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The critical threshold mass for boulders composinga beach is the mass of the largest stone entrained by the hydraulic
forces associated with wave breaking and swash run-up. For any given storm event there is a maximum boulder mass
that can be moved and another slightly larger boulder that has the minimum mass necessary to remain stable. Two
equations are derived: one to estimate critical threshold mass and another to estimate minimum stable mass for
boulders on a beach. The equations incorporate: stone density, beach slope, breaking wave height, water depth, wave
period, run-up height, maximum swash velocityand average swash velocity. In both equations the wave forceapplied
to the beach face is scaled relative to the elevation that wave energy raises the water surface. Scaling the wave force
relative to the run-up elevation results in a critical threshold formula. This is given as equation (45). Its predictions
accurately match field data giving the largest boulder transported on a beach during storm events. Scaling the wave
force relative to the breaking wave height at the toe of the beach results in a stability formula. This is given as
equation (46). It predicts stable mass in the range defined by the Hudson formula. Equation (46) has an advantage
over the Hudson formula by incorporating the physically important parameters of wave period and swash velocity.
Both equations could be useful in the initial evaluation and design of dynamic revetments constructed with quarry
stone.

ADDITIONAL INDEX WORDS: Wave runup, swash velocity, coastal engineering, dynamic revetment, gravel beach.

INTRODUCTION namic revetments that mimic the natural shore protection

behavior of a boulder beach.

Boulder beaches are common features of many rocky coasts

throughout the world. They generally form at the base of sea

cliffs and provide a protective buffer against wave attack.

Natural boulder beaches deform in profile relative to chang

ing storm wave conditions that transport boulders composing

the beach. (OAK, 1981; 1985). OAK(1981) found that boulder

entrainment occurred only during storms and that initial dis

placement was in direct response to wave breaking and up

rush of the wave swash. In this context, boulder beaches rep

resent the natural equivalent to a dynamic rubble revetment.

BAGNOLD (1940) argued that the potential energy carried

away by the water that percolates into the beach results in

a situation where the return flow of the backwash will be a

less competent flow than the up-rush of the swash. The main

role of the backwash on a boulder beach is to remove finer

material, thereby maintaining an armored beach face char

acterized by high porosity. These dynamic characteristics of

a boulder beach buffer the backshore environment from di

rect wave attack. The result is that sea cliffs, with boulder

beaches developed at their toe, erode at very slow rates.

Therefore, the ability to quantify the wave conditions neces

sary to initiate movement and transport of boulders is im

portant for coastal engineers interested in the design of dy-
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Coastal Engineering Design

Over the last decade interest has turned towards the de

sign of dynamic revetments that provide the necessary level

of protection by allowing the structure to deform under wave

attack (PILARCZYK and DER BOER, 1983; VAN DER MEERand

PILARCZYK, 1986; JOHNSON, 1987; VAN DER MEER, 1987 and

1988; POWELL, 1988; AHRENS, 1981; LORANG, 1991; VAN

DER MEER, 1992; SILVESTER and Hsu, 1993). In this light,

coastal engineers are designing with the intent to mimic the

dynamic behavior of naturally occurring boulder, cobble and

gravel beaches. However, an equation does not exist that es

timates the critical threshold mass for use in the design of

dynamic revetments.

The most frequently used formula for breakwater and stat

ic shoreline revetment design is the Iribarren formula (1938),

modified by HUDSON (1952) and adopted as the Hudson for

mula by the Army Corps of Engineers in their Shore Protec

tion Manual (SPM, 1984). The Hudson formula gives esti

mates of individual stone mass necessary to construct a static

shore protection structure in terms of wave height, structure

slope and stone density. It is given as

(1)
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where W is the minimum stable mass, H; is the significant

deep-water wave height or the significant wave height at the

structure base, Ps and Pw are stone and water density, re

spectively, e is the angle the beach makes with the horizon

tal, and K D is a stability coefficient empirically derived from

wave tank studies (SPM, 1984). One can see from the equa

tion that stone mass is mainly a function of the significant

design wave height. Other wave parameters are ignored such

as, wave period, swash velocity or run-up height. Unfortu

nately, these are the physical parameters that describe wave

action upon a shoreline revetment designed to provide pro

tection against wave erosion.

In the case of estimates from the Hudson formula, waves

smaller than the design height can damage a coastal struc

ture, ranging from the transport of a few individual stones to

complete failure of the structure (AHRENS and MCCARTNEY,

1975; BRUUN and GUNBAK, 1977; AHRENS, 1981). Such dam

age has been attributed in part to the effect wave period has

on the hydraulic forces acting against a coastal structure

(BRUUN and GUNBAK, 1977). An increase in wave period for

any given wave height results in an increase in wave power

expended on the structure. One would intuitively expect the

corresponding entrainment of increasingly larger stones. The

fact that wave period is not included in the Hudson formula

has been cited as a shortcoming in its use as a design tool

(HUDSON, 1952; BRUUN and GUNBAK, 1977).

The Army Corps of Engineers responded to this shortcom

ing in the theoretical development of the Hudson formula

with numerous wave tank studies aimed at finding values for

the stability coefficient, KD , that accounted for stability

through interlocking structure units or special placement of

stones (HUDSON, 1952; SPM, 1984). When estimating stable

stone mass, the typical design procedure is to consult the ta

bles presented in the SPM and choose the proper KD value

that corresponds with the structure material, mode of place

ment, morphology (i.e. structure head or trunk) and the ex

pected form of wave breaking. The Hudson formula has been

a useful tool in the design of static structures because it relies

on readily attainable variables that result in an over-esti

mate of minimum stable stone mass, thereby providing an

adequate level of design safety. However, a similar formula

does not exist for the design of dynamic revetments and the

coastal engineer is left with having to estimate proper values

for the stability coefficient, KD , that reflect the critical thresh

old entrainment condition from the Hudson formula.

ANALYSIS OF BOULDER ENTRAINMENT

ON A BEACH

Descriptive Processes

Wave competence is a term used here that refers to the

size of the largest entrained boulder as related to the wave

hydraulics that caused the entrainment. The entrainment of

boulders on a boulder beach is viewed as occurring during

two regimes of wave energy. The first is a relatively low-wave

energy regime that occurs during periods of low-wave height

and long-wave period. For this regime, only a small portion

of the boulders comprising the beach are selectively en

trained. The main processes would be (1) winnowing away of

fine material, (2) some boulder rounding due to impact frag

mentation, and (3) some boulder smoothing due to abrasion.

