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Abstract
Cross-correlation analysis is a powerful tool for understanding the mutual dynamics of time series. This study introduces a

new method for predicting the future state of synchronization of the dynamics of two financial time series. To this end, we

use the cross recurrence plot analysis as a nonlinear method for quantifying the multidimensional coupling in the time

domain of two time series and for determining their state of synchronization. We adopt a deep learning framework for

methodologically addressing the prediction of the synchronization state based on features extracted from dynamically sub-

sampled cross recurrence plots. We provide extensive experiments on several stocks, major constituents of the S &P100

index, to empirically validate our approach. We find that the task of predicting the state of synchronization of two time

series is in general rather difficult, but for certain pairs of stocks attainable with very satisfactory performance (84% F1-

score, on average).
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1 Introduction

Time series prediction and classification in finance is sig-

nificantly challenging due to the complexity, multivariate

nature, and non-stationary nature of time series in this

domain [1]. Security trading and price dynamics in

financial markets are particularly complex due to the

interacting nature and inter-connectedness of their under-

lying driving forces and determinants leading to significant

co-movements in stocks’ prices. The characterization and

modeling of multivariate time series dynamics have long

been discussed in the financial literature, where the pre-

vailing approach is that based on classical econometric

theory. Among the multivariate linear models, the most

widespread ones are vector autoregressive (VAR) models

[2, 3], vector moving averages, ARMA (autoregressive

moving average) models [4], and cointegrated VAR mod-

els [5]. Widespread is the use of multivariate conditional

heteroskedasticity GARCH-type, see, e.g., [6] for a review,

multivariate stochastic volatility models [7], and more

methods based on the realized volatility [8].

Among the nonlinear models, the threshold autoregres-

sive model [9], smooth transition autoregressive models

[10], and Markov switching models [11] are nowadays

standard approaches. Alternatives include nonparametric

methods, functional coefficient [12] and nonlinear additive

AR models [13], recurrence analysis, and neural networks.

The complexity of modern financial markets running over

the so-called limit-order book mechanism is, however,

characterized by typical nonlinear, noisy, and often non-
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stationary dynamics. In addition, the high-dimensional

nature of the limit-order book flow and the complexity of

the interactions within it constitute severe limits in the

applicability of classic econometric methods for its mod-

eling and forecasting. Besides a very limited number of

analytical and tractable models for the order flow and price

dynamics in limit-order books [14–16], machine learning

methods have received much attention [17, 18], as they are

naturally appealing in this context.

By considering the stock market as a complex system, it

is natural to apply such methods for addressing those

prediction problems where the application setting and

assumptions beneath standard econometric techniques are

stringent or inadequate. Indeed, it has extensively been

shown that, in financial applications, deep learning (DL)

models are often capable of outperforming traditional

approaches due to their ability to learn complex data rep-

resentations based on end-to-end data-driven training, see,

e.g., [19–24]. DL models have been adopted for a variety

of problems ranging from price prediction [25–29], limit-

order book-based mid-price prediction [20, 21, 23, 30, 31],

and volatility prediction [32–34].

Whereas the target of the above literature is generally

the analysis and prediction of single time series, this paper

focuses on an analysis of stock pair co-movements. Several

trading strategies can be put into play to take advantage of

co-movements and exploit statistical arbitrages, including

pair-trading, portfolio management, or relative and con-

vergence trading strategies applied at an intraday level,

e.g., see [35] for an overview. While DL provides a basis

for prediction given a set of descriptive features, the issue

of how to detect and quantify co-movements remains to be

addressed. This paper suggests the use of recurrence

analysis based on cross recurrence plots (CRP) for

detecting and extracting features indicative of stocks’

shared dynamics or co-movements, along with a deep

learning framework for predicting whether certain pairs of

stocks will exhibit a shared dynamics in the future (in the

sense specified in Sect. 2). Not only in the view of

extending the ML and applied econometrics literature in

this direction, but the possibility of forecasting epochs of

time series synchronization is likewise relevant for

practitioners.

For detecting and quantifying co-movements or, more

generally, shared dynamical features in time series, the

standard econometric approach is that of cross-correlation

analysis [11, Ch. 8]. This intuitive linear approach, based

on the estimation and perhaps forecasting of cross-corre-

lation matrices, appears to be an element of a much wider

theory and methodological approach that has been explored

and developed in the last years within a broader generic

non-financial setting. Simple cross-correlation analysis has

been remarkably extended and generalized toward methods

that help explore co-movements between time series within

nonlinear, noisy, and non-stationary systems of very

complex dynamics, either financial [36–38] or not [39–41].

Recurrent analysis [42] explores the reconstruction of a

phase-space using time-delay embedding for quantifying

characteristics of nonlinear patterns in a time series over

time [43]. This is done by calculating the so-called

Recurrence Plot [44], the core concept of which is to

identify all points in time that the phase-space trajectory of

a single time series visits roughly the same area in the

phase-space. Recurrence plot analysis has no assumptions

or limitations on dimensionality, distribution, stationarity,

and size of data [42]. These characteristics make it suit-

able for multidimensional and non-stationary financial time

series data analysis. The CRP [45] is an extension of the

recurrence plot, introduced to analyze the co-movement

and synchronization of two different time series. The CRP

indicates points in time that a time series visits the state of

another time series, with possibly different lengths in the

same phase-space. These concepts are discussed in further

detail in Sect. 2.

