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Abstract Soil contamination by heavy metals and organic pollutants around indus-

trial premises is a problem in many countries around the world. Delineating zones

where pollutants exceed tolerable levels is a necessity for successfully mitigating re-

lated health risks. Predictions of pollutants are usually required for blocks because

remediation or regulatory decisions are imposed for entire parcels. Parcel areas typ-

ically exceed the observation support, but are smaller than the survey domain. Map-

ping soil pollution therefore involves a local change of support. The goal of this work

is to find a simple, robust, and precise method for predicting block means (linear

predictions) and threshold exceedance by block means (nonlinear predictions) from

data observed at points that show a spatial trend. By simulations, we compared the

performance of universal block kriging (UK), Gaussian conditional simulations (CS),

constrained (CK), and covariance-matching constrained kriging (CMCK), for linear

and nonlinear local change of support prediction problems. We considered Gaussian

and positively skewed spatial processes with a nonstationary mean function and var-

ious scenarios for the autocorrelated error. The linear predictions were assessed by

bias and mean square prediction error and the nonlinear predictions by bias and Peirce

skill scores.

For Gaussian data and blocks with locally dense sampling, all four methods per-

formed well, both for linear and nonlinear predictions. When sampling was sparse

CK and CMCK gave less precise linear predictions, but outperformed UK for non-

linear predictions, irrespective of the data distribution. CK and CMCK were only

outperformed by CS in the Gaussian case when threshold exceedance was predicted

by the conditional quantiles. However, CS was strongly biased for the skewed data

whereas CK and CMCK still provided unbiased and quite precise nonlinear predic-

tions. CMCK did not show any advantages over CK. CK is as simple to compute

as UK. We recommend therefore this method to predict block means and nonlinear
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transforms thereof because it offers a good compromise between robustness, simplic-

ity, and precision.

Keywords Constrained kriging · Covariance-matching constrained kriging · Local

change of support · Nonlinear predictions

1 Introduction

Heavy metal contamination of soils by emissions of metal processing industries is a

world wide problem. Several such cases have been documented in recent years (Alt-

felder et al. 2002; Buxton et al. 1997; Frangi and Richard 1997; McGrath et al. 2004;

Van Meirvenne et al. 1993; Papritz et al. 2005; Rawlins et al. 2006; Saito and

Goovaerts 2001). The metals, emitted as dust or fumes, are dispersed in the at-

mosphere and brought back to the ground by dry and wet deposition. Hence, the metal

content of the soil usually decreases with increasing distance from the source. Re-

gional topography and wind may further influence the contamination pattern (Frangi

and Richard 1997). With respect to emissions by stationary point sources, heavy

metals are not the only contaminants of concern: Emissions of persistent organic

pollutants such as polycyclic aromatic hydrocarbons (Van Brummelen et al. 1996),

polychlorinated biphenyls (Xing et al. 2005), or dioxins (Goovaerts et al. 2008) by

chemical industries create similar contamination patterns. The contamination of the

soils near the industrial premises is sometimes so severe that the health of humans

and other organisms is at risk. To avert harm from the subjects of protection, one

must therefore delineate the zone where the pollutants exceed tolerable levels. Many

countries (e.g., Germany, the Netherlands, Switzerland, United Kingdom) enacted

soil protection laws to establish allowable maximum concentrations and defined reg-

ulations on how to proceed if they are exceeded. In general, protective measures are

imposed for entire parcels of land (Papritz et al. 2005), and the mean pollutant con-

tent of some soil layer (usually topsoil) on the parcel is decisive for the measures to

be taken. To adopt the usual geostatistical terminology, we use in the sequel block

and block mean for the parcel and the mean of the target variable on the parcel.

In regional surveys of soil contamination around a known source, soil is usually

sampled at different distance and orientation from the source (Starks et al. 1987).

Compared to the area of the blocks, the spatial support of the samples, i.e., the area

over which the material of a bulked soil sample is collected, is usually much smaller

than the blocks. At the same time, the blocks are several orders of magnitude smaller

than the survey domain. Thus, for planning protective measures, one faces a nonlin-

ear local change of support problem (Chilès and Delfiner 1999, pp. 435–437; Gotway

and Young 2002). Based on usually sparse quasi-point-support observations, one has

to predict for blocks—which are small compared to the area of the survey domain—

whether their means exceed a threshold. The popular approach to such nonlinear and

nonstationary prediction problems is conditional Gaussian simulation (CS) (Chilès

and Delfiner 1999, pp. 449–592). However, Aldworth and Cressie (2003) rightly ob-

serve that CS is highly parametric. CS predictions of nonlinear functionals of a spa-

tial variable may be badly biased if the probabilistic model is misspecified. Universal
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block kriging (UK) (Cressie 1993, p. 155) is less sensitive to model misspecification.

