
 Open access Proceedings Article DOI:10.1109/MSR.2010.5463284

Predicting the severity of a reported bug — Source link

Ahmed Lamkanfi, Serge Demeyer, Emanuel Giger, Bart Goethals

Institutions: University of Antwerp, University of Zurich

Published on: 02 May 2010 - Mining Software Repositories

Topics: Software bug

Related papers:

 Automated severity assessment of software defect reports

 Comparing Mining Algorithms for Predicting the Severity of a Reported Bug

 Who should fix this bug

 Information Retrieval Based Nearest Neighbor Classification for Fine-Grained Bug Severity Prediction

 An approach to detecting duplicate bug reports using natural language and execution information

Share this paper:

View more about this paper here: https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-
4c7rpw4xh0

https://typeset.io/
https://www.doi.org/10.1109/MSR.2010.5463284
https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0
https://typeset.io/authors/ahmed-lamkanfi-3vjvckw1xs
https://typeset.io/authors/serge-demeyer-14nj4v2h3e
https://typeset.io/authors/emanuel-giger-5bg2hwv2bx
https://typeset.io/authors/bart-goethals-3iy8oxcsc9
https://typeset.io/institutions/university-of-antwerp-2gqodjhv
https://typeset.io/institutions/university-of-zurich-144im07m
https://typeset.io/conferences/mining-software-repositories-22286src
https://typeset.io/topics/software-bug-5frqz477
https://typeset.io/papers/automated-severity-assessment-of-software-defect-reports-5egetqjes7
https://typeset.io/papers/comparing-mining-algorithms-for-predicting-the-severity-of-a-2axcng8cnv
https://typeset.io/papers/who-should-fix-this-bug-56jdtch9pp
https://typeset.io/papers/information-retrieval-based-nearest-neighbor-classification-4cz785niqv
https://typeset.io/papers/an-approach-to-detecting-duplicate-bug-reports-using-natural-gnjtc08ha6
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0
https://twitter.com/intent/tweet?text=Predicting%20the%20severity%20of%20a%20reported%20bug&url=https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0
https://typeset.io/papers/predicting-the-severity-of-a-reported-bug-4c7rpw4xh0

Zurich Open Repository and

Archive

University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2010

Predicting the severity of a reported bug

Lamkanfi, A ; Demeyer, S ; Giger, E ; Goethals, B

Abstract: The severity of a reported bug is a critical factor in deciding how soon it needs to be fixed.
Unfortunately, while clear guidelines exist on how to assign the severity of a bug, it remains an inherent
manual process left to the person reporting the bug. In this paper we investigate whether we can
accurately predict the severity of a reported bug by analyzing its textual description using text mining
algorithms. Based on three cases drawn from the open-source community (Mozilla, Eclipse and GNOME),
we conclude that given a training set of sufficient size (approximately 500 reports per severity), it is
possible to predict the severity with a reasonable accuracy (both precision and recall vary between 0.65-
0.75 with Mozilla and Eclipse; 0.70-0.85 in the case of GNOME).

DOI: https://doi.org/10.1109/MSR.2010.5463284

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-42663
Conference or Workshop Item

Originally published at:
Lamkanfi, A; Demeyer, S; Giger, E; Goethals, B (2010). Predicting the severity of a reported bug. In:
7th Working Conference on Mining Software Repositories, Cape Town, South Africa, 2 May 2010 - 3 May
2010, 1-10.
DOI: https://doi.org/10.1109/MSR.2010.5463284

Predicting the Severity of a Reported Bug

Ahmed Lamkanfi∗, Serge Demeyer∗†, Emanuel Giger†, Bart Goethals‡

∗LORE - Lab On Reengineering — University of Antwerp, Belgium
†SEAL - Software Evolution and Architecture Lab — University of Zürich, Switzerland

‡ADReM - Advanced Database Research and Modelling — University of Antwerp, Belgium

Abstract—The severity of a reported bug is a critical factor
in deciding how soon it needs to be fixed. Unfortunately, while
clear guidelines exist on how to assign the severity of a bug, it
remains an inherent manual process left to the person reporting
the bug. In this paper we investigate whether we can accurately
predict the severity of a reported bug by analyzing its textual
description using text mining algorithms. Based on three cases
drawn from the open-source community (Mozilla, Eclipse and
GNOME), we conclude that given a training set of sufficient
size (approximately 500 reports per severity), it is possible to
predict the severity with a reasonable accuracy (both precision
and recall vary between 0.65-0.75 with Mozilla and Eclipse;
0.70-0.85 in the case of GNOME).

I. INTRODUCTION

During bug triaging, a software development team must

decide how soon bugs needs to be fixed, using categories

like (P1) as soon as possible; (P2) before the next product

release; (P3) may be postponed; (P4) bugs never to be fixed.

This so-called priority assigned to a reported bug represents

how urgent it is from a business perspective that the bug

gets fixed. A malfunctioning feature used by many users for

instance might be more urgent to fix than a system crash

on an obscure platform only used by a tiny fraction of the

user base. In addition to the priority, a software development

team also keep tracks of the so-called severity: the impact

the bug has on the successful execution of the software

system. While the priority of a bug is a relative assessment

depending on the other reported bugs and the time until the

next release, severity is an absolute classification. Ideally,

different persons reporting the same bug should assign it the

same severity. Consequently, software projects typically have

clear guidelines on how to assign a severity to a bug. High

severity typically represent fatal errors and crashes and low

severity typically represent cosmetic issues — depending on

the project several intermediate categories exist as well.

