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Abstract: The application of waste materials in concrete is gaining more popularity for sustainable
development. The adaptation of this approach not only reduces the environmental risks but also
fulfills the requirement of concrete material. This study used the novel algorithms of machine learning
(ML) to forecast the splitting tensile strength (STS) of concrete containing recycled aggregate (RA).
The gene expression programming (GEP), artificial neural network (ANN), and bagging techniques
were investigated for the selected database. Results reveal that the precision level of the bagging
model is more accurate toward the prediction of STS of RA-based concrete as opposed to GEP and
ANN models. The high value (0.95) of the coefficient of determination (R2) and lesser values of the
errors (MAE, MSE, RMSE) were a clear indication of the accurate precision of the bagging model.
Moreover, the statistical checks and k-fold cross-validation method were also incorporated to confirm
the validity of the employed model. In addition, sensitivity analysis was also carried out to know
the contribution level of each parameter toward the prediction of the outcome. The application of
ML approaches for the anticipation of concrete’s mechanical properties will benefit the area of civil
engineering by saving time, effort, and resources.

Keywords: concrete; recycled aggregate; environment-friendly material; splitting tensile strength;
machine learning

1. Introduction

The splitting tensile strength of concrete is an important mechanical property that
significantly affects the quantity and size of cracking in concrete structures [1]. Due to the
fact that concrete is a weak material in tension, it is necessary to conduct a pre-evaluation
of its split-tensile strength [2]. The splitting tensile strength (STS) of concrete is related
to a variety of mechanical and durability parameters directly or indirectly [3–5]. Flexural
strength is another critical attribute to consider when building structural concrete since it
affects the concrete’s flexural cracking, shear strength, deflection properties, and brittleness
ratio [6–10]. Mechanical characteristics of recycled aggregate concrete (RAC) are dependent
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on a variety of elements, including the physical properties of the recycled aggregate uti-
lized and the resulting matrix’s microstructure [5,11]. RAC typically has less strength than
natural aggregate concrete because of poor bonding between the aggregate and the old
mortar, fractures, and fissures in the recycled aggregate caused by the recycling process, and
the existence of low-permeability mortar attached to the recycled aggregate [12–14]. The
strength of RAC is dependent on the recycled aggregate replacement ratio, water–cement
ratio (w/c), recycled aggregate moisture content, and the physical and mechanical prop-
erties of the recycled aggregate [15–19]. When w/c is maintained constant, experimental
evidence indicates that recycled aggregate replacement content has a substantial effect on
the strength of RAC [20–25]. When natural aggregate is completely replaced by recycled
aggregate, RAC’s compressive strength can be reduced by up to 30% [26–28].

Concrete makes up the lion’s share of construction and demolishing waste and is the
most apparent component [29,30]. As the contemporary industry continues to flourish,
numerous types of industrial solid wastes have become a burden on society and the
environment [31,32]. One of the most effective recycling methods is to employ certain solid
wastes as supplemental cementitious materials (SCMs) in the manufacture of cement-based
materials [33–35]. The most important, available in a large amount, and easy to use is
recycled aggregate [36,37]. However, evaluating and managing the geometry of RCA is
crucial for its successful implementation in novel concrete applications [38]. Gradation
is the most critical attribute that practitioners and scholars consider [39–42]. Although
shape and texture criteria are visually checked on occasion, they are not used to drive the
actual mix design [43,44]. Indeed, aggregate shape and texture are critical properties that
influence paste demand, workability, and strength [45,46]. Sphericity, flatness, angularity,
and roundness are the primary characteristics associated with the shape [47,48].

Since the precise source and age of RCA are frequently unknown, it is necessary
to create a testing process that adequately characterizes RCA for its numerous potential
applications [49]. While RCA is more challenging than the natural aggregate (mainly be-
cause of the remaining mortar percentage), current characterization efforts are concentrated
on gradation, specific gravity, and absorption in various specifications [50,51]. Similarly,
obtaining the required strength of concrete normally needs some time in days [52,53].
Numerous analytical models have been created for the prediction of strength based on
numerous assumptions about the process, equilibrium development, and deformation
compatibility [54–63]. The use of ML approaches to predict the strength of selected concrete
is gaining more popularity as it initially forecasts the required outcome without consuming
time, cost of the experimental approach, and physical effort [64–69]. Shahmansouri et al. [2]
predicted the C-S containing SCM using GEP. The proper correlation was reported in
the study between the experimental and predicted results. Lee et al.’s [70] research was
based on the use of the ANN technique for the prediction of concrete strength, which
describes that the I-PreConS using ANN shows impressive results toward the prediction.
Sharafati et al.’s [71] research was based on the application of bagging ensemble algorithm
anticipation of the C-S of a hollow concrete masonry prism. The result indicates that the
BR was more defective than the SVR regressor. Han et al. [72] examined the performance
of ensemble ML approaches for the modulus of elasticity of RA. The ensemble machine
learning model regularly outperforms many standalone machine learning models in terms
of prediction performance.