But UK predictions of nonlinear functionals of a spatial variable are often severely

biased because UK underestimates the variances of the target quantities (Aldworth

and Cressie 2003). The constrained kriging (CK) predictor, proposed by Cressie in

1993, is less biased than UK in this instance, and it is exactly unbiased for nonlinear

functionals of a Gaussian variable. Like UK, the CK predictor is linear in the data,

but it satisfies the unbiasedness constraint of UK, as well as a second constraint that

matches the variances of the predictions to the variances of the block means. Ald-

worth and Cressie (2003) extended CK to covariance-matching constrained kriging

(CMCK), which matches for a set of blocks both the variances and covariances of

predictions and block means. Like CK, CMCK is less biased than UK for nonlinear

predictions and exactly unbiased if the spatial variable is Gaussian.

Aldworth and Cressie (2003) compared the performance of CS, CK, CMCK, and

ordinary kriging (OK) by simulation for various stationary random process models.

Among other target quantities, the following predictands were considered: (i) the

fraction of the simulation domain where the spatial variable was below a threshold

and (ii) its mean over the area where the threshold was exceeded. Although not best,

CMCK and CK consistently performed well in the simulations. The performance of

CS and OK was more variable. For the non-Gaussian models, CS was best (with

respect to the mean square error) for predictand (i) and, excepting the lognormal

process, worst for predictand (ii). Rather surprisingly, OK showed the reverse perfor-

mance.

Clearly, the predictands considered by Aldworth and Cressie (2003) were non-

linear functionals of the variable of interest, but they were global quantities (Chilès

and Delfiner 1999, pp. 430–434), because they depended on the spatial distribution

of the target variable in the whole domain of interest. In soil pollution surveying,

as set out before, one is mostly interested in predicting local nonlinear functionals

(Chilès and Delfiner 1999, pp. 435–437) of a spatial variable. Aldworth and Cressie’s

study is inconclusive in this respect. Moreover, the authors did not investigate the

performance of the methods for models with nonstationary means. These two issues

are not addressed by the other studies (Cressie and Johannesson 2001; Cressie et al.

2006; Tercan 2004) published to date on CK and CMCK. Thus, we lack information

about their performance in local change of support problems. The goal of this work is

therefore to explore their merits and disadvantages in comparison to CS and UK for

predicting both linear (block means) and nonlinear functionals (threshold exceedance

by block means) of a spatial variable. To this end, we used simulations, and we stud-

ied Gaussian and positively skewed random processes with a common nonstationary

mean function and various scenarios for the autocorrelated component of the models.

The remainder of the article is organised as follows: Sect. 2 reviews spatial inter-

polation methods for (nonlinear) block predictions. This section contains a summary

of CK and CMCK. Section 3 describes the simulation experiment (models, target

quantities, validation criteria). Section 4 presents the results of the simulations and,

by discussing the performance of CK relative to UK, sheds some further light on the

properties of this method. Finally, Sect. 5 concludes with some advice on the choice

of methods in nonlinear predictions problems with local change of support.



634 Math Geosci (2010) 42: 631–656

2 Review of Spatial Interpolation Methods for Block Prediction

In this work we consider a spatial random process {Z(s):s ∈ D} in a survey domain

D ⊂ R
2 around a stationary point source, where s = (x, y)′ indicates a location in D

( ′ denotes transpose). Let Z = (Z(s1),Z(s2), . . . ,Z(sn))
′ denote the vector of ran-

dom variables that model the observations z(si), i = 1,2, . . . , n. For Z(s) we assume

the model

Z(s) = Y(s) + ǫ(s) = μ(s) + δ(s) + ǫ(s), (1)

where Y(s) = μ(s) + δ(s) is the variable of interest or signal, whose expectation

E[Y(s)] = μ(s) = x(s)′β is modelled by a linear regression with x(s) denoting the

vector with the p covariates for location s and β the vector with the p regression

coefficients; δ(s) is a zero mean weakly stationary variable with isotropic covariance

function Cov[δ(s), δ(s + h)] = Cov[Y(s), Y (s + h)] = C(h), h = ‖h‖; and ǫ(s) is a

zero mean white noise variable with variance σ 2
ǫ .