Despite their differing objectives, the severity is a critical

factor in deciding the priority of a bug. And because the

number of reported bugs is usually quite high1, tool support

to aid a development team in verifying the severity of a bug

is desirable. Since bug reports typically come with textual

1A software project like Eclipse received over 2.764 bug reports over
a period of 3 months (between 01/10/2009-01/01/2010); Mozilla and
GNOME received respectively 6.976 and 3.263 reports over the same
period.

descriptions, text mining algorithms are likely candidates for

providing such support. Text mining techniques have been

previously applied on these descriptions of bug reports to

automate the bug triaging process [1, 2, 3] and to detect

duplicate bug reports [4, 5]. Our hypothesis is that frequently

used terms to describe bugs like “crash” or “failure” serve

as good indicators for the severity of a bug. Using a text

mining approach, we envision a tool that — after a certain

“training period” — provides a second opinion to be used

by the development team for verification purposes.

Consequently, in this paper we investigate whether we can

accurately predict the severity of a reported bug by analyzing

its textual description with a text mining algorithm. While

answering this question, we tackle four subsidiary research

questions inherent to the use of a text mining algorithm.

• potential indicators: Which terms in the textual descrip-

tions of a bug report could serve as good indicators of

the severity?

• short vs. long: Which (text) fields in the bug reports

serve as the best prediction basis? The one-line sum-

mary which briefly focusses on the problem or the

longer full description which includes more detail?

• training period: How many samples must be collected

before one can make a reliable predictor?

• per component vs. cross-component: Is it better to

have a specialized predictor for each component of the

software system, or can we combine bug reports over

different software components (the so-called “cross-

component” approach)?

The paper itself is structured as follows. First, Section II

provides the necessary background on both the bug triaging

and text mining necessary to understand the technique.

The technique and its validation against three open-source

cases (Mozilla, Eclipse and GNOME) is then described in

Section III. Also concerning validation, we investigate the

subsidiary research questions (indicators; short vs. full bug

report; the length of the training period; per-component vs.

cross-component) in Section IV. After that, Section V lists

those issues that may pose a risk to the validity of our results,

followed by Section VI discussing related work of other

researchers. Finally, Section VII summarizes the results and

points out future work.

MSR 2010978-1-4244-6803-4/10/$26.00 2010 IEEE 1

II. BACKGROUND

In this section, we provide the necessary background in-

formation needed for a detailed description of our approach.

First, we discuss the underlying principle of bug reports and

bug triaging in general. Then, we provide a brief introduction

of the text mining techniques we use in the context of this

study.

A. Bug reports and bug triaging

A software bug is what software engineers commonly use

to describe the occurrence of a fault in a software system. A

fault is then defined as a mistake which causes the software

to behave differently from its specifications [6]. Nowadays,

users of software systems are encouraged to report the

bugs they encounter, using bug tracking systems such as

Jira [www.atlassian.com/software/jira] and Bugzilla [www.

bugzilla.org].

While reporting a bug, a user is asked to provide infor-

mation about the bug by filling in a form, used subsequently

by the development team to resolve the bug. This form

includes a one-line summary of the observed malfunction

and longer more profound description, sometimes including

stack traces and the like. Typically the form also allows to

select a particular component of the faulty software system:

e.g., in the Mozilla project, “Bookmarks” and “Layout”

are components. For larger software systems the form may

even include a field for specifying the product where the

bug occurred: e.g., in the Mozilla project, the web-browser

“Firefox” and the e-mail client “Thunderbird” are products.

Most important for the purpose of this paper though is that

the user is also asked to make an assessment of the severity

of the bug. Most projects have clear guidelines on how

to determine the severity: Critical = the software will not

run; High = unexpected fatal errors (incl. crashes and data

corruption); Medium = a feature is malfunctioning; Low =

a cosmetic issue. Nevertheless such an assessment must be

made in good conscience and when users have no clue they

typically just leave the default option.

Researchers have been investigating what characterizes

a “good” bug report, i.e., ones that are appreciated by

developers and are likely to get fixed sooner [7]. They

concluded that “stack traces” and “steps to reproduce” are

considered most useful. This is fairly technical information

to provide, and unfortunately there is little knowledge on

whether users submitting bug reports are capable to do

so. Nevertheless, we can make some educated assumptions.

Users of technical software such as Eclipse and GNOME

typically have more knowledge about software development,

hence are more likely to provide the necessary technical

detail. Also, a user base which is heavily attached to the

software system are more likely to help the developers by

writing detailed bug reports.

Finally, caution must be taken as some software systems

generate bug reports that are submitted automatically when

certain exceptions occur; such reports of course must be

omitted as their severity is confirmed by their construction.

B. Text mining techniques

Document classification is widely studied in Machine

Learning [8]. Classification or categorization is the pro-

cess of automatically assigning a predefined category to

a document like categorizing textual documents according

to their topic. For example, the popular news site Google

News [news.google.com] uses a classifier to sort online news

reports according to their topic like entertainment, sports and

others. Formally, a classifier is a function

f : Document �→ {c1, ..., cq}

mapping a document (in our case a bug report) to a

certain category in {c1, ..., cq} (in our case the categories

{non–severe, severe}. Each document is represented using

a vector of features where a feature corresponds to a single

term.

A range of classification algorithms exist: like Support

Vector Machines, Decision trees, Nearest Neighbor clas-

sifier, In this study, we use a Naı̈ve Bayes classifier

which is based on the probabilistic occurrence of terms

(the features). This classifier has found its way into many

applications including e-mail filtering software where it is

used to distinguishes spam from legitimate e-mails based on

the contents of the e-mail to some extent. In simple terms,

the Naı̈ve Bayesian classifier categorizes documents based

on the probability of the presence or absence of a term in the

document. When training the classifier, the algorithm keeps

track of the probability of each term belonging to a certain

category. Using this extracted information, a new document

is categorized according to the determined probabilities of

each term occurring in the document.

