LR)

LR is a classic classification algorithm that measures the relationship between a cate-
gorical dependent variable and one or more independent variables based on the sigmoid
function [34]. This algorithm is a simple method for prediction which provides baseline
accuracy scores to compare with other non-parametric machine learning models [14,35].

2.4.2. Decision Tree (DT)

DT is a supervised learning technique used for a classification task. A decision tree
is a class discrimination tree structure, with each internal node representing an attribute
(or independent variable), each branch reflecting an outcome of the test, and each leaf
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node corresponding to a class label (or dependent variable) [11]. The purpose of DT is to
generate a decision tree with strong generalization capability [36].

2.4.3. Random Forest (RF)

RF is a typical ensemble learning algorithm that consists of multiple decision trees [37].
It can be applied to deal with regression and classification tasks. The algorithm is based on
the idea of incorporating multiple decision tree classifiers to obtain the final classification
result by majority voting and make accurate predictions [38]. RF can analyze complex
interactions between characteristics, and is extremely adept at handling noisy and missing
data [29].

2.4.4. Extreme Gradient Boosting (XGBoost)

XGBoost is an advanced ensemble algorithm, which was proposed by Chen and
Guestrin in 2016 [39]. It is a scalable machine learning technique for tree boosting that
can combine a series of weak classifiers to construct a stronger classifier. This classifier
is an optimized implementation of the gradient boosting decision tree (GBDT) and has
the advantages of high training speed, excellent performance, and can deal with large-
scale data.

2.5. Model Development

The dataset was randomly split into two parts: the training set accounted for 80%
(n = 101,625) and the test set accounted for 20% (n = 25,406). Since the categories of the
incident T2DM in the dataset were imbalanced, the Random under-sampling (RUS) was
applied to the training set to resolve the effect of class imbalance. In order to standardize
the input features, the data were normalized using the Python Sklearn library [40]. The
training set was standardized to mean 0 and variance 1 using the StandardScaler function
from the Sklearn preprocessing library in Python, and the test set was standardized using
the mean and standard deviation of the training dataset. Least Absolute Shrinkage and
Selection Operator (LASSO) regression was used for feature selection in the training set to
construct the prediction models. LASSO is a regression model that penalizes the absolute
sizes of the coefficients, resulting in the disappearance of some regression coefficients [41].
The candidates with non-zero coefficients are selected during the feature selection. We
used LASSO regression with all candidate variables to screen the final input features for
the prediction models.

We trained the logistic regression (LR), decision tree (DT), and random forest (RF)
models implemented using the Python Sklearn package [42]. The extreme gradient boost-
ing (XGBoost) was implemented using the Xgboost package [39]. The input variables
were the 21 features selected by LASSO regression (Table 2). For the DT, RF, and XGBoost
algorithms, Bayesian optimization with 10-fold cross-validation was performed on the
training set to tune the hyperparameters. Bayesian optimization was proposed by Snoek
et al. [43], which has demonstrated to outperform most global optimization algorithms
on benchmark functions. It has become extremely popular for tuning hyperparameters
in machine learning algorithms [44]. Bayesian optimization keeps track of the previous
evaluation results of the objective function and uses them to create a surrogate model such
as Gaussian process which was used to find out the most optimal hyperparameters [45].
After sufficient evaluations of the objective function until reaching maximum iterations, the
surrogate function becomes an accurate model for the actual objective function and the set
of hyperparameters selected is optimal [46]. After 500 iterations, we find the final optimal
hyperparameters of DT, RF, and XGBoost. The best hyperparameters for DT were as fol-
lowed: max_depth = 19, max_features = 7, min_samples_leaf = 55, min_samples_split = 10,
min_weight_fraction_ leaf = 0.031159281996108103. The best hyperparameters for RF were
as followed: max_depth = 68, max_features = 8, n_estimators = 80, min_samples_leaf = 5,
min_samples_split = 69, min_weight_ fraction_ leaf = 0.0009215045821160297. The best
hyperparameters for XGBoost were as followed: colsample_bytree = 0.6907621204231386,
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gamma = 0.6991315172625473, learning_rate = 0.093311071904797607, max_depth = 3,
min_child_weight = 30, reg_alpha = 0.9430563747862351, reg_lambda = 0.7001632991135449,
subsample = 0.5957497121054272.