Let

Y(Bi) =
1

|Bi |

∫

Bi

Y(s)ds

denote the mean of the signal over some block Bi of land with area |Bi | =
∫
Bi

ds ≪
|D|. We consider m such blocks and denote the vector of mean values by Y =
(Y (B1), Y (B2), . . . , Y (Bm))

′
. Suppose we wish to predict g(Y) where g(·) is a (pos-

sibly nonlinear) scalar function of Y. We consider predictors of the form g(Ŷ), where

Ŷ = �′Z is a linear predictor of Y, and � = (λ1, . . . ,λm) is a n × m matrix of

weights. Note that we confine ourselves to compute point predictions of g(Y) and

its variance rather than estimating the conditional distribution of g(Y) given the data.

For squared error loss, known C(h) and σ 2
ǫ , and linear g(·), the universal kriging

predictor (UK), g(ŶUK), is best (Harville 1977, p. 322), where ŶUK is of course given

by

ŶUK = �′
UKZ = Xmβ̂GLS + C′�−1(Z − Xβ̂GLS), (2)

and �UK = �−1{(I − X(X′�−1X)−1X′�−1)C + X(X′�−1X)−1X′
m} is the n × m

matrix of the UK weights; Xm = (x(B1), . . . ,x(Bm))′ and X = (x(s1), . . . ,x(sn))
′

are the m × p and n × p design matrices of the target blocks and the data,

respectively; β̂GLS = (X′�−1X)−1X′�−1Z is the p vector with the generalised

least square estimate of β; C = (c(s1...n,B1), . . . , c(s1...n,Bm)) is a n × m matrix

where c(s1...n,Bi) = (C(s1,Bi), . . . ,C(sn,Bi))
′ are the n covariances between Z and

Y(Bi); � = Cov[Z,Z′] is the n × n covariance matrix of the data and I is the n × n

identity matrix. ŶUK typically underestimates the true variation of Y. Consequently,

g(ŶUK ) is a biased predictor of g(Y) for nonlinear g(·) (Appendix A).

For nonlinear g(·), UK is usually given up in favour of Gaussian conditional sim-

ulations (CS). Conditional realisations of Y given Z, say Yω|Z, can be efficiently

simulated by (Chilès and Delfiner 1999, pp. 465–472)

Yω|Z = ŶUK +
(
Yω − C′�−1Zω

)
, (3)
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where (Y′
ω,Z′

ω) is a m + n vector with an unconditionally simulated realisation of

(Y′,Z′) (ω denotes a realisation). The marginal distributions of Yω|Z and Y are

the same as long as the latter is also Gaussian (Chilès and Delfiner 1999, p. 466).

Hence, any realisation of g(Yω|Z) is an unbiased predictor of g(Y) for nonlinear

g(·). Of course, a single g(Yω|Z) is highly variable, and one uses in practise the

mean 1
N

∑N
ω=1 g(Yω|Z) of N realisations as an approximation of E[g(Y)|Z].

Aldworth and Cressie (2003) pursued another approach and proposed to predict

g(Y) by g(ŶCMCK ), where ŶCMCK = A′Z is the covariance-matching constrained

kriging (CMCK) predictor and A = (a1, . . . ,am) is a n × m matrix of the weights

that satisfy in addition to the usual unbiasedness constraints

E[A′Z] = E[Y], (4)

of UK the covariance constraints

Cov
[
A′Z, (A′Z)′

]
= Cov[Y,Y′]. (5)

Consequently, g(ŶCMCK ) is approximately unbiased for any smooth, nonlinear g(·)
and exactly unbiased if Y is Gaussian (Appendix A). The CMCK predictor of Y is

given by Aldworth and Cressie (2003)

ŶCMCK = A′Z = Xmβ̂GLS + K′C′�−1(Z − Xβ̂GLS), (6)

where A = �−1{(I − X(X′�−1X)−1X′�−1)CK + X(X′�−1X)−1X′
m} is the n × m

matrix of the CMCK weights, K = Q−1
1 P1 is a m × m matrix and Q1 and P1 are

defined by

Q1Q1 = Q = Cov[ŶUK, Ŷ′
UK] − Cov

[
Xmβ̂GLS, (Xmβ̂GLS)′

]
, (7)