This research describes the performance comparison of the various ML techniques
toward the prediction of the STS of RA concrete. It was clear from the coefficient of
determination (R2) value that the BR has a high precision level for predicting the STS of
concrete as opposed to the GEP and ANN ML approaches. Machine learning methods
require a dataset, which may be gathered from previous studies, as several investigations
have been conducted to determine the material strength. The data collection can then be
used to train machine learning models and forecast material qualities. This research will be
helpful to researchers in selecting the best ML approach for the prediction purpose.
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2. Methods
2.1. Database Description

The database used in this study to run the selected models for predicting the STS of RA
concrete was taken from the literature [73–89]. Python coding helps to run the employed
models. Input parameters (total 9) such as cement, fine aggregate, natural coarse aggregate
(NCA), water, recycled coarse aggregate (RCA), the maximum size of RA, superplasticizers,
the density of RA, and water absorption of RA with a single output parameter (STS) were
used to run the models. A total of 166 data points were used to run the selected models.
A total of 60% of the data were allocated for the training set, 20% for testing, and 20%
for validation purposes. Table 1 illustrates the statistical analysis of variables, illustrating
the numerous mathematical descriptions of input values. Figure 1 depicts the relative
frequency distributions of the nine variables. Additionally, the step-by-step procedure of
the adopted methods and the research approach is presented in the form of a flowchart, as
illustrated in Figure 2, which contains information about the study’s stepwise procedure.
The data set used for running the models has been added as a Supplementary Material
with the file name of Data set.

Table 1. Descriptive investigation of the input parameters.

Variables *W *C *F-A NCA RCA SP Size Density *WA

Mean value 180.38 364.42 688.47 382.02 656.69 1.11 18.29 2081.07 4.56
Median 180.00 372.00 715.00 395.50 577.50 0.00 20.00 2360.00 5.30
Mode 180.00 380.00 0.00 0.00 1135.40 0.00 20.00 2320.00 5.30

Standard Deviation 18.17 70.73 227.85 395.77 377.99 1.88 3.80 807.11 2.87
Lowest 137.00 158.00 0.00 0.00 57.00 0.00 10.00 0.00 0.00
Highest 225.00 600.00 1010.00 1168.00 1574.30 7.80 25.00 2661.00 10.90

Sum 29,942.99 60,493.00 114,285.63 63,414.57 109,011.35 183.49 3036.00 345,457.00 757.10

*W = water (kg/m3); *C = cement (kg/m3); *F-A = fine aggregate (kg/m3); *WA = water absorption (%),
NCA (kg/m3), RCA (kg/m3), SP (kg/m3), Size (mm).

2.2. Machine Learning Algorithms
2.2.1. Bagging Algorithm

Bagging, also called bootstrap aggregating, is the structuring of this algorithm in
such a way that the ML approaches used in both regression and classification can enhance
their firmness and accuracy. It is usually used to lessen the difference between the actual
and projected outcomes. Bagging can be used with any method; however, it is most
typically used with decision tree approaches. It is also regarded as one of the model
averaging technique’s special situations. Bagging is a parallel ensemble ML strategy that
uses Supplemental Data in the training stage to explain the variance of predicted models.
Each element has the same chance of presenting in the new data collection. Variation in the
training set has no effect on predictive power. The complete process of the bagging model
in the flowchart can be seen in Figure 3.