Table 2. Least Absolute Shrinkage and Selection Operator (LASSO) regression coefficients.

Predictors Coefficient

Age 0.012
Gender −0.026

Education −0.027
Marital status 0.023
Hypertension 0.010

Exercise −0.035
Current smoking 0.017
Current drinking −0.010

WC 0.033
SBP 0.014
FPG 0.219
TC −0.022
TG 0.020

HDL-C 0.006
LDL-C 0.009

ALT 0.037
AST −0.026
TBIL 0.006
Scr 0.004

BUN −0.017
SUA −0.002

2.6. Model Evaluation

The performances of the prediction models were evaluated on the test set using tuned
hyperparameters. The area under receiver operating characteristic (AUC), sensitivity,
specificity, and accuracy were used to evaluate the classification performance. Sensitivity
indicates the proportion of positive sets being predicted correctly, and the specificity
represents the proportion of negative sets being predicted correctly. Accuracy illustrates
the correct prediction of both positive and negative sets. A receiver operating characteristic
(ROC) curve was drawn with the true positive rate (sensitivity) as the ordinate and the
false positive rate (1-specificity) as the abscissa, which indicates the overall performance
of a binary classifier system. AUC was calculated from the ROC curve. The performance
metrics were calculated as follows:

Sensitivity = TP/(TP + FN) (1)

Specificity = TN/(FP + TN) (2)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (3)

Here, TP, FN, FP, and TN represent true positive, false negative, false positive, and
true negative, respectively.

2.7. Model Interpretation

For further model interpretation, the Shapley Additive Explanations (SHAP) was
used. SHAP is a method proposed by Lundberg and Lee in 2017, which is widely used
in the interpretation of various classification and regression models [47]. In this method,
the features are ranked by their contribution to the model, and the relationship between
features and the outcome can be visualized. The model would produce a predicted value
for each sample, and the SHAP value represented the value allocated to each feature in the
sample. Its absolute value reflects the influence of the feature, and its positive or negative



J. Pers. Med. 2022, 12, 905 8 of 16

reflects its positive or negative effect on the predicted risk of incident T2DM. When the
SHAP value > 0, it indicated that the feature contributed to a higher risk of incident T2DM;
On the contrary, when the SHAP value < 0, it indicated that the feature contributed to a
lower risk of incident T2DM [48].

2.8. Statistical Analysis

Data analyses were performed using SAS version 9.4 and Python version 3.10. Base-
line characteristics were summarized as means ± SD (standard deviation) for normally
distributed continuous variables, as median and interquartile range (IQR) for non-normally
distributed continuous variables, and as numbers and percentage for categorical variables.
Students’ t test and Wilcoxon test were used to compare normal and non-normal con-
tinuous variables respectively and Chi-square tests or Fisher’s exact test were used to
compare categorical variables between subgroups. The statistical significance level was
set at p-value < 0.05 (two-sided). To implement the ML algorithms, we used the Python
sklearn package [42] and the Xgboost package [39].

3. Results
3.1. Baseline Characteristics

Table 1 demonstrated the participants’ baseline characteristics. A total of 127,031 el-
igible participants were included in this study, which consisted of 8298 incident T2DM
and 118,733 non-T2DM. The mean age of study participants was 71.94 ± 5.10 years old.
The results showed that age, gender, education, marital status, hypertension, fatty liver,
exercise, current smoking, BMI, WC, SBP, DBP, FPG, TC, TG, HDL-C, LDL-C, ALT, AST,
TBIL, Scr, BUN, and SUA were all significantly associated with incident T2DM (p < 0.05).

3.2. Features Selected by LASSO Regression

Table 2 presented the results of the LASSO regression. Finally, 21 features were
significantly associated with incident T2DM, including age, gender, education, marital
status, hypertension, exercise, current smoking, current drinking, WC, SBP, FPG, TC, TG,
HDL-C, LDL-C, ALT, AST, TBIL, Scr, BUN, and SUA.