P1P1 = P = Cov[Y,Y′] − Cov
[
Xmβ̂GLS, (Xmβ̂GLS)′

]
. (8)

The symmetric m × m matrices Q1 and P1 exist and are positive definite if Q

and P are themselves positive definite, and they can be uniquely determined by the

square root decomposition described by Harville (1997, pp. 543–545). In practise, the

CMCK predictor thus exists if Q and P are positive definite (Aldworth and Cressie

2003, p. 14). Unlike Q, which is always nonnegative definite (Aldworth and Cressie

2003, p. 15) the matrix P may become negative definite, and the CMCK predictor no

longer exists. This is likely to happen if m is large, if the areas of the blocks are large

compared to the support of the samples and if one extrapolates the trend, i.e., if the

x(Bi) are far from the covariates at the sample locations.

For m = 1, Y, ŶUK, P and Q reduce to the scalars Y(B1), ŶUK (B1), P and Q,

respectively, K is thus also a scalar

K =
(

P

Q

) 1
2

=
(

Var[Y(B1)] − Var[x(B1)
′β̂GLS]

Var[ŶUK (B1)] − Var[x(B1)′β̂GLS]

) 1
2

, (9)

and the CMCK predictor simplifies to the constrained kriging (CK) predictor

ŶCK (B1) = x(B1)
′β̂GLS + Kc(s1...n,B1)

′�−1(Z − Xβ̂GLS). (10)
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K exists if the numerator and denominator of (9) are positive.

Of course, Q ≥ 0 (this follows from the fact that Q is nonnegative definite) but

P may become negative if |B1| is large (Var[Y(B1)] small) and/or if the trend is

extrapolated (Var[x(B1)
′β̂GLS] large).

There is a price to pay for the covariance constraint in (5); the CMCK and the CK

predictors have larger mean square prediction errors (MSPE) than the UK predictor.

It is not difficult to show that

MSPE[ŶCMCK ] = MSPE[ŶUK ] + (P1 − Q1)(P1 − Q1), (11)

where

MSPE[ŶUK ] = Cov
[
ŶUK − Y, (ŶUK − Y)′

]

= Cov[Y,Y′] − C′�−1C

+
(
X′

m − X′�−1C
)′(

X′�−1X
)−1(

X′
m − X′�−1C

)
(12)

is the covariance matrix of the UK predictions errors. The second term of the right-

hand side of (11) is a positive definite matrix and therefore any linear combination,

say ν′ŶCMCK , has a larger mean square prediction error than ν′ŶUK .

For m = 1 (11) simplifies to

MSPE
[
ŶCK (B1)

]
= MSPE

[
ŶUK (B1)

]
+

(√
P −

√
Q

)2

= MSPE
[
ŶUK (B1)

]
+ Q(K − 1)2. (13)

The CMCK predictor has a larger MSPE than the CK predictor. From (11) and the

fact that P1 and Q1 are symmetric immediately follows

MSPE
[
ŶCMCK (Bk)

]

= MSPE
[
ŶUK (Bk)

]
+

m∑

i=1

(
[P1]ik − [Q1]ik

)2

= MSPE
[
ŶUK (Bk)

]
+

(
[P1]kk − [Q1]kk

)2 +
m∑

i=1,i 	=k

(
[P1]ik − [Q1]ik

)2

= MSPE
[
ŶCK (Bk)

]
+

m∑

i=1,i 	=k

(
[P1]ik − [Q1]ik

)2

︸ ︷︷ ︸
≥0

,

where [A]ik is the element in the ith row and kth column of A.

3 Simulation Experiment

We compared the performance of CS, UK, CK, and CMCK by simulations. We were

guided by the example of the metal smelter in Dornach, NW Switzerland (Papritz

et al. 2005), when we designed the simulation experiment.
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Fig. 1 (A) Simulation domain D. The crosses denote the 146 sample points, the hexagons B1–B4 are the

target blocks. (B) Pseudo-three-dimensional display of the trend function, μ(s), used in the simulations.