2.2.2. Artificial Neural Network (ANN)

ANNs are referred to as neural networks (NNs), and they refer to the accruing system
that is stimulated by the biological NNs that underpin human brains. ANN is based on a
network of units or nodes that are connected to each other, referred to as artificial neurons.
The function and structure of neurons are mirror images of the brain. The said neurons
absorb a signal prior to functioning and can signal the neuron connected to them. The
initial number represents a “signal” at a connection, and each neuron’s output is listed
by various non-linear functions from the complete inputs. The edges are the connections.
Edges, like neurons, typically have a weight that adjusts as learning progresses. The weight
is adjusted in response to the strength of the signals at the link. If the aggregate signal
travels via a neuron, it may have an entry, such as a processed signal. Typically, neurons
are organized in layers. Each layer has a unique purpose associated with its outputs. These
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layers act as a conduit for signals to move from the first (input layer) to the last (output
layer). The mathematical description of an ANN is shown in Equation (1)

Oj = f ∑
(
wij Ii + b

)
(1)

where Oj is the model output, wij denotes the related weight that is changed on a per-epoch
basis, Ii denotes the input data, and b denotes the bias. It is worth noting that the hidden
layer and output neuron may be processed by feeding them into an activation function f.
Figure 4 depicts a schematic representation of a typical ANN architecture.
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Figure 1. Distribution of relative frequency of the variables used to run the models.
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2.2.3. Gene Expression Programming (GEP)

GEP is a type of evolutionary algorithm that is frequently used in conjunction with
genetic programming. Computer programming is viewed as a complex structure like a tree
that adapts and changes the same way that biological organisms do by substituting their
geometry, compositions, and sizes. The GEP computer program was embedded in fixed-
length simple linear chromosomes. Thus, GEP is a genotype–phenotype system that utilizes
the genome to maintain and convey genetic information and a sophisticated phenotype to
traverse and adapt to its environment. The GEP is composed of a number of components:
terminal, function, control variable, fitness function, and the terminate condition. Ferreira
introduced GEP in 2006 as a modified form of genetic programming (GP) based on the
evolutionary population theory. A unique constraint in GEP was that only one gene needed
to be passed to the next generation; there was no need to replicate and mutate the entire
structure because all changes occur inside a linear and basic structure. Additionally, GEP
establishes individuals through only one chromosome carrying a number of genes that
are subsequently classed as head or tail. Each GEP gene comprises a length with a fixed
variable that contains terminal sets and arithmetic operations. There is an unambiguous
relationship between the chromosome symbol and the genetic code operator’s matching
terminal. The complete execution process for the model using GEP is depicted in Figure 5.
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3. Results and Analysis
3.1. ANN Model Outcome

The investigation of the real and projected data for the STS of RA-based concrete using
the ANN model is depicted in Figure 6. The ANN technique generates reasonably precise
findings with a little variation among the real and anticipated values. With an R2 score of
0.86, the model is reasonably precise in forecasting the obtained results. The distribution of
experimental results (targets), expected outcomes, and error values for the ANN’s model
are shown in Figure 7. For the testing set, the highest, minimum, and average results of the
values were determined to be 1.1, 0.08, and 0.32 MPa, respectively. However, 2.94 percent
of error values were up to 0.1 MPa, 52.94 percent of the error’s data were between 0.1 and
0.3 MPa, and 41.1 percent exceeded 0.3 MPa.
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Figure 6. Analysis representing the relationship between the real and forecasted outcomes of
ANN model.
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3.2. GEP Model Outcome

The STS of RA-based concrete for the GEP model statistical evaluation of actual and
predicted data is shown in Figure 8. The GEP approach produces results with a decent level
of accuracy and a minimal variance between the actual and real results. The R2 score of
0.88 is the reflection of a reasonably better precision level in predicting the results. Figure 9
illustrates the distribution of targeted results, anticipated results, and errors for the GEP
model. The maximum, lower, and average values for the test set were noted to be 1.1, 0,
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and 0.25 MPa, respectively. However, 17.64 percent of the error’s data were greater than
0.1 MPa, 35.29 percent were between 0.1 and 0.3 MPa, and 26.47 percent exceeded 0.3 MPa.
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Figure 8. Analysis indicating the relationship between the real and forecasted outcomes using the
GEP model.
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3.3. Bagging Model Outcome