Classifiers based on the Naı̈ve Bayes approach are studied

frequently. Even though the Naı̈ve Bayes classification algo-

rithm is based on a simple probabilistic principle, this clas-

sifier has proven to perform quite good compared to more

sophisticated algorithms [9]. They are called “naı̈ve” because

the algorithm assumes that all terms occur independent from

each other which is often obviously false [8].

To allow automatic classification of documents, a Naı̈ve

Bayes classifiers requires a feature vector, obtained through

the following preprocessing steps. The effect of each pre-

processing step is shown in Table I.

Table I
EFFECTS OF EACH PREPROCESSING STEP

Original description crashes when I Manage

Bookmarks with a Personal

Toolbar Folder link

After stop-words removal crashes manage bookmarks

personal toolbar folder link

After stemming crash manag bookmark person

toolbar folder link

2

• Tokenization: The process of tokenization consists of

dividing a large textual string into a set of tokens

where a single token corresponds to a single term. This

step also includes filtering out all meaningless symbols

like punctuations and commas, because these symbols

do not contribute to the classification task. Also, all

capitalized characters are replaced by their lower-cased

ones.

• Stop-words removal: Human languages commonly

make use of constructive terms like conjunctions, ad-

verbs, prepositions and other language structures to

build up sentences. Terms like “the”, “in” and “that”

also known as stop-words do not carry much specific

information in the context of a bug report. Moreover,

these terms appear frequently in the descriptions of

the bug reports and thus increase the dimensionality of

the data which in turn could decrease the performance

of classification algorithms. This is sometimes also

referred as the curse of dimensionality. Therefore, all

stop-words are removed from the set of tokens based

on a list of known stop-words.

• Stemming: The stemming step aims at reducing each

term appearing in the descriptions into its basic form.

Each single term can be expressed in different forms

but still carry the same specific information. For ex-

ample, the terms “computerized”, “computerize” and

“computation” all share the same morphological base:

“computer”. A stemming algorithm like the porter

stemmer [10] transforms each term to its basic form.

III. CASE STUDY

In this section, we first provide a step-by-step in depth

description of our approach. Then, we select the measures

we use to validate the overall performance of the presented

approach. Afterwards, we motivate the selection of the cases

and then present the results.

A. Approach

In this study, our approach is based on the assumption that

the reporter of a bug uses potentially significant terms in the

descriptions which distinguish non-severe from severe bugs.

For example, if it is explicitly stated that the application

crashes when performing a certain operation, the hypothesis

is that we are most likely dealing with a severe bug.

The bug reports we studied originated from Bugzilla

bug tracking systems where the severity varies from trivial,

minor, normal, major, critical to blocker. There exist clear

guidelines on how to assign the severity of a bug. Bugzilla

also allow users to request features using the reporting

mechanism in the form of a report with “severity” en-

hancement. These reports are not considered in this study

since they technically do not represent real bug reports.

In our approach, we treat the severities trivial and minor

as non-severe, while reports with severity major, critical,

blocker are considered severe bugs. Herraiz et al. proposed

a similar grouping of severities [11]. In our case, the normal

severity is deliberately not taken into account. First of all

because they represent the grey zone, hence might confuse

the classifier. But more importantly, because in the cases we

investigated this “normal” severity was the default option for

selecting the severity when reporting a bug and we suspected

that many reporters just did not bother to consciously asses

the bug severity. Manual sampling of bug reports confirmed

this suspicion.

Of course, the prediction must be based on problem-

domain specific assumptions. In this case, the predicted

severity of a new report is based on characteristics observed

in previous ones. Therefore we use a prediction heuristic

which learns the specific characteristics of bug reports from

a history of bug reports we provide where the severity

of each report is known in advance. Subsequently, the

heuristic can then be deployed to predict the severity of

a previously unseen report. The provided history of bug

reports is also known as the training set of bug reports.

A separate evaluation set of reports is used to evaluate the

accuracy of the prediction heuristic.

The approach presented in this paper basically consists of

the following five steps, detailed below.

(1) Extract and organize bug reports: To have good

predictors for the severity of a bug report, the terms used

to describe bugs are most likely specialized for the part

of the system they are reporting about. Bug reports are

typically organized according to the affected component and

the corresponding product. The first step of our approach

consequently selects bug reports of a certain product and

component.

(2) Preprocessing the bug reports: To assure the opti-

mal performance of the text mining algorithm, we apply the

standard preprocessing steps for textual data (tokenization,

stop-words removal and stemming) on the descriptions in

the bug reports.

(3) Choosing a training and evaluation set: As is

common in text classification, we train the heuristic by

giving a set of example bug reports where their severities

is known in advance. The training set with the example

reports is selected from the global set of the bug reports in a

random manner. To ensure that the classifier is not affected

by the distribution of the bugs according to their severities,

we make sure that we select just as much reports in the

training and evaluation set for each severity.

We expect the size of the training set to play a significant

role for the prediction heuristic. We use ±70 − 30% of

the available reports for the training and evaluation set

respectively. However, we will investigate this issue further

under the subsidiary research questions in IV-C.

(4) Training the classifier: Using the training set we

obtained in the previous step, we now advance to the

actual training period where the Naı̈ve Bayes classification

3

algorithm basically learns the characteristics of the bug

reports.

(5) Applying the classifier on the evaluation set: Once

the classifier is trained sufficiently, we apply it on the bug

reports contained in the evaluation set where the heuristic

predicts the severity of each report. Since the severity for

these bug reports is known in advance, we can compare the

predictions to the actual severities in order to verify how

accurate the predictions would have been.

B. Evaluation measures

The two most commonly used evaluation metrics which

we use to validate our approach are precision and recall.