In this paper, we propose a method for predicting the

state of synchronization over time of two multidimen-

sional1 financial time series based on their CRP. In par-

ticular, we use the CRP to quantify the co-movements and

extract the binary representation of its diagonal elements as

the prediction targets for a DL model. For predicting the

state of synchronization at the next epoch, we employ a

Convolutional Neural Network (CNN) that uses as inputs

CRPs independently calculated from data-crops obtained

by applying fixed-size sliding windows on the time series.

Our extensive experiments on 12 stocks of the S &P100

index selected from different sectors show that the pro-

posed method can predict the synchronization of stock

pairs with satisfactory performance.

The remainder of the paper is organized as follows.

Section 2 introduces in detail the concepts and theory

behind the CRP, with an outlook on its applications in

financial and economic problems. Our proposed approach

for predicting time instances of time series’ synchroniza-

tion is presented in Sect. 3. Empirical results on real

market data are provided in Sect. 4, while Sect. 5 provides

conclusions.

1 Throughout the paper, with uni- or multi- variate we refer to the

nature of the analyses (RP as opposed to CRP), and with one- or

multi- dimensional we refer to the nature of the time series. That is,

the RP (as presented in equation (2)) provides a univariate analysis of

a single one-dimensional time series, while the CRP (as presented in

latter equation (3)) a multivariate analysis of two one-dimensional or

multidimensional time series.
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2 Financial time series recurrence analysis

Recurrence in the analysis of time series, seen as a non-

linear dynamic system, is the repetition of a pattern over

time. The visualization of recurrences in the dynamics of a

time series can be expressed via a RP or recurrence matrix

[42]. In other words, the RP represents the recurrence of

the phase-space trajectory to a state. The phase-space of a

d-dimensional time series N with T observations

N ¼ fn>1 ; n>2 ; . . .; n>T g
>

, with ni being the row vector

representing a generic observation at time i, i ¼ 1; . . .; T is

calculated using the time-delay embedding method. State

Ni in the phase-space is obtained by

Ni ¼ ½ni; niþs; . . .; niþðk�1Þs�; i ¼ 1; . . .; T 0, ð1Þ

where s denotes the delay and k is the embedding dimen-

sion, T 0 ¼ T � sðk � 1Þ, s and k can, respectively, be

determined with the Average Mutual Information Function

method [46] and the False Nearest Neighbors method of

[47]. For a uni-dimensional time series, Ni is a row vector

of size ð1 � kÞ, and for a d-dimensional times series Ni is a

row vector of size ð1 � kdÞ. The recurrence state matrix of

the reconstructed phase-space, known as Recurrence Plot

(RP), at times i and j, is defined as

Ri;jðeÞ ¼ Hðe� kNi � NjkÞ; i; j ¼ 1; . . .; T 0, ð2Þ

where e is a threshold distance value, Hð�Þ is the Heaviside

function, and k � k is the euclidean distance. Due to the

underlying embedding (1), Ri;j is defined for i i ¼ 1 up to

T 0 ¼ T � sðk � 1Þ. If two states Ni and Nj are in an e-
neighborhood the value of Ri;j is equal to 1, otherwise is 0.

The value of e highly affects the output of RP. When e is

too small or too large, the RP cannot identify the true

recurrence of states. There are different approaches for

finding the best value for e in the literature [42]. We follow

the guidelines provided in [48] for selecting e. The values

on the diagonal line of RP are equal to one (i.e., Ri;i ¼ 1)

because in that case, the two states introduced to Hð�Þ are

identical. The diagonal line of RP is called the Line Of

Identity (LOI). Recurrence quantification measures derived

from RPs, such as recurrence rate (RR), percent deter-

minism, and maximum line length in the diagonal direction

[42], give insights into the dynamic behavior of time series.

These measures have been used in financial research to

analyze the behavior of financial data, e.g., [49–51]. The

RP of a time series can be used as a data transformation

method for time series prediction. A method employing the

RP of seven financial time series to train a deep neural

network for predicting the market movement is proposed

by [52]. Several authors have suggested an RP forecasting

approach via DL. A feature extraction method exploiting

the RP for parsing a DL algorithm is proposed by [53]. RP

can be treated as images enabling the use of computer

vision techniques for the forecasting task, such as autoen-

coders [54] or CNNs [55].

The CRP of two multidimensional time series [56]

corresponds to an extension of RP which explores the co-

movement of two time series and allows the study of the

nonlinear dependencies between them. Let us denote by

Ni; i ¼ 1; . . .; T and Mj; j ¼ 1; . . .; S the phase-space states

of the time series N and M of length T and S, respectively.

The cross recurrence (CR) states of the reconstructed state-

space a time i and j are

CRi;jðeÞ ¼ Hðe� kNi �MjkÞ ð3Þ

with i ¼ 1; . . .; T 0 ¼ T � sðk � 1Þ and

j ¼ 1; . . .; S0 ¼ S� sðk � 1Þ. Here Ni and Mi are defined as

in (1). CRi;j defines the concept of synchronization and the

way synchronization between two financial time series

measured: an e-neighborhood of the embeddings Ni, Mj at

epochs i, j. We denote the full cross recurrence matrix,

known as cross recurrence plot (CRP) extracted for N and

M as CRPðN ;MÞ, obtained through

CRPðN ;MÞ :¼ CRi;jðeÞ
� �

i¼1;...;T 0; j¼1;...;S0
. ð4Þ

The CRP corresponds to a matrix of dimension T 0 � S0,

which may not be square, as the time series N and M may

have different lengths, i.e., T 6¼ S.