Figures 10 and 11 compare the actual and expected outputs of the bagging model.
Figure 10 shows the correlation between the real and predicted results, which gives the R2

value of 0.95, showing that the result (predicted) of the bagging model is more accurate
than the GEP and ANN models. The dispersal of experimental results, anticipated values,
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and the results of the error values for the bagging model is depicted in Figure 11. The
testing set’s maximum, lower, and average values were 0.45, 0, and 0.18 MPa, respectively.
However, 14.70% of error values were less than 0.1 MPa, 61.76 percent were between 0.1
and 0.3 MPa, and only 8.82 percent of error values were more than 0.3 MPa. These low
values of the errors further support the bagging model’s high accuracy when related to the
GEP and ANN models.
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4. Cross-Validation (CV) Approach

Cross-validation is a resampling technique that employs different subsets of the data
to test and train a model over time. It is primarily utilized in situations where the objective
is prediction, and the user wishes to determine the accuracy with which a predictive model
will function in practice. To validate the model, a k-fold cross-validation process is typically
used, in which the required data are randomly distributed and split into ten groups. Nine
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groups must be allocated for training and one for model validation. Additionally, the
technique must be repeated ten times to achieve an average output. This exhaustive
procedure of k-fold cross-validation leads to the models’ great accuracy. Additionally,
statistical checks in the form of error evaluations (MSE, MAE, and RMSE) were performed,
as demonstrated in Table 2. The models’ reaction to prediction was also evaluated using
statistical analysis, as demonstrated in the equations below (Equations (2)–(4)).

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(2)

MAE =
∑n

i=1|exi − moi|
n

(3)

RMSE =

√
∑n

i=1 (exi −moi)
2

n
(4)

where exi, moi, exi, moi, and n are experimental, predicted, mean experimental, mean
predicted values, and the number of samples, respectively.

Table 2. CV outcomes for both employed models.

GEP Bagging ANN

K-Fold MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 0.93 0.97 0.06 0.51 0.70 0.08 0.92 1.15 0.61
2 0.73 0.90 0.20 0.67 0.86 0.62 0.83 1.09 0.13
3 0.40 0.70 0.91 0.58 0.68 0.77 0.48 0.73 0.77
4 0.83 1.17 0.28 1.01 1.05 0.93 0.91 1.19 0.35
5 0.10 0.13 0.88 0.46 0.26 0.94 0.14 0.17 0.45
6 0.37 0.53 0.22 0.22 0.33 0.05 0.40 0.55 0.37
7 1.13 1.15 0.56 0.62 0.68 0.24 1.19 1.20 0.74
8 0.73 1.02 0.29 0.72 0.71 0.57 0.78 1.11 0.06
9 0.80 0.82 0.33 0.54 0.61 0.88 0.87 0.87 0.57

10 0.20 0.42 0.85 1.05 0.94 0.9 0.28 0.50 0.44

As seen in Table 2, R2, MAE, and RMSE were utilized to determine the CV of each
employed model for its output. Additionally, the results of employed AI approaches (GEP,
ANN, bagging) used demonstrated variation. The fewer error levels in the bagging model,
the higher the R2 value, showing that the bagging model has a greater level of precision
than the GEP and ANN.

Additionally, as indicated in Table 3, appropriate checks for MAE and RMSE were
performed on the GEP, ANN, and bagging techniques. The smaller error indicates a greater
coefficient correlation value (R2).

Table 3. Statistical evaluation for STS.

ML Approaches MAE (MPa) MSE (MPa) RMSE (MPa)

Gene expression
programming (GEP) 0.252 0.114 0.337

Bagging regressor (BR) 0.183 0.046 0.215

Artificial neural
network (ANN) 0.315 0.141 0.375

The R2, MAE, MSE, and RMSE coefficients were investigated for the evaluation of the
CV and their distributions for GEP, ANN, and bagging models. The bagging model with
the result of minimum error value and a high R2 value is the indication of high accuracy
in predicting outcomes. The higher, minimum, and average R2 results for the GEP model
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were 0.91, 0.06, and 0.46, respectively. The bagging model’s maximum, minimum, and
average R2 results were 0.77, 0.06, and 0.45, respectively, while these values for the ANN
model were 0.94, 0.05, and 0.60, respectively.