See text for details

3.1 Simulation Domain

We used a two-dimensional domain D, discretized by a square grid with 305 × 305

nodes, for the simulation experiments (Fig. 1A). The assumed source of the pollutants

(symbol � in Fig. 1A) was located outside of D at sPS = (x = 153, y = 306)′. We

had four target blocks, B1, . . . ,B4, all with hexagonal shape and area |Bi | = 800.

Compared to real soil pollution cases, the blocks were quite large relative to the area

of the simulation domain, but we made this choice on purpose because we wanted

to see if the CK and CMCK predictors were likely to fail to exist. For covariance

matching constrained kriging, each target block had three neighbours (hexagons with

solid lines in Fig. 1A), each sharing an edge with the target block. B1 and B2 as well

as B3 and B4 were neighbours. We chose 146 sample points (marked by crosses in

Fig. 1A) where the values of the simulated fields were assumed to be observed. We

selected more sample points close to the source than at farther distance from it. To

this aim, we divided D into three zones by two concentric circles (dashed circles in

Fig. 1A) with radii 141 and 223 centred on sPS. Then we selected randomly 88, 32,

and 26 grid nodes within the three zones. The support of the measurements was equal

to one grid cell, i.e., |si | = 1, i = 1, . . . ,146.

3.2 Spatial Models

We used two variants of (1) as spatial models for the simulations. Both models shared

the same trend, μ(s), but they differed in the way they modelled the stochastic model

component δ(s).

3.2.1 Modelling the Trend

The trend function μ(s) mimicked the topsoil heavy metal contamination around

the Dornach metal smelter. We modelled a piecewise linear, isotropic decrease of
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μ(s) with increasing distance d(s) = |s − sPS| from the source. In Dornach, we had

observed that the metal concentrations were larger in the soils of forests compared to

open land. We therefore assumed that the pollution was more severe in three distinct

zones of D (groups of hatched polygons in Fig. 1A). In the remainder, we denote

these zones by forests. Note that the target blocks B1 and B3 belonged to the forests.

In more detail, we modelled the trend by a segmented or broken stick regression

(Faraway 2004, pp. 121–122) with 3 knot distances, ci , and combined this with an

indicator term for forests

μ(s) = β0 +
i−1∑

j=1

βj (cj − cj−1) + βi

(
d(s) − ci−1

)
+ β5I (s ∈ forest), (14)

where i = 1 if c0 < d(s) ≤ c1, i = 2 if c1 < d(s) ≤ c2, i = 3 if c2 < d(s) ≤ c3,

i = 4 if d(s) > c3 and

I (x) =
{

1, if x is true,

0, otherwise.
(15)

In the simulation, we set β = (104,−1.4,−0.2,−0.05,0,15)′. The knots for the

distances were equal to c0 = 0, c1 = 40, c2 = 75, c3 = 200 and c4 = ∞. Figure 1B

illustrates this trend function.

3.2.2 Modelling the Stochastic Component

As aforementioned, we considered two different models for the signal process:

a Gaussian, {δG(s)}, and a positively skewed spatial process, {δS(s)}. To simulate

{δG(s)}, we chose an isotropic exponential covariance function

CG(h) = σ 2
G,0I (h = 0) + σ 2

G,1exp(−h/α), (16)

with nugget σ 2
G,0 = 7, partial sill σ 2

G,1 = 63 and range parameter α = 25. At the sam-

ple points, we added independent, identically (iid) normally distributed zero mean

measurements errors, ǫ(si), Var[ǫ(si)] = 3.5, to the signal.

As we aimed for a positively skewed process with an additive white noise com-

ponent, we simulated {δS(s)} by adding two standardised, lognormal spatial ran-

dom fields, of which one, {exp(δG,0(s))}, was lognormal white noise and the other,

{exp(δG,1(s))}, spatially autocorrelated. Thus, {δS(s)} was simulated from

δS(s) =
1∑

i=0

δS,i(s) =
1∑

i=0

σS,i

exp(δG,i(s)) − E[exp(δG,i(s))]√
Var[exp(δG,i(s))]

, (17)

where

E
[
exp

(
δG,i(s)

)]
= exp

(
E
[
δG,i(s)

]
+

σ 2
G,i

2

)

and

Var
[
exp

(
δG,i(s)

)]
= E

[
exp

(
δG,i(s)