The second regime occurs at a higher energy level associated

with storm wave conditions. This high energy regime is char

acterized by a dynamic beach state where most, or all, of the

boulders shift position or rock in place, with the smaller boul

ders perhaps being rolled over or pushed up-slope.

One might argue that during storms wave breaking on the

beach face dislodges individual boulders that are then pushed

up-beach by the swash. BRUUN and GUNBAK (1977) found

that as swash velocity increased, large over-turning moments

developed on the blocks composing a quarry-stone structure.

The result was the initial movement of individual stones. No

vAK(1969) measured the size of the largest transported clast

on a gravel beach and the velocity of the swash. The largest

gravel clast transported had an intermediate particle diam

eter of 0.1 m and was transported by a swash velocity of 2.42

m/s corresponding with a breaker height of 0.44 m. Therefore,

swash velocity associated with small waves (0.44 m) can pro

duce turbulent flow sufficiently competent to entrain both the

gravel and cobble components of the beach. The conclusion

from the above discussion is that swash velocity must be used

in the development of a wave-competence equation.

The remainder of the discussion section of this paper is

organized into six sequential sub-sections.

• nearshore wave transformation

• beach slope and swash deceleration

• swash resistance and beach roughness

• increasing wave power and wave competence

• Shields entrainment function applied to a boulder beach

• derivation of the two equations: one to estimate critical

threshold mass and another to estimate minimum stable

mass for boulders on a beach.

Each of these six sections describe how they relate to the

derivation of the two equations (45) and (46) presented. I be

gin with a discussion of the methods used to estimate wave

transformation from deep water to run-up of wave swash.

Then a discussion of the relationship of beach slope and

swash deceleration through the derivation of the Iribarren

number, ~ , is presented. Similar arguments of beach slope

and swash deceleration occurs in part because of flow resis

tance. Therefore, the assumptions and methods used to rep

resent the drag coefficients that arise in the derivations are

discussed in terms of beach roughness. The term wave com

petence, where the size of the largest entrained boulder re

flects the wave hydraulics that caused the entrainment, is

discussed through the relationship between increasing wave

power and the entrainment of increasingly larger boulders.

Finally, the derivation of the wave competence equations pre

sented follow the derivation of the Shields entrainment func

tion widely used to define threshold entrainment in the flu

vial environment. Therefore, the derivation of the Shields en

trainment function is briefly presented to highlight the der

ivation as applied to a boulder beach.

Wave Transformations and Beach Scaling

The transformation from deep-water waves to final run-up,

R u , of wave swash on the beach face is a complex process that
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Figure 1. Schematic of the process of wave transformation from an initial off-shore wave height to the final run-up of swash on the beach face.

becomes increasingly so for a low sloping nearshore. As storm

energy increases incident waves continually break further

offshore producing a surf zone 100's of meters wide on low

sloping sand beaches or broad wave cut terraces. These surf

zones may have many bores between the break-point and fi

nal run-up. On many gravel, cobble and boulder beaches

storm waves never reach the beach face during low tide. The

energy is dissipated in the wide surf zone over the wave-cut

terrace that exists at that tide level. In contrast, during high

tide, and under similar storm intensity, waves initially break

very near the beach face separated by maybe one or two surf

bores (Figure 1). Estimating run-up elevation from offshore

wave conditions is most reliable when wave breaking occurs

close to the beach without a large intervening surf zone.

Wave run-up can be estimated from the deep-water wave

statistics and slope of the beach. BATTJES (1974; a & b) mod

ified the HIJNT (1959) formula for the 2% run-up elevation,

Ru 2% , by re-writing the equation in terms of a dimensionless

surf similarity parameter, ~ , that he referred to as the Iri

barren number. The expression

(2)

relates the run-up elevation to the Iribarren number, ~ , the

deep-water significant height, H s ' and an empirical constant

Cr. The Iribarren number is a non-dimensional parameter

that relates beach steepness to offshore wave steepness. It is

an important scaling parameter when estimating run-up on

a boulder beach or similar artificial rock slopes (BATTJES,

1974; a & b; AHRENS and MCCARTNEY, 1975; AHRENS, 1981;

ALLSOP et al., 1985; HOLMAN, 1986; DALRYMPLE, 1992;

WAAL and VANDER MEER, 1992; VANDER MEER and STAM,

1992). The expression is

where T is the wave period and g is gravity. Substitution of

(4) into (3) and (3) into (2) yields

R,m = crj{;rvH;;(tan 9). (5)

VAN DER MEER and STAM (1992) found a value of 0.55 for

C; corresponding to a range of 0.5 > ~ < 2 due to irregular

waves on porous rock slopes. They referred to C, as the run

up attenuation constant and found that it depends on beach

coarseness and permeability which attenuates the run-up

through frictional resistance of the swash and loss of water.

HOLMAN (1986) also found similar values for C, using mea

sures of swash from a sand beach. For very steep boulder

beaches as wave energy increases run-up elevation increases

in a linear fashion at incident wave frequencies for the range

of surf similarity parameters 0.5 > ~ < 2.5 (HOLMAN, 1986;

KOBAYASHI, et al. 1988; VAN DER MEER and STAM, 1992).

The data used here come from storm conditions where ~ fell

within this range (Table 1). Gravel and boulder beaches typ

ically exist in this range for ~. The fundamental physical prin

ciples between beach slope and wave steepness are related

through the derivation of ~. Therefore, the derivation follows

below illustrating how those arguments can be used to derive

the wave competence equations presented here.

We begin with a wave impinging on a gravel or boulder

slope as a swash bore that collapses at the shore break and

surges up the gravel beach face (Figure 1). This swash bore

must decelerate from a maximum velocity, U m ax ' at the shore

break position (equal to maximum run-down for monochro

matic waves) to zero over a time interval ideally equal to lh

the wave period. We can approximate maximum velocity with

the following

(6)

(7)
T

t =-
2·

U m ax = YgHs b

The deceleration, au/at of the swash equals the down slope

component of gravity, g sin e. This condition written for a

sloping beach is

where H sb is the wave height at the shore break position. We

can define a time interval t as

(4)

(3)

1
L = _gT2

o 27T

tan e
~ = Iii.