5. Sensitivity Analysis

This approach refers to the effect of variables on the prediction of the STS of RA
concrete, as illustrated in Figure 12. The variables have a substantial impact on the output
anticipation. The GEP software directly gives the contribution level of each variable. The
dataset was arranged in an Excel file for executing the model. The GEP software gives
different information, including the percent contribution of all input parameters. The
statistic indicates that cement contributed the most (30.65 percent), while NCA and RA
contributed 24.3 percent and 16.2 percent, respectively. However, the remaining variables
(fine aggregate, water, superplasticizers, coarse aggregate size, RCA density, and RCA
water absorption) had the least effect on the prediction of the STS of RA-based concrete.
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Figure 12. Result of the analysis illustrates the contribution level of variables toward the anticipation
of splitting tensile strength.

6. Discussion

This study demonstrates the utility of two distinct machine learning algorithms for
estimating the STS of RA-based concrete. The utilization of RA in concrete plays a vital role
in achieving sustainable concrete. This approach not only helps in reducing the waste on the
earth but also contributes toward a balanced economy, protection of natural resources, and
reducing energy consumption. The graphical representation of the numerous parameters
that relate to sustainability is depicted in Figure 13.

The GEP algorithm’s purpose is to construct a type of model that reliably predicts the
results of a targeted variable, for which the GEP makes use of various genres. In supervised
learning, bagging is used to minimize both bias and variation. It is forecasted on the
premise that learners produce in a sequential fashion. All successive learners, with the
exception of the initial learner, are created from preceding learners. In a way, weak learners
become better. By contrast, bagging is a technique for randomly selecting data points
from a training set with replacement; that is, individual data points may be chosen many
times. Following the generation of numerous data samples, these weak models are trained
individually, and depending on the task at hand (for example, regression or classification),
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the average or majority of those predictions results in a more accurate estimate. The forecast
performance of all the algorithms was compared to determine which one was the superior
predictor. The bagging model’s result was more precise, with an R2 value of 0.95 versus
0.88 for the GEP model and 0.86 for the ANN model. Additionally, the performance of the
GEP, ANN, and bagging models was investigated using a statistical approach and the CV
technique. When error levels are minimal, the model performs well. However, evaluating
and recommending the ideal ML approach for forecasting results (outcomes) across several
topics is challenging, as model behavior is largely dependent on dataset and input variables.
In contrast, ensemble machine learning algorithms frequently exploit the weak type of
learner by creating multiple models (sub-models) which can be properly trained on data
and optimized for the highest R2 value. The representation of R2 values for bagging
sub-models is depicted in Figure 14. Moreover, the literature shows that bagging models
outperform other machine learning algorithms in terms of accuracy. Additionally, the
sensitivity analysis was run to determine the effect of each input parameter on the projected
STS. The model’s performance may be influenced by the parameters used for running the
models and the dataset. The sensitivity analysis identifies which input parameters have
the greatest impact on the predicted result.

Crystals 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 13. Schematic representation of the improvements in various aspects by achieving sustaina-

bility. 

The GEP algorithm’s purpose is to construct a type of model that reliably predicts 

the results of a targeted variable, for which the GEP makes use of various genres. In su-

pervised learning, bagging is used to minimize both bias and variation. It is forecasted on 

the premise that learners produce in a sequential fashion. All successive learners, with the 

exception of the initial learner, are created from preceding learners. In a way, weak learn-

ers become better. By contrast, bagging is a technique for randomly selecting data points 

from a training set with replacement; that is, individual data points may be chosen many 

times. Following the generation of numerous data samples, these weak models are trained 

individually, and depending on the task at hand (for example, regression or classification), 

the average or majority of those predictions results in a more accurate estimate. The fore-

cast performance of all the algorithms was compared to determine which one was the 

superior predictor. The bagging model’s result was more precise, with an R2 value of 0.95 

versus 0.88 for the GEP model and 0.86 for the ANN model. Additionally, the performance 

of the GEP, ANN, and bagging models was investigated using a statistical approach and 

the CV technique. When error levels are minimal, the model performs well. However, 

evaluating and recommending the ideal ML approach for forecasting results (outcomes) 

across several topics is challenging, as model behavior is largely dependent on dataset 

and input variables. In contrast, ensemble machine learning algorithms frequently exploit 

the weak type of learner by creating multiple models (sub-models) which can be properly 

trained on data and optimized for the highest R2 value. The representation of R2 values 

for bagging sub-models is depicted in Figure 14. Moreover, the literature shows that bag-

ging models outperform other machine learning algorithms in terms of accuracy. Addi-

tionally, the sensitivity analysis was run to determine the effect of each input parameter 

on the projected STS. The model’s performance may be influenced by the parameters used 

for running the models and the dataset. The sensitivity analysis identifies which input 

parameters have the greatest impact on the predicted result. 