)]2(
exp

(
σ 2

G,i

)
− 1

)
.
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Table 1 Parameter values used

to simulate the positively

skewed spatial process {δS (s)}
i E[δG,i (s)] σ 2

G,i
σ 2

S,i
α

0 3.359 0.085 80 0

1 3.107 0.588 720 25

The covariance function of {δS(s)} is then equal to Diggle and Ribeiro (2007, p. 61)

CS(h) = σ 2
S,0l(h = 0) + σ 2

S,1

exp(σ 2
G,1exp(−h/α)) − 1

exp(σ 2
G,1) − 1

. (18)

The parameters σS,0, σS,1, α, and the means and variances of the Gaussian process re-

quired for the simulation of {δS(s)} are listed in Table 1. The parameters were selected

such that δG(s) and δS(s) had the same correlation length (Chilès and Delfiner 1999,

p. 74) and that their nugget-to-total-sill ratios matched. Normal iid zero mean mea-

surement errors were again added to the signal, but this time we chose Var[ǫ(s)] = 40.

In addition to these models, we also considered Gaussian and positively skewed

processes with larger nugget-to-sill ratios including models with larger measurement

error variances. However, since the results did not differ much we do not describe the

models here and we do not report the results.

3.3 Target Quantities

For each Bi , we studied the prediction of two quantities:

1. The block mean, Y(Bi), which is a linear functional of {Y(s)}.
2. The binary indicator, I (Y (Bi) > T ), that indicates if the block mean exceeds a

given threshold T . Clearly, I (Y (Bi) > T ) depends nonlinearly on {Y(s)}.

3.4 Implementation of the Simulations

We used the programming environment R (R Development Core Team 2009) for all

the computations. For both signal processes, we simulated 2000 realisations on the

grid with 305 × 305 nodes and added μ to obtain the realisations of {Y(s)}. Reali-

sations of the various {δG,i(s)} were simulated by the circulant embedding algorithm

of Chan and Wood (1997), implemented in the R package RandomFields (Schlather

2001). Realisations of the block means were computed by arithmetically averaging

the values simulated at the grid nodes within the respective blocks. To obtain a reali-

sation of the observations Z, we added simulated measurement errors to the Y(si) at

the sample points.

We compared the kriging methods UK, CK, CMCK, and conditional simulations.

In addition, we computed the GLS trend surface predictions, x(Bi)
′β̂GLS, of the block

means. In CS, we simulated 500 conditional realisations, say Yω(Bi)|Z, of the block

means for each of the 2000 realisations by the kriging method (3). The block means

were then predicted by the estimated conditional means,

ŶCS(Bi) = 1/500

500∑

ω=1

Yω(Bi)|Z,
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and the exceedance of the thresholds by their medians. The latter choice should min-

imise the total number of misclassifications, provided the model is not misspecified.

Note that up to some numerical inaccuracies, ŶCS(Bi) and ŶUK(Bi) were the same,

see (3). The conditional simulations and the kriging predictions were computed with

the true covariance parameters (and not with estimates inferred from the simulated

values at the sample points). The (co-)variances of the block means, required for UK

and (CM)CK predictions, were computed by the R package spatialCovariance (Clif-

ford 2009). Finally, to compute the predictions, we did not use local search windows

but used all the 146 observations.

3.5 Validation

3.5.1 Block Means

We assessed the quality of the predictions of the block means by calculating the

empirical bias (eBIAS) and the empirical mean square prediction error (eMSPE)

eBIAS
[
Ŷk(Bi)

]
=

1

2000

2000∑

ω=1

(
Ŷωk(Bi) − Yω(Bi)

)
, (19)

eMSPE
[
Ŷk(Bi)

]
=

1

2000

2000∑

ω=1

(
Ŷωk(Bi) − Yω(Bi)

)2
, (20)

where Ŷωk(Bi) denotes the prediction of the ωth realisation, Yω(Bi), of the block

mean by method k.