For N , M of equal length T, the CRPðN ;MÞ is a square

T 0 � T 0 matrix. Opposed to the (univariate) recurrence

analysis of one time series (with itself, RP in equation (2)),

the diagonal entries of the CRP are either 1 or 0, as the two

time series may or may not be synchronized at (i, j),

i ¼ j; i ¼ 1; . . .; T 0, see, e.g., Figure 2. In the CRP of two

time series, the LOI is replaced by a distorted diagonal,

called the Line Of Synchronization (LOS). The LOS

reveals the relationship between the two time series in the

time domain. In particular, it provides a nonparametric

function containing information about the time-rescaling of

the two time series, which further allows their re-syn-

chronization [57].

As the time series we consider in our application are

multidimensional (d[ 1), we point out that the CRP is

indeed a multidimensional cross recurrence plot (MdCRP)

[56] where ni, mj are row vectors rather than scalars, and

Ni, Mj are dk-dimensional row vectors rather than k-di-

mensional row vectors, as opposed to the conventional

CRP based on one-dimensional time series. Yet the above

discussion is general and applies to both cases, and CRi;j is

in any case a scalar equal to either 0 or 1. For multidi-

mensional time series, the entries of each of the two time

series require normalization in each dimension before

estimating the MdCRP [56], e.g., with the z-score.
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Financial time series co-movement analysis using the

CRP and LOS is studied in [58, 59]. The work in [60]

analyses the inter-dependencies of the stock market index

and its associated volatility index, further proposing a

method for the LOS estimation based on a corrupted CRP.

Furthermore, it is important to notice that financial time

series are often represented as multivariate instances.

Indeed, even the most basic source of financial data gen-

erally provides information about volumes along with

prices. Furthermore, a number of closely related variables

(e.g., volatility measures) are simple to extract. Despite the

use of multidimensional inputs being effective and com-

monly found across several applications [42], existing CRP

applications on market data are broadly limited to the use

of one-dimensional series only (e.g., prices or volatilities)

[42, 49, 61].

3 Proposed method

We exploit the CRP to quantify the co-movement of two

multidimensional time series N and M observed contin-

uously over a common period of length V. Our goal is to

predict whether at a certain epoch (e.g., a certain calendar

day), N and M are synchronized in the state-space

embedding e-neighborhood given by (3).

Assume two generic time series N and M are observed

over the non-overlapping time-domains DN ¼ ft1; . . .; tTg
and DM ¼ fs1; . . .; sSg of respective length T and S, their

CRP corresponds to a T 0 ¼ ðT � sðk � 1ÞÞ � ðS� sðk �
1ÞÞ ¼ S0 matrix where the (i, j) element expresses the state

of synchronization at the i-th time instance of the first time

series (ti) and at the j-th time instance of the second (sj), in

terms of the e-neighborhood of the states Ni and Mj, as

expressed by (3). With the domains being non-overlapping,

there are no epochs ti and sj such that ti ¼ sj in (the same)

calendar time, and the state of synchronization at a same

calendar time cannot be determined. Indeed, for a fixed ti,

the column-vector CRPi;� reports for the epochs sj; j ¼
1; . . .; S0 (past or future with respect to ti) whether state-

space embedding Mj is in the same e-neighborhood of Ni.

In this light, if the domains of N and M only partially

overlap over a region D :¼ DN \ DM of length V, for our

forecasting purpose, their non-overlapping regions DN nD
and DMnD are irrelevant and can be discarded. Their V

overlapping time instances ti; . . .; tiþV and sj; . . .; sjþV cor-

respond to the same calendar epochs, i.e.,

tiþh ¼ sjþh; 8h ¼ 1; . . .;V , and are of actual relevance.

Over the common domain D, the CRP corresponds to a

square V 0 � V 0 matrix (V 0 ¼ V � sðk � 1Þ) with a well-

defined diagonal expressing the state of synchronization at

ti ¼ sj, e.g., answering whether at the (same) calendar day

ti ¼ sj, N and M are synchronized or not.

This justifies the required form for the input data, cor-

responding to two (multidimensional) time series N and

M observed over a common period D of equal length V,

with D ¼ v1 ¼ maxðt1; s1Þ; . . .; vV ¼ minðtT ; sSÞf g. Since

the essence of time series forecasting is that of predicting

the future from the past, the data from the past needs to be

representative of the h-step ahead forecast. This implicitly

requires D to be a continuous set of times for the given

sampling frequency. That is, there should be no gaps

between days or epochs, namely, vV � v1 þ ðV � 1Þ. Fur-

thermore, in order to calculate (3), we require the time

series to be non-corrupted over D in all its multivariate

entries, i.e., without missing values. The above require-

ments are generally met for the financial time series of our

interest. The only constraints are that of using data for

stocks traded at the same exchange (same trading days and

observed festivities) and that of selecting stocks not subject

to delisting in the period of interest.

Aligned with the general rationale of time series fore-

casting, we aim at predicting the one-step-ahead synchro-

nization status between N and M at epoch iþ 1, based on

some lagged historical records available up to time i, that is

based on some suitable set of feature observed or extracted

over w past epochs. For i ¼ w; . . .;V 0 � 1, let us denote by

N
w
i and Mw

i the sub-sample of N and M of the w most

recent observations up to and including epoch i, that is

N
w
i ¼ ½ni�wþ1; ni�wþ2; . . .; ni�,

Mw
i ¼ ½mi�wþ1;mi�wþ2; . . .;mi�.