V4
where tan e is the slope of the beach and Lo is the deep-water

wave length. From linear wave theory we can derive an ap

proximation for Lo, given as

Journal of Coastal Research, Vol. 16, No.2, 2000
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Table 1. Oak (1985) data and other variables estimated by the listed equation number.

where the substitution of H, for H,"h is required to equate

offshore wave steepness to beach slope as expressed in the

Iribarren number. Solving for sin 8 and squaring both sides

yields

Supplemental Analysis

Hh RU2 l !r v.: Crit. Thr

(50) (5) (30) (48)

(rn) (rn) (m/s) (kg)

2.8 1.56 7.91 195

3.12 1.92 8.36 318

3.02 1.76 8.22 262

3.12 1.8 8.36 285

4.21 2.32 9.71 647

4.17 2.16 9.66 567

5.57 3.1 11.17 1523

5.68 3.13 11.27 1593

6.69 3.65 12.24 2563

6.19 2.76 11.77 1444

6.97 3.17 12.49 2137

(14)

(VAN RIJN, 1982). Analogously, on a boulder beach, flow re

sistance of the swash up the beach face occurs in part due to

the roughness associated with boulder size. The condition of

maximum roughness occurs when boulder diameter equals

run-up, Ret' or when the swash thickness equals the boulder

diameter (Figure 2). This type of roughness scale becomes

important when estimating the frictional drag between the

beach face and the swash. The ratio used here to express

average roughness of a boulder beach is

where D so is the mean intermediate diameter of the boulder

comprising the beach face.

HUGHES (1995) presents an equation for estimating the

frictional resistance, t; associated with wave swash up a low

sloping sand beach face

(9)

(10)

Oak Data
~

H; Buoy TBuoy Largest Boulder (3)

(m) (sec) (kg) (ND)

2.1 10 28 1.35

2.2 12 53 1.59

2.2 11 93 1.45

2.3 11 24 1.42

3.2 12 27 1.32

3.3 11 39 1.19

4.2 14 24 1.34

4.3 14 2191 1.32

5.1 15 898 1.30

5.4 11 1276 0.93

6 12 935 0.96

au
- = g sin 8 (8)
at

. H"
(SIn 8)2 = '.

0.25gT2

solving (4) for wave period yields

where 8 is the angle between the beach face and horizontal

(Fig. 1). We can now make the following approximation

through substitution

au \/iii: .
at ~ 0.5T = g SIn 8

and substituting (11) into (10) yields

(11) (15)

squaring both sides and rearranging as a ratio equal to some

constant yields

(16)

where h., is the thickness of the swash at any point on the

beach face and h; relates to grain size. This expression is

derived from arguments of boundary layer thickness for fully

turbulent flow. HUGHES (1995) made the assumption that

swash velocity on a low sloping sand beach can be approxi

mated as steady flow and noted that the roughness ratio, h)

k s ' should be adjusted to account for friction caused by en

trained sediment. Similarly, an assumption is made that

roughness scaled by the run-up height and boulder size mod

ifies equation (15) into a first-order expression for the fric

tional resistance, fBF' between the swash and surface of a

boulder beach. This is done through substitution of equation

(14) for the roughness ratio, h)ks , in equation (15) and also

assuming that I. is proportional to fBF' thus yielding

Wave tank experiments have shown that frictional drag of

(12)

(13)
sin 8

~
= constant = ~

n,
Lo

where the constant is the Iribarren number, ~ , related to

wave steepness and beach slope expressed as sin 8.

(sin 8F = -----

O.25g(i; ~ 1 T )

Beach Roughness and Swash Resistance

Swash deceleration on the beach face occurs in part be

cause of flow resistance caused by roughness. Flow resis

tance, in a river, occurs in part because of bed roughness

associated with particle size. Maximum roughness for a river

channel occurs when particle diameter approaches flow depth

Journal of Coastal Research, Vol. 16, No.2, 2000
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Figure 2. Schematic diagram for two conditions of maximum roughness; one when boulder diameter equals run-up elevation and another when boulder

diameter just equals swash thickness.

where E is wave energy, Cg is the group velocity and n is a

dimensionless coefficient that varies with depth. It is equal

to 0.5 in deep water and increases to 1 as the wave shoals to

the break point (KOMAR, 1998). Wave energy, E, can be writ

ten as

Wave Power and Wave Competence

The ability of waves to entrain boulders is referred to as

wave competence and should be related to the available wave

power. Wave power is the flux of energy available to entrain

boulders composing a steep sloping beach. It is intuitive that

as wave power increases during storms that correspondingly

larger boulders will be mobilized. Wave power, Po, is the

shoreward flux of wave energy and in deep water is written as

(20)

(19)

Both wave period and power are conservative properties,

hence wave height must increase in equation (20) during the

process of shoaling from deep water to the initial break point,

which is what one physically observes. The point being illus

trated here is that increasing the wave period for any given

wave height will increase the wave power (equation 20) avail

able to mobilize boulders on a beach. Therefore, a wave com

petence equation should reflect a wave period dependence

where an increase in wave power should be related to a cor

responding increase in predicted wave competence.

Swash velocity is also important for threshold entrainment.

However, the movement of boulders during storms occurs in

response to other hydraulic complexities associated with

wave breaking and swash run-up. These complexities arise

from factors such as: dynamic pressure forces directly related

to breaking waves, flow deceleration of the swash, and inter

nal head pressure within the beach matrix due to percolation.

The approach taken here is that the hydraulic forces active

during storms are best represented by the wave height at the

shore break position, H sb ' wave period, T, run-up elevation of

the wave swash, R u ' and estimates of maximum and average

swash velocities, Umax and Ua vg , respectively (Figure 3). The

height of the breaker directly impinging the beach face, H s b ,

is analogous to engineering specifications that require deter

mining wave height at the base of the structure. Wave height

at the shore break, H s b ' is depth dependent and maximum

heights can be estimated from the tide elevation above mean

low water level. This is possible given that the toe of a boul

der or gravel beach typically coincides with elevation of the

low tide terrace (NICHOLS, 1988 and 1990). A wave-cut, low

tide terrace provides the necessary support for the boulder

and gravel beach material to rest upon.

From these expressions one can see that wave power, Po, can

be written as

(18)

(17)

1
E = -p gH 2

8 w S

and the group velocity, Cg , is given as

wave swash ranges from 0.3 for rough angular rip rap to 0.05

or less for smooth cobble and boulder slopes (KOBAYASHI and

GREENWALD, 1986; KOBAYASHI, et al., 1988; KOBAYASHI and

DESILVA, 1989). Under maximum roughness conditions,

where R; = Dso, equation (16) gives a maximum value of 0.1

for rBF. Data used from an Australian boulder beach gives an

average value of 0.03 for rBF with equation (16). This value is

consistent with reported values from experimental work.