3.3. Comparison of the Model Performance

Table 3 presented the results of performance of four machine learning models. The
ROC curves on the training set and test set are shown in Figure 2. Overall, the XGBoost
model performed best with the highest AUC value of 0.7805 on the test set, and the
sensitivity, specificity, and accuracy were 0.6452, 0.7577, and 0.7503, respectively. The
confusion matrix of the four machine learning models is presented in Figure 3.

Table 3. Comparison of performance of the four machine learning models.

Model AUC Sensitivity Specificity Accuracy

LR 0.7601 0.6320 0.7636 0.7550
DT 0.7280 0.5821 0.7633 0.7514
RF 0.7772 0.6428 0.7524 0.7453

XGBoost 0.7805 0.6452 0.7577 0.7503
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3.4. Feature Importance

In this study, XGBoost performed the best out of the four models. Figure 4 presented
the contributions of the 21 features on the XGBoost model output ranked by the average
absolute SHAP value. FPG, education, exercise, gender, and WC were the top five important
features. The SHAP values of FPG, WC, ALT, marital status, SBP, TG, hypertension, TBIL,
age, smoking, Scr, and LDL-C were greater than 0, which suggested that these features
were significant risk factors for incident T2DM.
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blue indicating a low feature value and red indicating a high feature value. The higher the SHAP
value of a feature, the higher the risk of incident T2DM. Smoking was defined as current smoking;
drinking was defined as current drinking.

4. Discussion

In this retrospective study, we applied four machine learning algorithms to build
prediction models for the risk of incident T2DM among Chinese elderly. It is found that the
XGBoost model with 21 features demonstrated the best performance for predicting T2DM.
This suggested that the prediction model derived in the present study could be applied
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to screen out individuals at high risk of T2DM, which could benefit the prevention and
control of diabetes.

To date, the research of diabetes prediction models tended to focus on white popu-
lations [49–52], and Asian populations especially for the elderly have received relatively
little attention. This study utilized a large longitudinal dataset obtained from Chinese
elderly to establish prediction models for T2DM. The prediction results confirmed that
the XGBoost model performed best with the highest AUC value of 0.7805 in predicting
the probability that an individual develops T2DM. It was a good example of success for
the XGBoost’s application in the research of diabetes risk prediction. This finding was
consistent with earlier studies [14,21,27,53], which identified the good prediction power of
the XGBoost model, with AUC values ranging from 0.8300 to 0.9680. Different from this
study, a previous Korean population-based cohort study demonstrated that the ensemble
models (e.g., stacking classifier) had better performance than the single models including
XGBoost [54]. A rural cohort study in Henan province of China showed good predictive
efficiency for the prediction models of T2DM, with AUC values ranging from 0.811 to
0.872 using laboratory data [55]. Compared with previous research, the AUC value in
this study was relatively not satisfactory enough. A potential reason could be due to
the differences of the study population and input features in the models, which could
impact the predictive performance to some extent. Different from our study, the study
population of prior studies [14,21,27,53] were middle-aged adults and fewer predictors
were applied in the prediction of diabetes. To our knowledge, this was the first study that
targeted the elderly population (≥65 years) in China to build predictive models for diabetes
using machine learning techniques, which would have great implications for designing
diabetes prevention focusing on the elderly. With the development of artificial intelligence,
machine learning techniques have been widely applied in the medical field, especially
for prediction models for diabetes [49,51,53,56–58]. It is worth noting that the advantages
of machine learning models are well-documented empirically compared with traditional
statistical methods, but its disadvantage is the lack of model interpretability [13]. XGBoost
was often considered as a black box model, because it tends to have better accuracy for
predictions compared with linear models while it loses the model interpretability at the
same time [39]. Thus, we applied the Shapley Additive Explanations (SHAP) method
developed by Lundberg and Lee [47] to better explain the contribution of each feature to
the model. This is crucial for healthcare workers to get over the model interpretability
barrier to apply predictive models in clinical practice.

Notably, the results of the feature importance analysis indicated the contribution of
different feature to the model. These features such as FPG, education, exercise, gender,
WC, etc., made substantial contributions to the prediction model. This was in accordance
with the results observed in prior similar research [14,53,59]. Early identification of key risk
factors had important implications for the risk assessment and prevention of diabetes. Our
model results identified that FPG was the most significant predictor of T2DM. Individuals
with higher blood glucose would have a greater likelihood of developing diabetes. An
explanation for this was that hyperglycemia was correlated with insulin resistance [60].
As mentioned in the literature review, blood glucose was the main traditionally diabetes
predictor and also widely used for diagnosis of diabetes [61]. This indicated that blood
glucose control plays a key role in the prevention of T2DM, especially for the elderly.