Let us denote by CRPðN w
i ;M

w
i Þ the w0 � w0 CRP computed

from N
w
i and Mw

i (with embedding dimension k, lag s and

w0 ¼ w� sðk � 1Þ). At epoch i, CRPðN w
i ;M

w
i Þ is used as the

input of the neural network for predicting the state of

synchronization at iþ 1. Within this framework, there are

V 0 � w input-target pairs. The first pair corresponds to the

input CRPðN w
w;M

w
wÞ and target ðCRPðN ;MÞÞwþ1;wþ1, the last

to the input CRPðN w
V 0�1

;Mw
V0�1

Þ and target ðCRPðN ;MÞÞV 0;V 0 .

The prediction target at epoch i corresponds to the state of

synchronization at iþ 1, provided by the (diagonal) entry

CRPðN ;MÞ
� �

iþ1;iþ1
of the CRP computed for the entire

times series N , M. In particular, the state of synchro-

nization at any epoch i ¼ 1; . . .;V 0 is provided by the

diagonal of CRPðN ;MÞ, i.e.,

diagðCRPðN ;MÞÞi
i¼w;:::;V 0�1

¼
1; if N and M

are synchronized at time i;

0; otherwise,

8
><

>:

ð5Þ
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so that diag CRPðN ;MÞ
� �

i

n o

i¼wþ1;...;V 0
corresponds to the

targets for the inputs CRPðN w
i ;M

w
i Þ

n o

i¼w;...;V 0�1
. The above

corresponds to a framework where inputs are created

dynamically by using CRPs computed over sub-sampled

time series obtained by applying sliding windows of a fixed

size. The above construction is illustrated in Fig. 1. Note

that CRPðN w
i ;M

w
i Þ is not analogous to the sub-matrix P

obtained from CRPðN ;MÞ by considering its rows and col-

umns from i� wþ 1 to i. In CRPðN ;MÞ the entire data in

N and M accounts for the time series normalization and

furthermore tunes the parameter e. CRPðN w
i ;M

w
i Þ is thus truly

dependent on the cropped times series data N
w
i , Mw

i , while

P is not. In a forecasting context, our approach is feasible

and unbiased as it does not use any future information

following the one available at i. Note that, in general,

nothing prevents from choosing the embedding size and lag

parameter differently for the CRP computation of the tar-

gets and for the CRP computations of the inputs.

A simple example with two one-dimensional time series

clarifies how we extract the input features and prediction

targets. Consider the two time series A and B of 10

observations:

A ¼ fA;B;A;A;C;D;D;B;C;Cg>;
B ¼ fA;C;C;C;D;B;D;B;C;Cg>:

Fig. 2 depicts their CRP, i.e., CRPðA;BÞ (for simplicity

computed with k ¼ s ¼ 1, and V ¼ V 0 ¼ 10). The diagonal

line of the CRP is highlighted and includes the values of

the recurrence states. The diagonal line shows that the

behavior of A and B at timestamps between 1 and 7 to 10 is

synchronized, therefore at these timestamps the prediction

targets are set to 1 (the actual value of the Heaviside

function in (3)). By, for instance, setting w ¼ 3, we aim at

predicting V � w ¼ 7 states of synchronization. The first

prediction concerns the synchronization at epoch

wþ 1 ¼ 4, based on the CRPðN 3
3;M

3
3Þ

, that is, the CRP

calculated from the first three observations of A and B. The

prediction of the synchronization at epoch 5 is based on the

CRP calculated on observations 2 to 4, i.e., on CRPðN 3
4;M

3
4Þ

.

The procedure is repeated up to epoch V � 1 ¼ 9, where

CRPðA3
9;B

3
9Þ, calculated from the observations 7 to 9, is used

for predicting diagðCRPðA;BÞÞ10.

Appendix B includes a visualization that displays the

results of recurrence analysis on real-world stock data. This

visualization provides empirical evidence of the complex-

ity of the patterns underneath the RP and CRP.

To practically implement the underlying DL model that

maps each CRPðN w
i ;M

w
i Þ input to its corresponding

diag CRPðN ;MÞ
� �

iþ1
output, consider that each input con-

sists of a matrix of zeros and ones that can be considered

analogous to an image. Therefore we can rely on well-

established classification models. In particular, we employ

a Convolutional Neural Network (CNN). Such a neural

network is well-suited for capturing the spatial

Fig. 1 Proposed method. For

two input time series M, N , we

construct their CRP and take its

one-period-ahead diagonal

entries as targets for model

prediction (bottom flow). On the

other hand, we construct a

sequence of CRPs based on a

fixed-size sliding window

ending at the current period,

whose elements constitute the

inputs for the Neural Network

(upper flow)

Fig. 2 The CRP of two time series with the diagonal line highlighted
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relationships between the features in their input, which in

our case correspond to the 0-1 features encoded in the

entries of CRPðN w
i ;M

w
i Þ. Note that in the CRP calculation

N
w
i and Mw

i are z-score normalized before computing (3).

We use a CNN architecture formed by two convolu-

tional and one fully connected layer, as illustrated in Fig. 3.