Equation (16) is used simply as an objective way of deter

mining a value for the drag coefficient, rBF' that appears in

the derivation of wave stress applied the beach face due to

wave breaking and swash run-up. Improvements in the pre

dictions from the critical threshold and stability equations

derived would be expected given a better means of expressing

frictional resistance. However, equation (16) does give an ob

jective estimate of frictional resistance within an expected

range of published values and by using easily obtainable

physical data. Therefore, it represents a best estimate at this

time.
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Figure 3. Schematic depiction of wave collapse at the shore break position followed by swash run-up on a boulder beach showing variables used to

determine boulder entrainment and stability. The low tide terrace typically corresponds to the mean low tide level given here as mean lower low water

(MLLW) for a mixed semidiurnal tide.

(22)

Threshold Entrainment and the Shields Entrainment

FWlction

For unidirectional flow, threshold entrainment occurs

when the fluid force applied to the exposed surface area of a

particle exceeds the particle's immersed weight. The size of

the largest particle entrained is then a measure of the com

petence level of the mean flow to transport sediment. This

concept of flow competence can be used to express shear

stress as a function of particle diameter, D, of a sphere. It is

derived from a force balance relation between the immersed

weight force and the fluid drag force (Figure 4).

The immersed weight force, Fiwf' is the weight force in air

minus the buoyant force when fully submerged and is given as

(21)

where Ps is the density of the particle being entrained and <Xl

is shape factor that relates to the particle volume (e.g. 1T/6 for

a sphere). The fluid drag force, Fd , can be written in the fol

lowing manner

r, = T'D2(~:)
where C; is a packing coefficient and <X 2 is a shape factor ie.g,

1T/4 for a circle). The ratio <X/Cp describes the projection sur

face area exposed to the flow dependent on the size, shape

and packing arrangements of particles composing the river

bed.

Critical threshold entrainment occurs when the moment of

the drag force, Fd , about the pivot point C (Figure 4) equals

the moment of the immersed weight force, F iw t

(23)

and <f> is the pivot angle (Figure 4).

Substitution of (24) into (23) and solving for the coefficients

yields

where 'Tcr it is the critical shear stress at which threshold en

trainment occurs and 8crit is a non-dimensional variable de

pendent on the distributions of particle size, shape and the

packing of the bed. This dimensionless form of the critical

shear stress is termed the Shields entrainment function.

The derivation of the wave competence equation below fol

lows the same principles as the derivation of the Shields en

trainment function above, the main difference being the way

(25)

(24)(~COS <l»AC = (~Sin <l» and BC

where
F

drag

F. .
Immersed weight

Figure 4. Schematic depicting the relationship between a drag force as

sociated with a flowing fluid and a weight force acting on a sphere. The

angle <t> reflects the pivoting angle between spheres about the contact

point C and is affected by channel slope.
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where, f = liT is the swash frequency.

Equation (27) can be used as a starting point to make a

first-order approximation of fluid stress applied to the beach

face, 'TBF , by substituting the product of maximum swash ve

locity, U max' and the average velocity, Um,,;' of the run-up for

U2 in the following manner

in which the expression for stress, 'T, is defined for a beach

face.

FORMULA DERIVATION

Defining Stress on the Beach Face

For any environment the fluid force acting on a potentially

mobile bed is the first quantity of interest when evaluating

threshold entrainment. For a steady-state turbulent flow the

boundary shear stress, 'T, is proportional to the fluid density

and the square of the mean velocity U:

X Rucot e
Uo vg = t = GT) = Ro2f cot e (30)

(31)

(26)

(HENDERSON, 1966; STERNBERG, 1972; YALIN and KARA

HAN, 1979). Shear stress between a uniform turbulent flow

and a potentially mobile bed can be derived from arguments

of conservation of momentum yielding

where fBF represents flow drag between the beach face and

the wave swash (equation 16). This approach treats wave

stress applied to the beach face by wave swash as a function

of the wave period, maximum and average swash velocities,

run-up elevation, and slope. Substitution of equation (28) and

equation (30) into equation (31) yields

(27) (32)

The average velocity follows from substitution as

where I. is a friction coefficient that refers to flow drag as

sociated with bed roughness as water flows through a chan

nel. This expression relates the time-averaged mean velocity

near the bed to the force exerted by the fluid.

Wave swash up the beach face is not a steady flow but

rather is a decelerating flow. Therefore, in order to apply

equation (27) a modification for deceleration is needed. The

first step is to separate and define two velocity terms; the

maximum swash velocity, Um ax ' and the average swash ve

locity, Uavg • The second step is to substitute them into an

expression for fluid stress more representative of the non

steady flow conditions of wave swash.

The maximum swash velocity, Um ax ' in shallow water is

equal to the wave velocity at the shore break and is related

to the depth of water, h s b ' plus the breaking wave height, H s b '

in the following manner

Ideally, swash velocity decreases from this maximum at the

break point to zero at the maximum run-up elevation, R;

(Figure 3). Over the intervening distance, water percolates

into the beach matrix as the swash momentum decreases re

sulting in a seaward flowing backwash after complete run

up.

The average swash velocity, Ua vg , is used to represent

swash deceleration as a function of wave period and beach

slope. This is done by dividing the horizontal excursion dis

tance of the run-up by the time it takes the swash to decel

erate across that distance in a similar manner seen above in

the derivation of the Iribarren number, ~ , (Figure 3). This

deceleration occurs over a time period, t, ideally equal to lh

of the wave period, T, and the horizontal excursion distance,

X, is defined by the run-up elevation and beach slope geo

metrically as

(33)
m

F iw t = (p, - PuJg-·
p,

The immersed weight of each boulder, Fiu 't , is the force that

holds it to the beach against the wave forces associated with

wave collapse and swash run-up (Figure 5). The maximum

boulder mass, m, that can be entrained by the wave force

comes from the definition of the immersed weight force, F iw "

in the following manner

The flow trajectories of the water comprising the wave are

initially directed into the beach and then forced in the up

slope direction as wave swash. Likewise, the force of the wave

initially tries to push the boulders horizontally in the direc-

Force Balance Considerations

where 'TBF is dimensionally consistent with 'T, equation (27).

In contrast with a river, the non-steady flow condition that

characterizes the beach environment is addressed by sepa

rating the velocity squared term in (equation 27) into two

components, U ma:o and Ual'g. The assumption is made that the

Um ax term represents the initial turbulent portion of wave up

rush that gives the swash its initial momentum to travel up

the beach face. The Ual'g term represents the "energy-deple

tion" portion of the turbulent flow of wave swash up the

beach face. During this phase the flow velocity of the swash

decelerates in response to gravity, frictional resistance due

to surface roughness and momentum lost to percolation. This

aspect of swash deceleration enters the derivation through

the dependence of Ual'g on run-up elevation, beach slope and

swash frequency (equation 30). Expressing wave stress in

this manner modifies the steady-state turbulent flow expres

sion (equation 27) into a non-steady expression (equation 32)

applicable to at least first-order for wave stress applied to the

beach face. The assumptions made above incorporate how far

wave swash runs up the beach versus how long it takes to

get there (equation 30), into a dimensionally correct expres

sion for wave stress between the swash and the beach face

(equation 32).