3.5.2 Threshold Exceedance

We validated predictions of threshold exceedance for multiple thresholds. In fact, for

a given block Bi , we used the ordered simulated block means Yω(Bi), denoted as

T[l], as thresholds. Table 2 shows the 2 × 2 contingency table used for validating

the predictions of threshold exceedance. The quantities TNkl(Bi), . . . ,TPkl(Bi) are

counts, estimated from the simulation results by

TNkl(Bi) =
2000∑

ω=1

I
(
Ŷωk(Bi) ≤ T[l]

)
· I

(
Yω(Bi) ≤ T[l]

)
,

FNkl(Bi) =
2000∑

ω=1

I
(
Ŷωk(Bi) ≤ T[l]

)
· I

(
Yω(Bi) > T[l]

)
,

Table 2 Contingency table for validating whether the prediction, Ŷk(Bi ), of the block mean, Y (Bi ), by

method k exceeds the threshold T[l]. See text for details

Y (Bi ) ≤ T[l] Y (Bi ) > T[l]

Ŷk(Bi ) ≤ T[l] TNkl(Bi ) (true negative) FNkl(Bi ) (false negative)

Ŷk(Bi ) > T[l] FPkl(Bi ) (false positive) TPkl(Bi ) (true positive)
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FPkl(Bi) =
2000∑

ω=1

I
(
Ŷωk(Bi) > T[l]

)
· I

(
Yω(Bi) ≤ T[l]

)
,

TPkl(Bi) =
2000∑

ω=1

I
(
Ŷωk(Bi) > T[l]

)
· I

(
Yω(Bi) > T[l]

)
.

Various accuracy and goodness of prediction measures can be calculated from

such contingency tables (Wilks 2006, pp. 255–335). We used the bias score

BSkl(Bi) =
FPkl(Bi) + TPkl(Bi)

FNkl(Bi) + TPkl(Bi)
(21)

to see whether the kth method systematically over- or underestimated the exceedance

frequency (the nominator [denominator] of (21) is the total number of predictions

[simulated block means] exceeding the threshold). Thus, BSkl(Bi) = 1 indicates that

method k predicts the correct number of threshold exceedances for block Bi , whereas

BSkl(Bi) > 1 (BSkl(Bi) < 1) signals systematic overestimation (underestimation) of

exceedance.

The bias score does not characterise the conditional bias of the predictions (BS ≈ 1

as long as FP ≈ FN). We therefore computed the Peirce skill score, PSSkl(Bi), which

characterises conditional bias. PSSkl(Bi) was first proposed by Peirce (1884) and is

also known as the true skill statistic or Hanssen–Kuipers discriminant (Wilks 2006,

p. 266). It is defined by

PSSkl(Bi) =
TNkl(Bi) · TPkl(Bi) − FNkl(Bi) · FPkl(Bi)

(FNkl(Bi) + TPkl(Bi)) · (TNkl(Bi) + FPkl(Bi))
. (22)

PSS equals the difference between the hit and the false alarm rate

PSSkl(Bi) = Hkl(Bi) − Fkl(Bi),

where the hit rate,

Hkl(Bi) =
TPkl(Bi)

FNkl(Bi) + TPkl(Bi)
, (23)

is the conditional probability that exceedance is correctly predicted given that the

block mean indeed exceeds the threshold, and the false alarm rate,

Fkl(Bi) =
FPkl(Bi)

TNkl(Bi) + FPkl(Bi)
, (24)

is the conditional probability of wrongly predicting exceedance when there is none.

PSSkl(Bi) varies between −1 (perfect misclassification: TNkl(Bi) =
TPkl(Bi) = 0) and 1 (perfect classification: FNkl(Bi) = FPkl(Bi) = 0). Random pre-

dictions by the marginal row and column probabilities of the contingency table result

in PSSkl(Bi) = 0 (Wilks 2006, p. 266). Equation (22) shows that the Peirce skill

scores for exceedance and nonexceedance are the same because PSS is invariant to

swapping positives and negatives. We computed the bias and Peirce skill scores for
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the ordered thresholds, T[l], l = 1,2, . . . ,2000, and plotted them against the relative

ranks l̃ = l
2000

of the thresholds.

4 Results and Discussion

In the sequel, we first compare how precisely the methods predicted the block means,

and we discuss what factors influenced the precision of CK and CMCK and by that

further explore their nature. Then we explore how successfully the methods predicted

threshold exceedance. The results for the Gaussian and skewed signal processes with

larger nugget-to-sill ratios are not presented because they were very similar to the

ones shown below.