Sustainability

Protection of 
natural 

resources

Reducing 
energy 

consumption

Reducing 
waste 

materials

Economy

Better 
society

Better 
environment

Figure 13. Schematic representation of the improvements in various aspects by achieving
sustainability.



Crystals 2022, 12, 569 13 of 17Crystals 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 14. Result of bagging sub-models indicating the coefficient of determination values for each 

model. 

7. Conclusions 

The goal of this research was to demonstrate how artificial intelligence (AI) tech-

niques can be used to forecast the strength (STS) of concrete composed of recycled aggre-

gates (RAs). The STS of RA-based concrete was forecasted using GEP, ANN, and bagging 

regressor (BR) approaches. The following are conclusions: 

1. The BR model shows an effective result toward the prediction of the STS of concrete 

than the GEP and ANN techniques, as demonstrated by a higher R2 value and a lower 

result of the errors. GEP, ANN, and BR models were found to have R2 values of 0.88, 

0.86, and 0.95, respectively. 

2. Statistical approach/analysis and the cross-validation technique further proved that 

all the employed techniques (GEP, ANN, and BR) operate satisfactorily. Moreover, 

these checks demonstrated that the bagging model outperformed the GEP and ANN 

models in terms of performance. 

3. Analysis of sensitivity revealed that the major input variable (cement) contributed at 

a high level (30.65%) toward the prediction of the STS of RA-based concrete, while 

another variable (water absorption of RA) contributed the least (1.35%) toward the 

required output. 

4. AI techniques provide more precise forecasting of material strength qualities without 

consuming time for sample casting and testing in the laboratory. 

5. It is recommended that other AI methodologies be adapted to match their predictive 

accuracy. Additionally, future studies should increase the number of data points by 

conducting experiments, experimental/field tests, and numerical-type studies utiliz-

ing alternative methodologies (e.g., Monte Carlo simulation). Moreover, environ-

mental variables (e.g., high temperature and humidity) could be included as varia-

bles to improve the models’ response. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/xxx/s1, The data set used for running the models has been added as a supplemen-

tary material with the file name of Data set. 

Author Contributions: Y.Z.: Conceptualization, Resources, Investigation, Methodology, Validation, 

Writing—review and editing. A.A.: Conceptualization, Software, Supervision, Writing—original 

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
2

Bagging sub-models

Highest value

Figure 14. Result of bagging sub-models indicating the coefficient of determination values for
each model.

7. Conclusions

The goal of this research was to demonstrate how artificial intelligence (AI) techniques
can be used to forecast the strength (STS) of concrete composed of recycled aggregates (RAs).
The STS of RA-based concrete was forecasted using GEP, ANN, and bagging regressor (BR)
approaches. The following are conclusions:

1. The BR model shows an effective result toward the prediction of the STS of concrete
than the GEP and ANN techniques, as demonstrated by a higher R2 value and a lower
result of the errors. GEP, ANN, and BR models were found to have R2 values of 0.88,
0.86, and 0.95, respectively.

2. Statistical approach/analysis and the cross-validation technique further proved that
all the employed techniques (GEP, ANN, and BR) operate satisfactorily. Moreover,
these checks demonstrated that the bagging model outperformed the GEP and ANN
models in terms of performance.

3. Analysis of sensitivity revealed that the major input variable (cement) contributed at
a high level (30.65%) toward the prediction of the STS of RA-based concrete, while
another variable (water absorption of RA) contributed the least (1.35%) toward the
required output.

4. AI techniques provide more precise forecasting of material strength qualities without
consuming time for sample casting and testing in the laboratory.

5. It is recommended that other AI methodologies be adapted to match their predictive
accuracy. Additionally, future studies should increase the number of data points
by conducting experiments, experimental/field tests, and numerical-type studies
utilizing alternative methodologies (e.g., Monte Carlo simulation). Moreover, environ-
mental variables (e.g., high temperature and humidity) could be included as variables
to improve the models’ response.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12050569/s1, The data set used for running the models has
been added as a supplementary material with the file name of Data set.
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