• Precision The percentage of bug reports predicted

as either non-severe or severe which are correctly

predicted. We consider precision thus for each severity

separately. When S is either non-severe or severe, we

define precision more formally as:

PrecisionS =
bugs correctly predicted as S

bugs predicted as S

• Recall The percentage of all bug reports with severity

non-severe or severe that are actually predicted as

being respectively non-severe or severe. Here, we also

consider recall for each precision separately. When S

is either non-severe or severe, we define recall more

formally as:

RecallS =
bugs correctly predicted as S

bugs of severity S

We calculate both precision and recall using a confusion

matrix, sketched in Table II. This matrix represents all

possible outcomes when making predictions of the severity.

Table II
CONFUSION MATRIX USED TO CALCULATE PRECISION AND RECALL

Correct severity

non-severe severe

Predicted non-severe tp: true positives fp: false positives

severity severe fn: false negatives tn: true negatives

Using this confusion matrix, we calculate precision and

recall as follows:

precnon–severe =
tp

tp + fp
precsevere =

tn

tn + fn

recnon–severe =
tp

tp + fn
recsevere =

tn

tn + fp

With an ideal classifier, all bug reports are classified

correctly (high recall), while it minimizes the number of

incorrect classified bug reports (high precision).

We also use an alternate technique to evaluate the perfor-

mance of our approach: the Receiver Operating Character-

istic (ROC). The ROC compares the rate of true positives

(TPR) with the rate of false positives (FPR) and is typically

drawn as a curve [12]. The “area under the ROC curve”

(AUC) is then a statistic summarizing the ROC curve in a

single number representing the overall performance of the

heuristic. This statistic represents the probability that the out-

come of the heuristic is a better indication when compared to

randomly choosing the severity. Random classification has

an AUC value of 0.5 while the perfect heuristic has an AUC

of 1 — similar to precision and recall — which means that

the heuristic predicted the severities of all bugs correctly.

Therefore, the higher AUC value is, the better the heuristic

performs.

C. Selection on the cases

To validate the presented approach, we use bug reports

from three major open-source projects using Bugzilla as their

bug tracking system: Mozilla, Eclipse and GNOME.

Mozilla: [http://bugzilla.mozilla.org] Mozilla is an

open-source software project hosting several popular prod-

ucts like Firefox and Thunderbird. The copy of the bug

databases we obtained contains all reports submitted in

the period of 1997-2008 corresponding to approximately

400.000 reported bugs. The Mozilla products are examples

of applications with less savvy users so we expect the bug

reports to be less detailed than the ones from Eclipse and

GNOME.

Eclipse: [http://bugs.eclipse.org/bugs] Eclipse is an

open-source integrated development environment widely

used in both open-source and industrial settings. The bug

database contains over 200.000 bug reports submitted in the

period of 2001-2008. Eclipse is a technical application used

by developers themselves, so we expect the bug reports to

be quite detailed and “good” (as defined by Bettenburg et

al. [7]).

GNOME: [http://bugzilla.gnome.org] GNOME is an

open-source desktop-environment developed for Unix-based

operating systems. In this case we have over 450.000

reported bugs available submitted in the period of 1998-

2009. GNOME was selected primarily because it was part of

the MSR 2010 mining challenge [msr.uwaterloo.ca/msr2010/

challenge/]. As such the community agreed that this is a

worthwhile case to investigate. Moreover results we obtained

here might be compared against results obtained by other

researchers. For our investigation, GNOME was also inter-

esting because —as confirmed by our inspection of the bug

reports— it had a lot of automatically generated bug reports.

D. Selection of the components

As mentioned under the first step of our approach, the

predictive heuristic is considered per component so that

“component-specific” terms in the bug reports are taken into

account by the heuristic. Therefore, we select a series of

components from the cases on which we apply and validate

our approach. We selected components according to the

highest number of available bug reports since these contain

4

the most reports to train and validate with. In Table III, we

present the selected components with their corresponding

identification ID. The ID’s of the GNOME components are

omitted because this information was not included in the

available data we used.

Table III
COMPONENTS AND NUMBER OF THEIR (non-)severe BUGS FOR

RESPECTIVELY MOZILLA, ECLIPSE AND GNOME

ID Name Non-severe bugs Severe bugs

23 Layout 1.043 3.064

145 Bookmarks 644 1.120

279 FirefoxGeneral 2.699 8.443

8 Eclipse User Interface 1.403 3.258

12 JDT User Interface 1.401 1.522

43 JDT Text 806 557

x Calendar 619 2.661

x Contacts 638 1.637

x Mailer 2.537 7.239

E. Results

Table IV shows the precision and recall measures for

each of the selected components from Mozilla, Eclipse and

GNOME.

Table IV
PRECISION AND RECALL OF THE APPROACH APPLIED ON A SERIES OF

COMPONENTS

Non-severe Severe

Component Precision Recall Precision Recall

Mozilla:Layout 0.701 0.785 0.752 0.653

Mozilla:Bookmarks 0.692 0.703 0.698 0.687

Mozilla:FirefoxGeneral 0.692 0.744 0.723 0.670

Eclipse:UI 0.707 0.633 0.668 0.738

Eclipse:JDT-UI 0.653 0.714 0.685 0.621

Eclipse:JDT-Text 0.705 0.718 0.713 0.700

GNOME:Calendar 0.828 0.783 0.794 0.837

GNOME:Contacts 0.767 0.706 0.728 0.785

GNOME:Mailer 0.767 0.804 0.794 0.756

As we see in Table IV, the results of the Mozilla and

Eclipse components are similar where we note that both

precision and recall vary between the values 0.65-0.75.

This applies for both non-severe as severe bugs. Moreover,

the GNOME case shows significantly better results with

precision and recall varying in the range 0.70-0.85.

Table V shows the AUC values of the predictive heuristic

applied on the three cases. The AUC for all Eclipse com-

ponents are approximately 0.74. We notice an improvement

with the Mozilla components where we observe an AUC of

approximately 0.80. The approach performs best with the

components of GNOME where the AUC varies between

0.82-0.87. In this case, this means that our approach per-

forms around 35 % better than if we would randomly guess

the severity of each bug.