The neural network involves the typical blocks of the CNN

architecture. The convolutional layers adaptively learn the

spatial relationships of inputs, the Rectified Linear Unit

(ReLU) activation introduces nonlinearity to the model,

and the max-pooling layer provides down-sampling oper-

ations reducing the size of the feature map by extracting

the maximum value in each patch from the input feature

map. The current CNN is chosen based on a grid search

over different network architectures, layers’ types, and

sizes, aimed at maximizing the F1-score and showing the

feasibility of our CRP-based DL approach. Importantly, the

temporal connections in the input data are handled within

the CNN. In fact, the construction of the input data as

outlined above relates all the instances in CRPSWi
to the

target yi, where the entries in CRPSWi
furthermore consti-

tute aggregate values (CRP entries) capturing the similarity

of the input processes at different lags of time, within the

windows W. The output of the stacked convolutional layers

is introduced to a fully connected layer, leading to the

network’s output by applying a softmax function.

4 Experiments

4.1 Data

Our analyses rely on daily adjusted closing prices and daily

number of traded shares (volumes) for 12 representative

constituents of the S &P100 index in the period from

December 31st, 2014 to November 29th, 2021 (V ¼ 1; 741

trading days). The data is retrieved from Yahoo Finance.

These 12 stocks are selected based on their market capi-

talization and their market sector. For each sector, we

select the first two stocks of highest-but-comparable capi-

talization, a practice well-supported by financial theory

[62]. Market sectors provide a natural grouping for

securities: analyses conducted at a sector level are a

common practice for granting comparability and robust-

ness of the results, as across market sectors the dynamics of

economic variables are well-known to be asymmetric.

Table 1 lists our stock selection. Each stock is expressed as

a trivariate time series consisting of daily prices, volumes,

and returns. CRPs express temporal similarities in joint

terms of the price level, traded volume, and daily return,

providing a generalized definition of similarity in time

series dynamics at a multivariate level.

For our bivariate analysis on two time series, we have

ð122 � 12Þ=2 ¼ 66 pairs of stocks. For each stock pair, we

use the first 70% of the data for training (V train ¼ 1; 218

days) and the last 30% for testing (Vtest ¼ 523 days). As

the future input instances should not affect the training

process, the order of the input data during the training is

fixed. The input and targets of the train data and the test

data are, respectively,

Inputs: CRPðN w
i ;M

w
i Þ

n o

i2I
,

Targets: diag CRPðN ;MÞ
� �

i

n o

i2T
,

where I ¼ w; . . .;Vtrain and T ¼ wþ 1; . . .;Vtrain þ 1 for

the training set and I ¼ Vtrain þ 1; . . .;V � 1 and T ¼
Vtrain þ 2; . . .;V for the test set. We train the neural net-

work once over the data for all the picks of the stock pairs.

This pooled approach is a common practice in closely

related Machine Learning literature, e.g., [21], and sup-

ported by the empirical findings of [63], suggesting the

existence of an universal price formation mechanism

(model), and thus price dynamic, not specific for individual

assets. In practice, the input and output data is the con-

catenation of the individual pairs’ inputs-targets. For

example, for a set window size w, for the train set the

input-target data consists of ðV 0
train

� wÞ � 66 examples,

that is ðV 0
train

� wÞ � 66 pairs of cross recurrent matrices

and (scalar) targets, where V 0
train

¼ ðVtrain � sðk � 1ÞÞ. In

the training phase, the training data is used to estimate the

optimal weights of the CNN. The test data is then parsed to

the estimated CNN and the quality of the network outputs

Fig. 3 Architecture of the proposed convolutional neural network
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is evaluated against the actual targets. Details are provided

in the following two subsections.

For the training of the CNN we adopt the ADAM

optimizer with the following hyperparameters: learning

rate 0.01 (reduced by a factor of 5 every 40 epochs),

momentum parameters 0.9 and 0.999, batch size 128 and

epoch size 300. Across the epochs, we keep track of the F1-

score on the validation set, which is set to the last 15%

portion of the training set. For our classification task, we

adopt the binary cross-entropy loss. As the target classes

are unbalanced, the loss is weighted for the targets’ class

proportion. Details on the filter sizes, kernel sizes and the

max pooling size are provided in Fig. 3.

With respect to the CRP computations, throughout our

analyses the embedding dimension k is set to 2 or 3 (esti-

mated via FNN method) based on input type, and the delay

parameter s is set to 1. Values 0.45, 0.55, 0.65, and 0.75 are

used for the threshold e. These hyperparameters are

selected according to the guidelines and discussion in [48]

and [56]. The same values are applied for both the com-

putation for the CRP related to the targets and the CRPs

related to the inputs.

In our experiments, we consider two different choices

for the window-size hyperparameter, namely w ¼
f10; 30; 50; 60; 80g days. With the above settings, V ¼
V 0 ¼ 1; 741 days, Vtrain ¼ V 0

train
¼ 1; 218, and Vtest ¼

V 0
test ¼ 523 days. For i ¼ w; . . .;V � 1, CRPðN w

i ;M
w
i Þ are

square matrices of size w0 ¼ w and CRPðN ;MÞ a square

matrix of size V on whose diagonal are found the relevant

targets, i.e., diag CRPðN ;MÞ
� �

i
, i ¼ wþ 1; . . .;V .