(29)

(28)
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Figure 5. Schematic depicting the relationship between the wave force, F
II

,(/{ " trying to push a spherical boulder into the beach and the weight force, F
i l

1'f '

acting to hold the boulder in place. The angle <t> reflects the pivoting angle with a nearly spherical boulder about the contact point C.

tion of wave propagation; however, entrainment occurs with

the swash in the up-beach direction (Figure 5). To describe

this relationship, the scalar value of the entraining wave

force can be expressed as

where l is a length scale. An assumption is made that [2 cor

responds to a vertical projection area of the beach face ex

posed to the available wave energy, rather than the surface

area of an individual boulder.

The overall goal is to relate increased wave energy or pow

er to the entrainment of larger boulders. This wave compe

tence argument requires that the total wave force be scaled

according to some factor related to wave energy. Maximum

wave energy at the shore break is expressed as

(34)

(35)

the wave force was scaled relative to the surface area of a

boulder. Therefore, scaling the wave force relative to the el

evation that the wave energy raises the water surface, R u ' is

a necessary first order assumption. Boulder surface area is

included in the equation as part of the shape and packing

coefficients in the derivation below (equation 42). Further de

velopment of a critical threshold entrainment equation for

boulders on a beach follows that of the Shields entrainment

function for critical threshold entrainment in rivers derived

earlier.

Critical Threshold Entrainment

Critical threshold entrainment for any boulder on the

beach face occurs when the moment of the wave force, Fuxuis

about the pivot point C equals the moment of the weight

force, r.;

and substitution of equation (32) into equation (37) yields

(41)

(40)

(39)

(Figure 5). Ideally the wave force only acts against the ex

posed projected surface area of the boulder, which is a func

tion of size, shape and packing arrangements of the boulders

composing the beach. Therefore, the wave force of equation

(38) can be modified to account for these factors in the follow

ing manner

Substitution of equation (33) for the immersed weight force

and (40) for the wave force into the force balance expression

(equation 41) and solving for the coefficients yields

where (Xl is a shape factor and C; is a packing coefficient that

together describe the projection surface area exposed to the

wave force. Critical threshold entrainment occurs when the

wave force equals the weight force

(38)

(37)

(36)

IFwavl = fBFPwUmJlu32f cot e.

Substitution of the run-up elevation, R u ' for l in equation (34)

appropriately scales the wave force relative to the available

wave energy. The result of scaling in this manner is that the

wave force increases with increasing wave energy. Conse

quently, the final wave competence equation derived below

predicts entrainment of increasingly larger boulders with in

creasing wave energy. This desired result would not occur if

For the condition of critical threshold entrainment, the pro

jection surface area of the beach exposed to the available

wave energy is scaled by defining l equal to R; resulting in

and the remaining energy on the beach face can be approxi

mated by the run-up elevation in the following manner
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We can let

(42)

(43)

cause, as will be shown, it estimates the critical threshold

condition of boulder transport on a beach during storms.

One would expect that a slightly larger boulder would have

the minimum mass necessary to remain stable. Substitution

of the shore break wave height, H s " , for l in equation (34)

yields

Kiama Beach Field Data

Kiama Beach is a pocket beach on the South Western coast

of Australia. It is 150 m long, 23 m wide with an average

slope 0.157 (OAK, 1981). Cliff headlands supply boulder ma

terial for the beach that forms a boulder bank throughout the

tidal zone with a mean size of 0.256 m (OAK, 1981). OAK

(1981) monitored the movement of individual boulders from

Kiama Beach for a period of two years. The movement of

boulders was monitored by establishing a survey grid over

Field data are used to compare estimates of boulder mass

with equation (45). This data set comes from a field study

where boulder transport on a beach was monitored over a two

year period with wave heights and periods recorded by a

nearby wave-buoy (OAK, 1985). A range of wave heights and

periods are used to further demonstrate the effect of wave

period and as a comparison of the stability equation (46) with

the Hudson formula (1). This analysis compares significant

offshore wave height H, ranging from 1 m to 8 m on 0.5 m

intervals and periods of 5, 10, and 15 seconds, respectively.

The combination of wave heights and periods covers a range

of natural possibilities.

Breaker heights, maximum and average swash velocity,

and run-up heights are estimated from the significant deep

water wave height, H, and period, T and the slope of the

beach face. Breaker height, H", was found using H, and T

with the following empirical expression given by KOMAR and

GAUGHAN (1973)

H" = 0.39g l/5(T ·H } )2/5. (47)

The stability coefficient K, was set to one in an attempt to

quantify how well the physical variables estimate field data.

It is also noted that for smooth round cobbles the stability

coefficient, K D , of the Hudson formula was found from em

pirical wave tank data to be equal to a value of 1.2 and one

would not expect these stability coefficients to differ greatly.

M = PsfBFUmaxRuHs,,22f
u.; . (46)

Kr(PS ;"Pw)g tan (I

Here MHsh represents a boulder mass slightly larger than the

predicted threshold entrainment mass, MR,,' because it is

scaled to a higher wave energy. Equation (46) is taken as the

minimum mass necessary to maintain stability under the giv

en wave conditions. This expression includes both the wave

period and the swash velocity. It is compared with the Hud

son formula (1) to illustrate that the mass estimates relate

best to static conditions.

FORMUlA TESTING AND DISCUSSION

The Data

(45)

(44)
Ps'TBF'R; 2

m =-----
Kr(ps - Pw)g'

and substitution of'TBF, equation (32), into (44) yields

M = PsfBFUmaxRu32f
u;

Kr(PS ;w Pw)g tan (I

where M n, = m and refers to the critical threshold mass

scaled relative to the run-up elevation. This represents the

final form of the wave-competency equation. Equation (45)

can be thought of as a threshold entrainment equation be-

where K, is a non-dimensional variable. The product of the

pivoting relationship, tan <p, between boulders and ratio of

the packing coefficient to the shape factor forms a non-di

mensional variable K; dependent on the distribution of boul

der size, shape and the arrangement of boulders within the

beach. This variable can be thought of as a complex constant

related to interlocking nature of individual boulders and the

overall stability of the beach matrix. This is analogous to the

Shields entrainment function, Ocril' as well as the stability

coefficient, KD , in the Hudson Formula (1).