Table V
AUC MEASURES OF THE APPROACH ON A SERIES OF COMPONENTS

Component AUC

Mozilla:Layout 0.813

Mozilla:Bookmarks 0.793

Mozilla:FirefoxGeneral 0.802

Eclipse:UI 0.744

Eclipse:JDT-UI 0.740

Eclipse:JDT-Text 0.775

GNOME:Calendar 0.869

GNOME:Contacts 0.822

GNOME:Mailer 0.854

Therefore, we conclude that it is possible to predict the

severity of a reported bug based on the provided information,

more particularly the one-line summary using a Naı̈ve Bayes

classifier. The accuracy of the approach is reasonable, yet it

depends on the case.

IV. SUBSIDIARY RESEARCH QUESTIONS

Knowing that we can we can accurately predict the

severity of a reported bug, there are some issues which may

affect the performance of the technique. We formulate these

issues using the following questions:

• Which terms in the textual descriptions of a bug report

could serve as good indicators of the severity?

• A bug reporter also provides a long description in a

report. How does the prediction perform when training

with this description?

• How many training examples do we need to build a

stable, robust predictor?

• What about training the heuristic with cross-component

bug reports?

We make variations to some of the parameters of the

approach and report the differences compared to the base

results shown in Table IV.

A. Which terms in the textual descriptions of a bug report

could serve as good indicators of the severity?

The Naı̈ve Bayes classifier we use in our approach pre-

dicts the severity based on the probability of the presence

or absence of a term in the one-line summary of a report.

When we train this classifier, the algorithm calculates these

probability values of each term belonging to a certain sever-

ity. We managed to extract these values from the classifier of

each term. Based on these extracted probabilities, we report

for a number of components in Table VI the top-10 most

significant terms indicating the severity.

From Table VI we observe that terms like deadlock,

hang and segfault are significant terms considering

severe reported bugs. This confirms our hypothesis that

certain terms in the descriptions are good indicators for the

severity of a reported bug. The same terms tend even to

appear across different components and even products.

5

Table VI
TOP-10 MOST SIGNIFICANT TERMS INDICATING EACH SEVERITY

Component Non-severe Severe

Mozilla
Firefox-
General

inconsist,

favicon, credit,

extra, consum,

licens, underlin,

typo, inspector,

titlebar

fault, machin,

reboot, reinstal,

lockup, seemingli,

perman, instantli,

segfault, compil

Eclipse
JDT UI

deprec, style,

runnabl, system,

cce, tvt35,

whitespac, node,

put, param

hang, freez,

deadlock, thread,

slow, anymor,

memori, tick, jvm,

adapt

GNOME
Mailer

mnemon, outbox,

typo, pad, follow,

titl, high,

acceler, decod,

reflect

deadlock,

sigsegv, relat,

caus, snapshot,

segment, core,

unexpectedli,

build, loop

When considering the non-severe indicators, we observed

that some terms like typo serve as good indicators. How-

ever, we noticed that less non-severe indicators are shared

across different components while severe indicators tend

to appear across different components and products. This

can be explained by the origins of severe bugs which

are typically easier to describe using specific terms. For

example, the application crashes or there is a memory issue.

These situations are easily described using specific powerful

terms like crash or memory. This is less obvious in the

case of non-severe indicators since they typically describe

cosmetic issues. In this case, reporters use less common

terms to describe the nature of the problem.

B. How does the approach perform with the longer descrip-

tion?

In addition to the one-line summary, the reporter also

provides a longer description of the encountered problem

when a bug is submitted. This description provides more

detailed information of the bug. For example, the reporter

explains when exactly the bug occurs and how it can be

reproduced. The reporter may also provide a stack trace of

the application when the bug occurs within this description.

This information may also implicitly contain significant in-

formation in the context of the severity of the bug. Therefore,

we now use this description (instead of one-line summary)

to train the heuristic expecting that the accuracy of the

predictions will improve since the heuristic is provided with

more detailed information. For this part of the evaluation

we had to exclude the bug reports for the GNOME case

since manual inspection revealed that the severity of the

reported bug was automatically included into the description

field. This will of course jeopardize our results as we would

quickly obtain a perfect classifier. Table VII shows the

effect on the precision and recall for Mozilla and Eclipse

components.

Table VII
PERFORMANCE OF THE APPROACH WHEN USING THE LONGER

DESCRIPTION

Non-severe Severe

Component Precision Recall Precision Recall

Mozilla:Layout 0.583 0.961 0.890 0.314

Mozilla:Bookmarks 0.536 0.963 0.820 0.166

Mozilla:FirefoxGeneral 0.578 0.948 0.856 0.308

Eclipse:UI 0.548 0.976 0.892 0.197

Eclipse:JDT-UI 0.547 0.973 0.881 0.195

Eclipse:JDT-Text 0.570 0.988 0.955 0.257

The first striking observation we make from the results in

Table VII, is the contrast with the results of our approach.

While we see on the one hand very high recall and much

lower precision values with non-severe, we also observe on

the other hand a very high precision and a much lower

recall with severe. In the context of the confusion matrix

(see Table II) it seems we are dealing with large number of

false positives and a very small number of false negatives.

This basically means that many severe bug reports are faulty

predicted as non-severe explaining the low recall value in the

severe case. This subsequently leads to a small number of

remaining severe reported bugs where the heuristic predicts

correctly (leading to a high precision). Also, a small number

of non-severe reports are correctly predicted, but due to

the large number of false positives we conclude that these

predictions are not meaningful. Therefore, we conclude that

the one-line summary of the bug is a better source of

information than the longer full description for the heuristic.