4.2 Experimental results

Stock pairs from the same sector or two different sectors

with different co-movement behaviors can provide com-

prehensive experimental data to show the ability of the

proposed method to predict the state of synchronization. To

evaluate the performance of our proposed method, all pairs

of stocks are used as the input of the method. We collect all

pairs of stocks, and for each pair we follow the proposed

steps (ref. Figure 1) to create the inputs and targets. We

stack the input-target pair-specific data to create a single

train and test set for all pairs.

Tables 2 and 3 show the performance of our proposed

approach for all pairs of stocks using two types of input:

(price, volume) and (price, return, volume), respectively.

Given that the target classes are generally imbalanced, the

preferred reference performance metric is the F1-score.

Yet, we also include accuracy, precision, and recall2 to

have a clearer overview of the classification performance.

For robustness, we run our experiments over a range of

Table 1 List of selected stocks

Sector Ticker Stock name

Electronic technology (ET) INTC Intel corporation

Electronic technology QCOM Qualcomm inc

Energy minerals (EM) XOM Exxon mobil corporation

Energy minerals CVX Chevron corporation

Finance (F) JPM JP Morgan Chase & co

Finance V Visa Inc

Health technology (HT) JNJ Johnson & Johnson

Health technology PFE Pfizer, inc

Retail trade (RT) HD Home depot, inc. (The)

Retail trade WMT Walmart inc

Technology services (TS) MSFT Microsoft corporation

Technology services GOOG Alphabet inc

Table 2 Performance measures on the test set using (adjusted) price

and volume as input variables

w e Accuracy Precision Recall F1-score

10 0.45 0.960 0.886 0.818 0.848

10 0.55 0.981 0.842 0.762 0.796

10 0.65 0.992 0.836 0.684 0.737

10 0.75 0.997 0.999 0.647 0.727

30 0.45 0.957 0.877 0.804 0.836

30 0.55 0.979 0.821 0.752 0.782

30 0.65 0.991 0.816 0.684 0.732

30 0.75 0.996 0.998 0.539 0.571

50 0.45 0.956 0.861 0.808 0.832

50 0.55 0.982 0.907 0.719 0.784

50 0.65 0.993 0.907 0.668 0.737

50 0.75 0.997 0.935 0.665 0.739

60 0.45 0.954 0.850 0.814 0.831

60 0.55 0.976 0.775 0.730 0.751

60 0.65 0.992 0.937 0.633 0.703

60 0.75 0.997 0.816 0.689 0.737

80 0.45 0.950 0.827 0.809 0.818

80 0.55 0.979 0.839 0.725 0.769

80 0.65 0.990 0.776 0.666 0.707

80 0.75 0.997 0.820 0.709 0.753

2 For a binary classification task involving N samples, let TP, TN, FP,

and FN, respectively, denote true positive, true negative, false

positive, and false negative: the performance measures are defined as

follows: Accuracy ¼ (TP+TN)=N, Precision ¼ TP=ðTP+FPÞ,
Recall ¼ TP/(TP+FN), F1 ¼ 2ðPrecision � RecallÞ=ðPrecision

þRecallÞ.
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values for the window-size W and threshold e hyperpa-

rameters, a setup that further clarifies the effect of these

hyperparameters on prediction performance. Additional

results for all the 66 pairs of stocks are provided in

Appendix A.

Results for the (price, volume) time series input are

provided in Table 2, results for the (price, return, volume)

input in Table 3. In general, our results show that the task

of predicting the state of synchronization is not only fea-

sible but, under our setup, quite satisfactory. Indeed our

preferred performance F1 metric is as high as 84%. As

expected, the results appear to be sensible to the choice of

the window size and threshold parameter. In particular, the

performance metrics decrease in their values as the

threshold parameter and the window size increase. This

means that stricter e-neighborhoods are easier to predict

and that the relevant information for the prediction of the

synchronization state is found in the most recent instances

of the CRP. This suggests the existence of patterns in the

data that are strongly indicative of close e-neighborhoods.

I.e., the CNN detects clear patterns indicative of the fact

that the day-ahead synchronization is likely to be very

strong (the e-neighborhood is tight), indeed, as e increases,

the performance metric decreases, indicating that the

model indeed detects strong evidence of ‘‘strong’’ day-

ahead synchronization. Regarding the window size, long-

lagged CRP information appears to introduce noise in the

system without providing any predictive gains, aligned

with the intuition that further-in-time information is less

and less related to the current state of the system and of

little use for prediction.

Suspecting that the joint use of prices and returns might

be redundant since they are closely related to each other,

we also run a second experiment involving volumes and

returns only. It is interesting to note that the inclusion of

the returns does not seem to provide any advantage with

respect to the (price, volume) input time series, but rather

the opposite effect. It is expected that the inclusion of

further input variables complicates the patterns in the CRP

chessboard so that under the same network architecture, the

performance metrics decrease. Furthermore, and aligned

with the above, in additional experiments here not reported,

we included squared returns (as a gross measure of daily

volatility), finding that they also appear detrimental to the

performance metrics and prediction task. This perhaps

suggests that the network architecture needs to scale up

with the dimensionality of the input data, reasonably

inducing more complex patterns in the CRP.

An alternative method for assessing the prediction

method’s performance is to examine its performance on

periods of high and low volatility for stock pairs. To do

this, for each stock, we construct estimates of daily

volatility by applying the Exponentially Weighted Moving

Average (EWMA) filter [64]:

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � r2

t�1 þ ð1 � kÞ � r2
t�1

q
ð6Þ

where r is the volatility, r is the return, t is an index

denoting the day, and k a decay factor. When calculating

the volatility, the decay factor k determines the weight

given to older returns. We set k ¼ 0:94, which is com-

monly used for daily returns series [64].