Friction and boulder interlocking are factors that oppose

entrainment due to lift and drag forces and dynamic pressure

forces that develop through wave breaking directly on the

beach face and swash run-up. It may be possible to write even

more complex equations that consider all of the possible force

vectors associated with wave breaking and swash run-up.

However, drag and lift forces depend on depth and velocity,

both of which change across the beach face during wave run

up, as well as from wave to wave. The dynamic pressure forc

es depend on breaking wave form. Furthermore, all of these

forces act upon boulder surface area that depends on size,

shape, and packing arrangements of the boulders within the

beach. Therefore, it is clearly evident that it would be ex

tremely difficult at best to transfer a force vector analysis to

a boulder beach exposed to a variable wave and tide climate

and also composed of a distribution of boulder sizes and

shapes (Figure 3). Moreover, it would be entirely impractical

if not impossible to measure in the field the projection surface

area, pivoting angles and interlocking relationships for all

boulders composing a beach. Therefore, friction and inter

locking are accounted for with the stability coefficient K in

an analogous manner to the stability coefficient, K D , ' ofrthe

Hudson Formula and the wave force is presented as a scalar

related to wave energy through the substitution of run-up

height for the length scale in equation (34).

The mass, m, of the largest boulder that can be entrained

relative to the given wave force is the quantity of interest.

Therefore, substitution of equation (43) into (42) and solving

for mass, m, yields
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Figure 6. Comparison between threshold equation (45) and field data of Oak (1985). The nominal diameter is the diameter of a sphere of equal mass

and is included to give a better understanding of the size of the boulders relative to the mass.

the beach and recording the position and size of individual

boulders corresponding to each grid point. During the moni

toring period Kiama beach was surveyed eleven times follow

ing the passing of storms. Wave heights and periods were

recorded from a local offshore wave-buoy. The mass of the

largest boulder that had been moved by waves was also re

corded. These data were published in OAK (1985) and are

arranged here in the first three columns of Table 1 in order

of increasing wave height of each storm event. The values for

the Iribarren number, ~ , for each reported storm event fell

within the range appropriate for estimates of run-up height

with equation (5) (Table 1). Those values are used to compare

both equations (45) and (46) and the field data of OAK (1985).

The value of Ps was estimated at 2700 kg/m" and the value

for stability coefficient, KD , was taken as 1.2. Values for the

stability coefficient, KD , range from a low value of 1.2 for

smooth rounded cobbles to 7 for placed angular stone (Table

7-8, SPM 1984). For the Hudson formula larger values of KD

reflect the increased collective strength gained due to inter

locking of the placed angular rock.

Critical Threshold Equation (45) versus Field Data

The critical threshold equation (45) adequately approxi

mates (within a factor of 2 to 3) boulder mass at low wave

heights of 2 m or less and gives better estimates (less then a

factor of 2) at wave heights above 4.25 m (Figure 6). The drop

in estimated mass for an increase in wave height of 5.1 m

and 5.4 m is due to a respective decrease in wave period from

15 to 11 seconds (Figure 6 and Table 1). This illustrates that

increasing wave power also increases the size of boulders that

can be transported, confirming the intuitive expectations that

lead to the derivation of both equations (45) and (46).

The poor correlation between equation (45) and field data

for wave heights less then 4 m is interpreted as due to inter

locking and friction between particles dominating the hy

draulic forces (Figure 6). The friction between particles would

be related to size, shape, and packing of the boulders com

posing Kiama Beach. From this perspective equation (45) can

only predict the potential maximum entrainment size for low

wave conditions where grain to grain interlocking of a mixed

bed dominates applied wave forces. This is the same paradox

found in flow competence evaluations for gravel bed rivers

and can only be addressed through empirical evaluations of

site specific conditions. The value for K; would have to in

crease to reflect the interlocking nature of a packed, mixed

size and shape beach matrix. The value of the KD coefficient

for the Hudson formula increases from 1.2 to 7 to reflect in

creased interlocking due to special placement of stones.

OAK (1981) made a plot of wave-buoy data over the beach

monitoring period that showed wave heights of 2 m having

an approximate 50% exceedance probability, and waves of 4

m a 2% exceedance probability. Storm wave conditions (wave

heights> 4 m) are competent to transport the mean boulder

size of 0.25 m (Figure 6). The D go boulder size for Kiama

Beach is 0.7 m (as determined from plots of frequency distri

butions in OAK 1981). This boulder size is entrained when

the deep-water significant wave height exceeds 4.25 m (Fig

ure 6).

It is interpreted that when wave heights exceed 4 m a com

petent energy level is reached at which point 90% of the

available boulders have the potential to be transported. This

size range only becomes mobile during storms where, H, >
-----4 m and it is here where the estimates of threshold mass

from equation (45) more closely match the field data as would
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Figure 7. Comparison of the Hudson formula (1) with estimates from threshold equation (45) and the static equation (46) over a range of wave periods

from 5 to 15 seconds.

be expected (Figure 6). At this high energy regime nearly all

boulders composing the beach have the potential for entrain

ment, and therefore, friction and interlocking between boul

ders is greatly reduced.

Critical Threshold Versus Minimwn Stability

Equation (45) provides a means for estimating threshold

boulder mass for a set of given wave parameters and beach

slope. Equation (46) is similar in that it estimates the mini

mum stone mass that is stable against movement. The im

portant implication of having two separate equations is that

two distinct boulder sizes are estimated and both are a func

tion of wave period (Figure 7). This is very advantageous

from a design perspective given that a range of wave periods

for a design wave height can be used to estimate a size range

of quarry material. In comparison, the Hudson Formula

(equation 1) does not incorporate wave period, and hence,

only a single size quarry stone is estimated. This is coupled

with the fact that stability of the structure is dependent on

choosing the proper stability coefficient and building the

structure relative to the assumptions that represent a par

ticular coefficient value (i.e. special placement is completed

rather than random dumping).

One would expect that the difference between the estimat

ed threshold mass (equation 45) and stable mass (equation

46) should be small. A comparison of estimates for these two

equations shows that the difference is indeed small (Figure

7). The static range is slightly narrower than the dynamic

range, a function of the role wave period and run-up plays in

each of the equations (45) and (46). The estimated mass from

equation (45) is dominated by the cube of wave run-up which

in turn is a function of wave period. In contrast, the mass

estimate from equation (46) is driven predominantly by the

square of the breaker height.