The contrast of the obtained results can be explained by

the characteristics of the description and confirms earlier

results from a linguistic analysis of bug reports [13]. The

description generally tends to be much longer in size com-

pared to the one-line summary. The reporter explains the

nature of the problem using several sentences while the same

information is also summarized using only one line. The

information is often scattered in a longer description and

therefore more difficult to extract resulting in a degradation

of the performance. In some cases the reporter also includes

stack traces, snippets of source code in these descriptions

which is considered as noise by the heuristic.

C. How many training examples?

Accepting that we can train an algorithm to predict the

severity, we of course would like to know how many bug

reports we need in order to obtain good, stable predictions.

Therefore we ran a series of measurements, where we

gradually increase the size of the training set. However,

we maintain only one single fixed evaluation set which

we repeatedly use to evaluate the performance with each

increment of the training set. Figure 1, 2 (a) and (b) show

the performance of the heuristic when we vary the training

set sizes for respectively the Mozilla FirefoxGeneral and

6

Figure 1. Performance of the classifier in function of the training-set size with the Mozilla GeneralFirefox component

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

Training set size

Severe:Precision
Severe:Recall

(a) Precision and recall with non-severe bugs

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000 1200 1400

Training set size

Non-severe:Precision
Non-severe:Recall

(b) Precision and recall with severe bugs

Figure 2. Performance of the classifier in function of the training-set size with the Eclipse User Interface component

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Training set size

Severe:Precision
Severe:Recall

(a) Precision and recall with non-severe bugs

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700 800 900 1000

Training set size

Non-severe:Precision
Non-severe:Recall

(b) Precision and recall with severe bugs

Eclipse User Interface components. Due to space limitations

we only show the results for the two components with

the most reports in Mozilla and Eclipse case. We observed

similar trends for all other components in the the three cases

however. Note that with the Mozilla case, the training set

increases up to 1400 reports while in the Eclipse case, we

only have a maximum training set with over 1000 reports.

Figure 1 and 2 show the accuracy of the predictions when

we use training sets of different sizes. Along the x-axis, we

see how many training examples we have used in each case

which we relate to precision and recall measures we obtained

using a fixed evaluation set. Both figures clearly show a

very unstable behavior when a relatively small number of

training examples are used. The impact of small increments

in the training set seem to have a significant impact on the

performance. This indicates that the heuristic has not yet

“learned” sufficient about the specifics of bug reports and

therefore the heuristic is easily influenced by the increment

(which is large relatively to the number of training examples

in the previous run).

However, the performance of our approach stabilizes in

both the Mozilla, Eclipse and GNOME components when

the heuristic is trained with more bug reports. With approx-

imately more than 500 bug reports for each severity, both

precision and recall stabilize and we conclude that from then

onwards the heuristic has learned sufficiently to allow for

more reliable predictions.

7

D. What about a cross-component approach?

In our approach, we train and evaluate our heuristic sepa-

rately for each component. However, we were also interested

to know whether this specialization is really necessary. In

other words, can the information stored in bug reports of one

component be used to predict the severity of reports from

another component? In a new measurement, we combine

bug reports from different components in a single training

and evaluation set. Table VIII shows the accuracy of this

modified approach.

Table VIII
PERFORMANCE OF THE CROSS-COMPONENT APPROACH

Non-severe Severe

Runs Precision Recall Precision Recall

Mozilla: ± 500 0.673 0.620 0.648 0.700

Mozilla: ± 1.000 0.702 0.742 0.726 0.685

Mozilla: ± 2.000 0.704 0.750 0.733 0.685

Eclipse: ± 500 0.672 0.503 0.603 0.754

Eclipse: ± 1.000 0.673 0.510 0.605 0.752

Eclipse: ± 2.000 0.693 0.553 0.628 0.755

GNOME: ± 500 0.753 0.680 0.708 0.777

GNOME: ± 1.000 0.822 0.727 0.755 0.842

GNOME: ± 2.000 0.817 0.737 0.760 0.835

As shown in Table VIII, we performed the cross-

component approach for each case where we also varied

the size of the training set (e.g. training set varies from 500

to 2000 training reports per severity). The new training set

is constructed from training examples which we randomly

selected from five different components, including the ones

we presented in the previous evaluations.

From the results of the Mozilla case, we see an im-

provement in performance when we use a training set with

1000 reports for each severity compared to when using 500

reports. In the Mozilla case, the performance is similar with

our previous approach: precision and recall vary between

0.65-0.75. However, the performance is lower when we

only use for each severity around 500 training examples.

Therefore, we need a larger training set when we perform

cross-component predictions here. In the case of Eclipse,

we notice that the cross-components predictions are less

obvious. Even when the training set contains more than 2000

example reports for each severity, the prediction heuristic

still performs poorly. In the GNOME case, we notice an

increase in the overall performance when the training set

expands.

This phenomenon can be explained by the fact that we are

dealing with different cases. Each case has their own specific

characteristics when it comes to the one-line summary

in the bug report. These problem-specific characteristics

could be even more specialized to a single component

resulting in a poor performing “cross-component” predictor.

However, some cases (Mozilla and GNOME) tend to share

problem-specific characteristics across different components

and products. In this case we see an improvement of the

performance of this approach.

V. THREATS TO VALIDITY

In this section we identify factors that may jeopardize the

validity of our results and the actions we took to reduce

or alleviate the risk. Consistent with the guidelines for case

studies research (see [14, 15]) we organize them in four

categories.

Construct Validity: We have trained our classifier per

component, assuming that special terminology used per

component will result in a better prediction. However, bug

reporters have confirmed that providing the “component”

field in a bug report is notoriously difficult [7], hence we

risk that the users interpreted these categories in different

ways than intended. We alleviated the risk by selecting those

components where there are many bug reports (see Table

III). We verified that few of these bugs have been reassigned

to other components.