As is shown in the present study, education and exercise showed negative associations
with the risk of incident T2DM. Several studies have suggested that diabetes is associated
with a low level of education [62–66]. A cohort study among American adults has confirmed
that educational level was linked to the onset of diabetes [66]. Individuals with less than a
high school educational level (hazard rate [HR] 1.58; 95% CI, 1.26–1.97) were more likely to
develop diabetes. It is possible that people with higher education would have better health
literacy, so they paid more attention to health management to prevent diabetes [65]. Prior
studies have also noted the key role of exercise [67,68] and found that exercise intervention
could decrease the risk of developing diabetes by 46% [68]. The China Da Qing Diabetes
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Prevention Study has identified the long-term effects of exercise interventions in reducing
the incidence of T2DM [67]. It was shown that exercise intervention groups had a 49%
decreased incidence of T2DM (hazard rate ratio [HRR], 0.51; 95% CI, 0.31–0.83) over the past
two decades. There is need for implementing diabetes prevention programs, emphasizing
the importance of regular exercise, and focusing particularly on lower educated populations.
In our study, another interesting finding was that men were more likely to develop T2DM
compared to women, which agreed with results from earlier studies [69,70]. Previous
meta-analysis also demonstrated that gender was a dependent risk factor of T2DM in
mainland China [71]. It found that the female gender (odds ratio [OR], 0.87, 95% CI,
0.78–0.97) was significantly negatively associated with the risk of T2DM. This could be
explained by the fact that most risk factors (e.g., smoking and alcohol consumption, and
physical inactivity) were more prevalent in men than women [72]. Therefore, more attention
should be paid to men. As a measure of central/abdominal obesity, WC was also proved
to be a strong predictor of T2DM. The significance of WC has been illustrated in other
studies [17,73]. A 13-year prospective cohort study reported that a higher WC was linked
to an increased risk of diabetes and the age-adjusted relative risks (RRs) across quintiles
of WC were 1.0, 2.0, 2.7, 5.0, and 12.0, respectively [74]. Our findings further supported
that the routine measurement of waist circumference would help clinical workers make
preventive recommendations for individuals at high risk of diabetes.

Diabetes has become a major human health challenge and a global health burden
because of its high morbidity and mortality rates [75,76]. The XGBoost prediction model
established in this study showed promising performance. It had important public health
implications, which could help clinicians screen out populations with a high risk of diabetes.
The key features identified in this study not only captured each person’s socio-demographic
variables, but also medical history, anthropometric and clinical laboratory variables, which
could be effective for formulating and implementing targeted diabetes prevention strategies
to reduce the disease burden.

Despite of the above encouraging findings, the current study has several limitations.
First, only the participants who attended both the baseline survey and 2 -year follow-up
were included in this study, which might potentially introduce a selection bias and limit the
generalizability of the results. Second, some important risk factors of T2DM such as HbA1c,
and insulin were not accounted for in the prediction models due to lack of relevant data.
Third, some diabetes cases would be misclassified as non-T2DM because the oral glucose
tolerance test (OGTT) was not included for the diagnosis of T2DM. However, the high cost
and large sample size make it infeasible and difficult to perform oral glucose tolerance tests
for all participants. Fourth, we only performed internal validation, and these prediction
models need to be further validated in an external validation set in future work. Moreover,
further work is warranted to consider auto encoder, to extract the type 2 diabetes mellitus
(T2DM) features automatically, which can improve the classification efficiency of T2DM to
some extent.

5. Conclusions

The current study developed four predictive models based on ML algorithms for the
risk of incident T2DM in Chinese elderly. Our findings demonstrated that the XGBoost
model achieved the best predictive performance for T2DM. Additionally, FPG, education,
exercise, gender, and WC were the strongest predictors in the prediction model, which
would benefit clinical practice in developing targeted diabetes prevention and control
interventions.
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