For each stock in every pair, we intersect the days of

highest 30% and lowest 30% volatility. From such an

intersection, we identify dates corresponding to two

volatility regimes (high volatility and low volatility). For

every pair, on average, 14% (12%) of the dates in the test

set correspond to high (low) -volatility days. In this way,

we derive high-volatility and low-volatility subsets from

the test set.

Table 4 displays the out-of-sample performance of the

best model (w ¼ 10; e ¼ 0:45, price-volume data) for the

above two subsets. The results show that the prediction of

the synchronization state is very satisfactory on both high-

volatility and low-volatility test sets, with higher accuracy

observed for the low-volatility set. Notably, the high-

volatility test set has a higher percentage of non-synchro-

nized time instances (12% in Class 0) than the low-

volatility test set (5% in Class 0), which can be interpreted

Table 3 Performance measures on the test set using (adjusted) price,

volume and returns as input variables

w e Accuracy Precision Recall F1-score

10 0.45 0.946 0.858 0.802 0.827

10 0.55 0.973 0.810 0.733 0.765

10 0.65 0.988 0.776 0.694 0.728

10 0.75 0.995 0.795 0.664 0.711

30 0.45 0.943 0.845 0.800 0.820

30 0.55 0.971 0.789 0.742 0.763

30 0.65 0.987 0.760 0.678 0.711

30 0.75 0.996 0.998 0.601 0.667

50 0.45 0.938 0.826 0.785 0.804

50 0.55 0.971 0.795 0.731 0.758

50 0.65 0.987 0.758 0.667 0.702

50 0.75 0.995 0.998 0.503 0.505

60 0.45 0.938 0.823 0.788 0.804

60 0.55 0.967 0.752 0.735 0.743

60 0.65 0.987 0.756 0.654 0.692

60 0.75 0.996 0.955 0.595 0.657

80 0.45 0.933 0.805 0.788 0.796

80 0.55 0.967 0.755 0.730 0.742

80 0.65 0.989 0.893 0.616 0.677

80 0.75 0.995 0.998 0.548 0.586
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as evidence of higher non-synchronization or disentangled

dynamics on high-volatility days with respect to low-

volatility ones. Interestingly, these percentages indicate

that even on high-volatility days, stocks tend to be by far

very synchronized (88%), though not as much as on low-

volatility days (where the fraction of non-synchronized

days is 7% smaller). The relatively low number of non-

synchronized days for the high-volatility regime also sug-

gests that stocks are similarly perturbed/exposed to the

market risk factors causing volatility and that their

response to volatility outbursts is similar. Indeed, in 88% of

high-volatility test days, the data is detected in the same

price-volume embedding, or, in simpler terms, two series

share similar dynamics.

5 Conclusion

Predicting the co-movement of two multidimensional time

series is a relevant task for the financial industry that

supports potential trading strategies based on their inter-

relationships. This paper contributes to the literature by

providing (i) a method relying upon the CRP to quantify

the time series coupling over time, (ii) a DL model for

predicting the time series synchronization state, (iii) the use

of a multidimensional time series representation of the

inputs involving prices, volumes, and returns. We con-

ducted extensive analyses on real stock market data from

different sectors: our results show that the proposed setup

can effectively predict the one-day-ahead synchronization

of two time series. An interesting future research direction

would be to investigate the applicability of such an

approach to a high-frequency domain where the high-di-

mensional nature of the raw data may provide valuable

information for analyzing and predicting the coupling in

settings that are known to be characterized by high levels

of noise.

Appendix A: Additional results

See Table 5.

Table 4 Performance measures on the high-volatility and low-

volatility test sets

Volatility regime Accuracy Precision Recall F1-score

High 0.922 0.833 0.779 0.803

Low 0.982 0.933 0.853 0.889

Table 5 Performance on the test set for all the stock pairs in Table 1

Stock Pair Sector F1-score Accuracy Precision Recall Pct. Class 1 wH

CVX - HD EM - RT 0.86 0.91 0.86 0.86 0.79 20

WMT - GOOG TS - EM 0.85 0.86 0.85 0.86 0.40 20

CVX - MSFT EM - RT 0.84 0.88 0.83 0.87 0.75 20

XOM - JPM TS - RT 0.84 0.85 0.83 0.85 0.35 20

CVX - GOOG EM 0.84 0.87 0.83 0.85 0.74 20

QCOM - CVX ET - EM 0.82 0.83 0.83 0.82 0.56 20

JPM - WMT RT - TS 0.82 0.82 0.87 0.82 0.53 20

V - GOOG TS - EM 0.81 0.81 0.82 0.84 0.37 20

INTC - GOOG RT - EM 0.81 0.81 0.81 0.82 0.41 20

XOM - WMT TS 0.80 0.88 0.76 0.91 0.14 20

INTC - WMT RT - TS 0.80 0.80 0.80 0.80 0.55 20

QCOM - GOOG ET - EM 0.79 0.83 0.81 0.78 0.69 20

INTC - HD RT 0.79 0.79 0.85 0.80 0.49 20

INTC - QCOM RT - ET 0.77 0.78 0.78 0.78 0.45 10

JNJ - WMT RT - TS 0.77 0.87 0.82 0.74 0.81 20

XOM - V TS 0.76 0.85 0.72 0.86 0.15 20

INTC - MSFT RT 0.76 0.76 0.76 0.75 0.56 20

QCOM - PFE ET - RT 0.75 0.76 0.81 0.77 0.47 20

JPM - GOOG RT - EM 0.75 0.81 0.86 0.73 0.65 20

CVX - V EM - TS 0.75 0.75 0.75 0.75 0.47 20

XOM - HD TS - RT 0.74 0.74 0.74 0.74 0.46 10

QCOM - V ET - TS 0.73 0.74 0.73 0.75 0.35 20
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Table 5 (continued)