Internal Validity: Our approach relies heavily on the

presence of a causal relationship between the contents of the

fields in the bug report and the severity of the bug. There is

empirical evidence that this causal relationship indeed holds

(see for instance [13]). Nevertheless software developers and

bug reporters confirmed that other fields in the bug report

or more important, which may be a confounding factor [7].

External Validity: In this study, we focused on the

bug reports of three software projects: Mozilla, Eclipse

and GNOME. Like in other empirical studies, the results

obtained from our presented approach are therefore not

guaranteed to hold with other software projects. However,

we selected the cases to represent worthwhile points in

the universe of software projects, representing sufficiently

different characteristics to warrant comparison. For instance,

Eclipse was selected because its user base are developers

hence likely to produce “good” bug reports. This was in

contrast with Mozilla and to some extent GNOME.

The bug reports used in our approach are extracted from

cases using Bugzilla as their bug tracking system. Other bug

tracking systems exist as well like Jira and CollabNet. Since

they potentially use other representations of bug reports, it

may be possible that the approach must be adapted to the

context of other bug tracking systems.

Reliability: Since we use the bug reports submitted by

the community both as training and evaluation purposes,

it is not guaranteed that the severities in these reports are

entered correctly. Users fill in the reports according to their

understanding and therefore assess severities corresponding

to their experience, which do not necessarily correspond

with the guidelines. We explicitly omitted the bug reported

with severity “normal” since this category corresponded to

the default option when submitting a bug and thus likely

to be unreliable. We performed a manual inspection of a

sample of the bug reports to verify whether the severity was

8

properly accounted for and found it OK in almost all of the

cases.

The tools we used to process the data might contain errors.

We implemented our approach in the programming language

Ruby [www.ruby-lang.org] where we relied as much as

possible on standard tools and libraries for the querying of

the data (i.e., REXML which is the ruby standard library

for XML parsing) and the Bayes classifier (i.e., the Ruby

Porter stemmer [rubyforge.org/projects/ stemmer] and the

Ruby Classifier [classifier.rubyforge.org] library) and use a

small amount of scripting to glue everything together. Hence

we believe this risk to be acceptable.

VI. RELATED WORK

At the moment, we are only aware of a single work

on the automatic prediction of the severity of reported

bugs. Menzies et al. predict the severity based on a rule

learning technique which also uses the textual descriptions

of reported bugs [16]. The approach was applied on five

projects supplied by the NASA’s Independent Verification

and Validation Facility. In this case-study, the authors have

shown that it is feasible to predict the severity of bug

reports using a text mining technique even for a more fine-

grained categorization than we do (the paper distinguishes

between 5 severity levels of which 4 were included in the

paper). While they were forced to use smaller training sets

than we do (the data sets sizes ranged from 1 to 617 bug

reports per severity), the precision and recall they reported

varied a lot more (precision between 0.08 and 0.91; recall

between 0.59 and 1.00). This suggests that the training sets

indeed must be sufficiently large to arrive at stable results.

Due to the smaller cases, Menzies et. al. could also not

investigate the subsidiary research questions we reported

about in section IV

Antoniol et al. also used text mining techniques on the

descriptions of reported bugs to predict whether a report is

either a real bug or a request for an enhancement [17]. They

used techniques like decision trees, logistic regression and

also a Naı̈ve Bayesian classifier for this purpose. The per-

formance of this approach on three cases (Mozilla, Eclipse

and JBoss) indicated that reports can be predicted to be a

bug or an enhancement with between 77% and 82% correct

decisions.

Other current research concerning bug characterization

and prediction mainly apply text mining techniques on the

descriptions of bug reports. This work can be divided in

two groups: automatically assigning newly reported bugs to

an appropriate developer based on his or her expertise and

detecting duplicate bug reports.

A. Automatic bug assignment

Machine learning techniques are used to predict the most

appropriate developer for resolving a new incoming bug

report. This way, bug triagers are assisted in their task.

Cubranic et al. trained a Naı̈ve Bayes classifier with the

history of the developers who solved the bugs as the category

and the corresponding descriptions of the bug reports as the

data [3]. This classifier is subsequently used to predict the

most appropriate developer for a newly reported bug. Over

30 % of the incoming bug reports of the Eclipse project are

assigned to a correct developer using this approach.

Anvik et al. continued investigating the topic of the previ-

ous work and performed new experiments in the context of

automatic bug assignment. The new experiment introduced

more extensive preprocessing on the data, introducing more

classification algorithms like Support Vector Machines. In

this case, an overall classification accuracy of 57 % and 64

% for the Eclipse and Firefox projects respectively [1].

B. Duplicate bug report detection

Since the community behind a project is in some cases

very large, it is possible for multiple users to report the same

bug into the bug tracking system. This leads to multiple

bug reports describing the same bug. These “duplicate” bug

reports result in more triaging work. Runeson et al. used

text similarity techniques to help automate the detection of

duplicate bug reports by comparing the similarities between

bug reports [4]. In this instance, the description was used

to calculate the similarity between bug reports. Using this

approach, over 40 % of the duplicate bug reports are

correctly detected.

Wang et al. consider not only the actual bug reports, but

also include “execution information” of a program which

is for example the execution traces [5]. This additional

information reflects the situation that lead to the bug and

therefore reveal buggy runs. Adding structured and unam-

biguous information to the bug reports and comparing it to

others, improves the overall performance of the duplicate

bug report detection technique.

VII. CONCLUSIONS AND FUTURE WORK

Deciding how soon a reported bug needs to be fixed partly

depends on its severity. However, estimating the severity of

a bug is often left to the person reporting the bug. This

paper shows that it is possible to predict the severity based

on other information contained in a bug report, in particular

the textual information describing the bug. We evaluated the

performance of predictions based on three cases drawn from

the open-source community (Mozilla, Eclipse and GNOME).