Plotting two lines for the Hudson formula in Figure 8 with

KD values of 1.2 and 7 respectively estimates a tested static

range in stone mass relative to a range of wave heights. The

value 1.2 is valid for sloping rock structures built with

smooth rounded stones and the value of 7 is valid for placed

rough angular stones (Table 7-8 SPM, 1984). Together they

result in a Hudson stability range dependent on a difference

in particle interlocking (Figure 8). Estimates from the stabil

ity equation (46) for wave periods of 5, 10 and 15 seconds

respectively, plot within the stability range of the Hudson

formula (Figure 8). Results show that increasing the wave

period increases the estimated mass necessary to maintain

stability.

Comparing the two equations in this fashion shows that

equation (46) can indeed be considered a static equation, giv

en that estimates lie in or above the static range of the Hud

son formula (Figure 8). This result is advantageous in that

with equation (46) wave period effects can be addressed when

estimating a range of boulder sizes for a static shore-protec

tion structure. The advantage also comes from not having to

assume the proper K; stability coefficient, as compared with

the Hudson Formula ,(1) where the proper K D value depends

on estimating angularity of the structure material, mode of

placement, morphology (i.e. structure head or trunk) and the

expected form of wave breaking.

CONCLUSIONS

The two formulas derived could be useful in the initial eval

uation and design of both static and dynamic revetments con

structed with unconsolidated quarry stone. These equations

offer a significant improvement over the Hudson formula.

Equation (45) was derived to estimate the critical threshold

mass, M
Ru

(45)
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Figure 8. Comparison of estimates from the Hudson formula (1) and the stability equation (46) over a range in wave heights.

With substitution of H sn for the length scale in the wave force

expression (34) yields

(46)

where M
H s b

is the minimum stable mass. Equation (45) close

ly approximates the field data of the maximum entrained

boulder at wave heights greater than 4 m (Figure 6). This

"wave competency" level of 4.25 m entrains the measured Dgo

grain size fraction (the grain size fraction at which 90% of

the beach material is smaller) for Kiama Beach. The inter

pretation is that under storm conditions boulder interlocking

and friction are second order factors relative to swash veloc

ity, run-up elevation, wave height and period. It can also be

interpreted from figure six that boulder size, shape and pack

ing dominate wave forces at less energetic wave conditions.

If the beach were composed of uniform spheres a better pre

diction would be expected just as demonstrated in the flume

studies of threshold entrainment under unidirectional cur

rents. Furthermore, empirical testing of the K, coefficient

would also provide improved results for wave conditions be

low the wave competence level of the beach.

Increasing wave period will have the effect of transporting

larger boulders due to increased wave power. Estimates from

equation (45) when compared with field data (Figure 6) and

equation (46) when compared to a range of wave heights and

periods (Figures 7 & 8), support this conclusion. The advan

tage of equation (46) over the Hudson formula (1) is that it

estimates unit mass in the static range without the need to

estimate the value of a stability coefficient, K; which was set

to one in all evaluations. Another advantage is that both (45)

and (46) estimate a range of rock sizes appropriate for design

by varying the wave period rather than a single size. More

over, both equations (45) and (46) incorporate the important

physical parameters acting on the beach face: breaking wave

height, wave period, swash velocity and elevation of the

swash run-up, as opposed to relying on an empirical fit with

offshore wave conditions.

However, a number of concerns for caution do exist! First

and foremost are the number of components in the model that

may have large uncertainty. In particular, estimating run-up

is dependent on determining beach slope which can be prob

lematic and vary widely even across short stretches of a boul

der beach. Estimating maximum swash velocity is dependent

on knowledge of breaker height and water depth. The friction

factor, rBF' even though objectively determined, does depend

on roughness (grain-size dependent) and boundary layer

thickness in the swash approximated by run-up height and

an arbitrary estimator, D50 , of boulder size. These substitu

tions severely violate the underpinning assumptions in equa

tion (15) which were developed for uniform steady flow with

assumptions of a log-velocity profile. Therefore, at this point

it is not fully demonstrated that the good fit of equation (45)

with field data at wave heights above 4.25 m (Figure 6) is

not fortuitous.

From an engineering design perspective each of the com

ponents can be defined for the equations. Indeed, estimating

beach slope, breaker height and water depth at the toe of the

structure are common practice (SPM, 1984). The use of the

D50 size class in determining roughness is widely accepted

when friction estimates for gravel transport in rivers are nec

essary. Values for the run-up attenuation coefficients, Cr , do

exist and are the best estimates we have do date. Perhaps
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the strongest support for further examination of these equa

tions comes from Figure 8. The two solid lines are for the

extremes in stability as supported by decades of wave tank

experimentation to determine proper values for the stability

coefficient, KD , used in the Hudson formula. The biggest con

cern with the Hudson formula is that instability can result

due to wave period effects. Equation (46) incorporates wave

period and indeed the stability range inherent in increasing

wave period is well demonstrated and falls within the Hud

son limits (Figure 8). Using equations (45) and (46) as a check

against estimates from the Hudson formula over a range of

wave periods would be a prudent design step. Furthermore,

if designing a dynamic revetment was the goal, then both

equations would allow one to vary the physical variables that

act on the beach face to test the predicited stability of a quar

rystone source containing a mixture of sizes and shapes rath

er than arbitrarily picking stability coefficient values and as

suming a single size quarry stone for construction. Clearly,

future testing against field and wave tank data are necessary

to fully evaluate the potential of the derived equations.

ACKNOWLEDGMENTS

This work was funded in part through a fellowship provid

ed to the author by the College of Oceanography and Atmo

spheric Sciences at Oregon State University while a graduate

student. I would like to thank Dr. Small for making that fel

lowship possible. Many thanks go to Drs. Peter Klingeman

and Rob Holman for all their help and advise. Dr. Charles

Sollitt also provided useful review comments. Thanks goes

Dr. Peter Howd for his reviews and encouragement early on

in the development of this paper. Special thanks go to Na

thaniel Plant (now Dr. Plant) and Kevin Tillotson for their

friendship, review comments, encouragement and many

games of hoops while trying to finish things up. I would also

like to thank Dr. Don Forbes for his insightful review com

ments as journal referee. The author greatfully acknowledges

the support and comments of the above individuals, however,

all assumptions in the derivations or errors in interpretations

are entirely my own.

LITERATURE CITED

AHRENS, J. and MCCARTNEY, B.L., 1975. Wave period effect on the

stability of riprap. Proc. Civil Engr. in the Oceans/III, American

Society of Civil Engineers pp. 1019-1034.

AHRENS, J.P., 1981. Irregular wave runup on smooth slope. Tech.

Aid No. 81-17, Coastal Engineering Research Center, Waterways

Experiment Station, Vicksburg, Miss.