Stock Pair Sector F1-score Accuracy Precision Recall Pct. Class 1 wH

PFE - GOOG RT - EM 0.73 0.73 0.77 0.75 0.43 10

JPM - MSFT RT 0.73 0.79 0.77 0.71 0.69 20

CVX - PFE EM - RT 0.72 0.77 0.81 0.71 0.60 20

INTC - PFE RT 0.72 0.75 0.73 0.83 0.21 20

XOM - JNJ TS - RT 0.72 0.81 0.69 0.88 0.13 20

JPM - V RT - TS 0.69 0.75 0.80 0.69 0.62 20

JPM - HD RT 0.69 0.73 0.74 0.69 0.59 20

QCOM - XOM ET - TS 0.69 0.69 0.69 0.69 0.50 20

QCOM - WMT ET - TS 0.68 0.73 0.68 0.68 0.31 10

QCOM - JPM ET - RT 0.68 0.68 0.73 0.72 0.41 20

XOM - MSFT TS - RT 0.68 0.71 0.68 0.68 0.37 20

CVX - JPM EM - RT 0.68 0.75 0.68 0.68 0.74 20

INTC - CVX RT - EM 0.68 0.69 0.71 0.69 0.50 10

XOM - GOOG TS - EM 0.67 0.69 0.68 0.67 0.39 20

JPM - PFE RT 0.67 0.69 0.72 0.79 0.24 20

QCOM - JNJ ET - RT 0.67 0.68 0.73 0.69 0.49 20

INTC - JPM RT 0.67 0.69 0.71 0.67 0.55 20

INTC - JNJ RT 0.67 0.73 0.74 0.66 0.62 20

CVX - WMT EM - TS 0.67 0.68 0.66 0.67 0.37 20

V - MSFT TS - RT 0.66 0.72 0.66 0.72 0.79 20

QCOM - MSFT ET - RT 0.65 0.72 0.76 0.65 0.62 20

WMT - MSFT TS - RT 0.65 0.65 0.65 0.65 0.55 20

INTC - V RT - TS 0.64 0.74 0.64 0.65 0.77 20

JNJ - GOOG RT - EM 0.64 0.66 0.67 0.64 0.54 10

CVX - JNJ EM - RT 0.63 0.63 0.69 0.69 0.35 20

INTC - XOM RT - TS 0.62 0.68 0.63 0.71 0.20 20

PFE - MSFT RT 0.62 0.64 0.66 0.71 0.25 10

PFE - WMT RT - TS 0.62 0.87 0.59 0.75 0.05 10

V - HD TS - RT 0.60 0.61 0.60 0.60 0.58 20

JNJ - HD RT 0.60 0.64 0.60 0.60 0.67 10

V - PFE TS - RT 0.60 0.78 0.60 0.88 0.06 20

HD - WMT RT - TS 0.59 0.59 0.59 0.59 0.42 20

XOM - PFE TS - RT 0.57 0.63 0.58 0.57 0.63 10

JPM - JNJ RT 0.56 0.63 0.59 0.57 0.62 10

V - WMT TS 0.56 0.87 0.58 0.55 0.91 20

QCOM - HD ET - RT 0.56 0.59 0.61 0.58 0.51 10

JNJ - MSFT RT 0.54 0.81 0.54 0.55 0.90 20

HD - GOOG RT - EM 0.53 0.63 0.56 0.54 0.65 10

HD - MSFT RT 0.52 0.85 0.52 0.53 0.92 10

JNJ - PFE RT 0.51 0.61 0.58 0.75 0.10 20

V - JNJ TS - RT 0.50 0.86 0.50 0.50 0.94 10

XOM - CVX TS - EM 0.49 0.52 0.54 0.56 0.22 10

MSFT - GOOG RT - EM 0.48 0.94 0.47 0.50 0.94 20

PFE - HD RT 0.44 0.44 0.61 0.62 0.22 20

‘‘Pct. class 1’’ refers to the fraction of targets in class 1 (time series synchronization), ‘‘wH’’ is the value of the hyperparameter w under which the

best F1-score is observed. Results refer to the 3-dimensional times series consisting of prices, volumes, and returns
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Appendix B: RP and CRP Visualization

See Fig. 4.
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Fig. 4 Left column: visualization for the Chevron Corporation stock

from January 1, 2015 to November 30, 2021. The Top Plot shows the

normalized adjusted closing price, and the bottom plot shows the

corresponding recurrence plot and the LOI. Right column: visualiza-

tion of Chevron Corporation and Google stocks’ daily adjusted

closing prices from January 1 2015 to November 30, 2021. The top

plot displays the normalized adjusted closing price of both stocks,

while the bottom plot shows the CRP for this duration. The distorted

red line on the CRP corresponds to the LOS. For generating the

figure, we used the CRP toolbox [65]
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