We conclude that it is possible to predict the severity of

a reported bug given sufficient training data (± 500 bug

reports for each severity) with a reasonable performance

where both precision and recall vary between 0.65-0.75 for

selected components of Mozilla and Eclipse. In the case of

the GNOME components, we have seen a notable increase in

performance with both precision and recall varying between

0.70-0.85.

9

Knowing that we can accurately predict the severity of

a reported bug, we investigated whether certain parameters

affect the accuracy of the result. In particular, we had a

look at the terms used in the textual descriptions of a bug

report and discovered that they could serve as indicators

but were largely project and component dependent. This

specialization is indeed key: we also ran a test to see the

effect of cross-component predictors and observed a weaker

performance. We also investigated whether the longer de-

scription included in a bug report would result in a better

predictor, but for the systems we investigated this was not

the case.

This study is relevant because it enables us to implement

a more automated and more efficient bug triaging process.

It also can contribute to the current research regarding bug

triaging. We see trends concentrating on automating the

triaging process where this current research can be combined

with our approach with the intention to improve the overall

reliability of a more automated triaging process.

Future work is aimed at including additional sources

of data to support our predictions. Information from the

(longer) description will be more thoroughly preprocessed

so that it can be used for the predictions. In our approach,

we used the Naı̈ve Bayes based classification algorithm.

However, other classification algorithms also exist including

the promising Decision trees and Support Vector Machines

could be used for our purpose. The performance of each of

these classifications will be compared in order to determine

the most efficient approach for our goal. Also, the impact

of additional techniques like feature selection and cross-

validation will be evaluated. Finally, we will investigate

other industrial cases, where fewer bug reports get submitted

but where the bug reports get reviewed consciously.

ACKNOWLEDGMENTS

We would like to thank Andre Klapper who is an experienced
bug triager for the interesting discussions we had during this
study. We would also like to thank Sandro Boccuzzo, Giacomo
Ghezzi and Michael Würsch [SEAL – University of Zürich], Andy
Zaidman [SWERL – TU Delft], Joris Van Geet [LORE – University
of Antwerp] for reviewing earlier drafts of this paper.

This work has been carried out in the context of a Ph.D grant of

the Institute for the Promotion of Innovation through Science and

Technology in Flanders (IWT-Vlaanderen). Additional sponsoring

by (i) the Interuniversity Attraction Poles Programme - Belgian

State – Belgian Science Policy, project MoVES; (ii) the Research

Foundation – Flanders (FWO) sponsoring a sabbatical leave of

Prof. Serge Demeyer.

REFERENCES

[1] J. Anvik, L. Hiew, and G. C. Murphy, “Who should

fix this bug?” in Proceedings of the 28th international

conference on Software engineering, 2006.

[2] J. Gaeul, K. Sunghun, and T. Zimmermann, “Improv-

ing bug triage with bug tossing graphs,” in Proceed-

ings of the European Software Engineering Conference

2009. ACM, 2009, pp. 111–120.

[3] D. Cubranic and G. C. Murphy, “Automatic bug triage

using text categorization,” in Proceedings of the Six-

teenth International Conference on Software Engineer-

ing & Knowledge Engineering, June 2004, pp. 92–97.

[4] P. Runeson, M. Alexandersson, and O. Nyholm, “De-

tection of duplicate defect reports using natural lan-

guage processing,” in Proceedings of the 29th interna-

tional conference on Software Engineering, 2007.

[5] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun,

“An approach to detecting duplicate bug reports us-

ing natural language and execution information,” in

Proceedings of the 30th international conference on

Software engineering, 2008.

[6] R. Patton, Software Testing (2nd Edition). Sams, 2005.

[7] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Prem-

raj, and T. Zimmermann, “What makes a good bug

report?” in Proceedings of the 16th ACM SIGSOFT

International Symposium on Foundations of software

engineering. ACM, 2008, pp. 308–318.

[8] R. Feldman and J. Sanger, The Text Mining Handbook:

Advanced Approaches in Analyzing Unstructured Data.

Cambridge University Press, December 2006.

[9] I. Rish, “An empirical study of the naive bayes classi-

fier,” in Workshop on Empirical Methods in AI.

[10] M. Porter, “An algorithm for suffix stripping,” Pro-

gram, vol. 14, no. 3, pp. 130–137, 1980.

[11] I. Herraiz, D. German, J. Gonzalez-Barahona, and

G. Robles, “Towards a Simplification of the Bug Report

Form in Eclipse,” in 5th International Working Confer-

ence on Mining Software Repositories, May 2008.

[12] D. M. Green and J. A. Swets, Signal Detection Theory

and Psychophysics. John Wiley and Sons, Inc., 1966.

[13] A. J. Ko, B. A. Myers, and D. H. Chau, “A linguistic

analysis of how people describe software problems,”

in VLHCC ’06: Proceedings of the Visual Languages

and Human-Centric Computing, 2006, pp. 127–134.

[14] R. K. Yin, Case Study Research: Design and Methods,

3 edition. Sage Publications, 2002.

[15] P. Runeson and M. Höst, “Guidelines for conducting

and reporting case study research in software engineer-

ing,” Empirical Software Engineering, 2009.

[16] T. Menzies and A. Marcus, “Automated severity assess-

ment of software defect reports,” in IEEE International

Conference on Software Maintenance, 28 2008-Oct. 4

2008, pp. 346–355.

[17] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh, and

Y.-G. Guéhéneuc, “Is it a bug or an enhancement?:

a text-based approach to classify change requests,” in

CASCON ’08: Proceedings of the conference of the

center for advanced studies on collaborative research.

ACM, 2008, pp. 304–318.

10