ALLSOP, N.W.H.; FRANCO, L., and HAWKES, P.J. 1985. Wave run-up

on steep slopes - a literature review. Report NO. SR 1, Hydraulic

Research, Wallingford U.K.

BAGNOLD, R.A., 1940. Beach formation by waves: some model ex

periments in a wave tank. Jour. Inst. C.E., 15, 27-52.

BATTJES,A.J., 1974a. Surf Similarity. Proc. 14th Conf Coastal Eng.

(ASCE), pp. 466-480.

BATTJES, A.J., 1974b. Computation of set-up, longshore currents,

run-up and overtopping on steep-slopes due to wind-generated

waves. Report 74-2. Committee on Hydrualics, Dept. of Civil En

gineering. Delft Univ. of Technology, Delft, the Netherlands.

BRUUN, P. and GUNBAK, A.~, 1977. Stability of sloping structures

in relation to ~ = tan a/ H/L a risk criteria in design. Coastal

Engineering, 1, 287-322.

DALRYMPLE, R.A., 1992. Prediction of storm/normal beach profiles,

Jour. of Waterway Port, Coast and Ocean Eng., 118, pp. 193-200.

HENDERSON, F.M., 1966. Open Channel Flow New York: MacMillan.
522p.

HOLMAN, R.A., 1986. Extreme value statistics for wave run-up on a

natural beach. Coastal Engineering, 9, 527-544.

HUDSON, R.Y., 1952. Wave forces on breakwaters. Transactions of
the American Society of Civil Engineers (ASCE), 118,653-685.

HUGHES, M.G., 1995. Friction Factors for Wave Uprush. Journal of
Coastal Research, 11(4), 1089-1098.

HUNT, LA., 1959. Design of seawalls and breakwaters. Proc. ASCE,
85, pp. 123-152.

IRIBARREN, R., 1938. Una formula para el calculo de los disques de

escollera. Revista de Obras Publicas, Madrid (A formula for the

calculation of rock-fill dykes, translated by D. Heinrick, University

of California, Dept. ofEngineering TR.-He-116-295 Berkeley, 1948.

JOHNSON, C.N., 1987. Rubble beaches versus revetments. Proc.
Coastal Sediments '87 (ASCE), 2, 1217-1231.

KOBAYASHI, N. and DESILVA, G., 1989. Wave transformation and

swash oscillation on gentle and steep slopes. Journal of Geophys

ical Research 94 C1, 951-966.

KOBAYASHI, N.; STRZELECKI, M.S., and WURJANTO, A., 1988. Swash

oscillation and resulting sediment movement. Coastal Engineer
ing, 12, 1167-1181.

KOBAYASHI, N. and GREENWALD, J.H., 1986. Prediction of wave run

up and riprap stability. Coastal Engineering, 10, 1958-1971.

KOMAR, P.D., 1998. Beach Processes and Sedimentation. Englewood

Cliffs, NJ: Prentice-Hall, 429p.

KOMAR, P.D. and GAUGHAN, M.K. 1973. Airy wave theory and

breaker height prediction. Proc. 13th Conf Coastal Eng., 1, 405
418.

LORANG, M.S., 1991. An artificial perched-gravel beach as a shore

protection structure. Proc. Coastal Sediments '91 (ASCE), 2,1916

1925.

NICHOLLS, R.J., 1988. Profile characteristics of shingle beaches.

Proc. 2nd European Workshop on Coastal Zones. (Loutraki,

Greece), Dept. of Civil Engr. National Technical University, Ath

ens Greece.

NICHOLLS, R.J., 1990. Managing erosion problems on shingle beach

es: Examples from Britain. 3rd European Workshop on Coastal
Zones, (Paralimni, Cyprus), pp. 1-22.

NOVAK, LD., 1969. Swash-zone competency of gravel sediment. Ma
rine Geology, 335-345.

OAK, H.L., 1981. Boulder beaches: A sedimentological study. Ph.D.

Thesis, Macquarie University, School of Earth Sciences, p. 272.

OAK, H.L., 1985. Process inference from coastal-protection struc

tures of boulder beaches. Geogr. Ann. 68, 25-31.

PILARCZYK, K.W. and DER BOER, K., 1983. Stability and profile de

velopment of coarse materials and their application in coastal en

gineering. Report No. 293, Delft Hydraulics Laboratory.

POWELL, K.A., 1988. The dynamic response of shingle beaches to

random waves. Coastal Engineering, 12, 1763-1773.

U.S. ARMY CORPS. OF ENGINEERS, Shore Protection Manual (SPM).,
1984. 4th ed. 2 vols. Coastal Engineering Research Center, Wa

terways Experiment Station, Vicksburg, Miss, Govt. Printing Of

fice, Washington, D.C.

SILVESTER, R. and Hsu, J.R.C., 1993. Coastal Stabilization: Inova

tive Concepts. Englewood Cliffs, NJ: Prentice-Hall, 578p.

STERNBERG, R.W., 1972. Predicting Initial Motion and Bedload

Transport of Sediment Particles in the Shallow Marine Environ

ment. In: Swift, D.J.P. et al. editors. ShelfSediment Transport, pp.

62-82.

VAN DER MEER J.W., 1992. Stability of the seaward slope of berm

breakwaters. Coastal Engineering, 16, 205-234.

VAN DER MEER J.W., 1988. Rock slopes and gravel beaches under

wave attack. Delft Hydr. Communication, No. 396.

VANDER MEER J.W., 1987. Stability of Breakwater Armour Layers

Design Formulae. Coastal Engineering, 11,219-239.

VAN DER MEER J.W. and PILARCZYK, K.W., 1986. Dynamic stability

of rock slopes and gavel beaches. Proc. 20th Coastal Engineering
(ASCE), 2, 1713-1726.

VAN DER MEER, J.W. and STAM, C.M., 1992. Wave run-up on

Journal of Coastal Research, Vol. 16, No.2, 2000



Threshold Boulder Entrainment 445

smooth and Rock Slopes of Coastal Structures. Jour. of Waterway
Port. Coast and Ocean Eng. 118, 534-550.

VAN RIJN, L.C., 1982. Equivalent roughness of an alluvial bed. Jour

nal of the Hydraulics division (ASCE), HY10, 12-15-1218.

WAAL, J.P. and VAN DER MEER, J.W., 1992. Wave Runup and Over-

topping on Coastal Structures. Coastal Engineering, 16, 1758

1771.
YALIN, M.S. and KARAHAN, E., 1979. Inception of sediment trans

port: Jour. of the Hydraulics Division, Amer. Soc. Civil Engrs., 105,
(HY11), 1433-1443.

Journal of Coastal Research, Vol. 16, No.2, 2000