4.1 Block Means

As one expects from theory, the predictions of the block means were unbiased, no

matter what block was predicted, what method was used, and regardless which signal

process was considered (Table 3). The contribution of eBIAS2 to the empirical mean

square prediction errors (Figs. 2 and 3) was at most 2.6 × 10−3, which confirms

that the considered methods were unbiased for all practical purposes. The empirical

mean square prediction errors differed more strongly than the biases between the

blocks and methods. Figure 2 shows the eMSPE for the Gaussian signal process. The

predictions were most precise for block B2, followed by B1, B3, and B4. CS and UK

were always best, and their eMSPEs were, up to numerical inaccuracies, the same.

CK and CMCK had larger eMSPE than UK or CS, with CK being consistently more

precise than CMCK. This findings agree with theory, as shown in (11) and (13), but

are in contrast with the simulation results of Aldworth and Cressie (2003). In their

study, CK showed for linear and nonlinear predictions almost always a higher eMSPE

than CMCK, which is not consistent with theory.

For B1 to B3, there were only small differences between CS/UK, CK, and CMCK.

Furthermore, CMCK was not much worse than CK. For these blocks, kriging and CS

resulted in noticeable gains in precision compared to trend surface prediction by GLS

regression. By contrast, GLS regression outperformed CK and CMCK for block B4,

and it was not much worse than CS/UK for this block. For the positively skewed

Table 3 Empirical bias (eBIAS) for predicting the block means Y (Bi ) for the Gaussian, {δG(s)}, and the

positively skewed signal process, {δS(s)}

δG(s) δS(s)

B1 B2 B3 B4 B1 B2 B3 B4

CS −0.038 0.002 0.153 0.148 −0.038 0.028 −0.471 0.060

UK −0.007 0.031 0.149 0.142 −0.339 0.050 −0.472 0.104

CK −0.017 −0.003 0.102 0.073 −0.305 0.181 −0.454 0.106

CMCK 0.008 0.000 0.067 0.137 −0.226 0.065 −0.517 0.012

GLS 0.094 0.206 0.293 0.188 −0.575 −0.466 −0.517 0.103
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Fig. 2 Empirical mean square prediction errors for predicting the block means Y (Bi ) for the Gaussian

signal process {δG(s)}. B1–B4 are the four target blocks

signal, the empirical mean square errors showed largely the same patterns (Fig. 3).

The only remarkable difference was the larger, absolute magnitude of the eMSPEs.

No matter what model was used for the signal process, all the methods performed

best for block B2 followed (in order of increasing eMSPE) by B1, B3, and B4. The

precision of the fitted trend surface and the local density of the support points con-

trolled how much larger the mean square errors of CMCK and CK were, compared

to UK; see (11) and (13). For convenience, we discuss only CK point predictions in

the sequel, but similar findings also hold for CMCK and for block predictions.

Figures 4A and 4B show the spatial distributions of
√

P and
√

Q for the Gaussian

signal.
√

P , being the square root of the difference between the signal variance and

the variance of the fitted trend, depends on the prediction location by the Mahalanobis

distance (x(s0) − x̃)′V−1(x(s0) − x̃) where x(s0) is defined by x(s0)
′ = (1,x(s0)

′),
x̃ is the centroid of the orthogonalised covariates at the sample locations and V is

the cross-product matrix of the centred, orthogonalised covariates (Appendix B).
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Fig. 3 Empirical mean square prediction errors for predicting the block means Y (Bi ) for the positively

skewed signal process {δS(s)}. B1–B4 are the four target blocks

√
P was largest for locations for which x(s0) was close to the centroid. For the

broken-stick regression, this resulted in two concentric rings (Fig. 4A).
√

Q, on the

other hand, depends on s0 only through the covariance c(s1...n, s0) (Appendix C). If

the distance between s0 and the nearest sample point increases then the universal

kriging predictions converges to the fitted trend and, therefore,
√

Q → 0. If s0 ap-

proaches a sample point, then
√

Q grows, and depending on the magnitude of the

noise variance, σ 2
ε , converges to a value ≤

√
P (equality is reached for σ 2

ε = 0). This

behaviour explains the spatial distribution of
√

Q shown in Fig. 4B.

Compared to UK, CK lost precision where the difference
√

P −
√

Q was large.

As
√

P varied little, this happened in zones where
√

Q was small, i.e., where sam-

pling was sparse. Of course, also K (Fig. 4C) was related to the difference between

the mean square errors of CK and UK, see (13); large values of K coincided with

zones where CK lost precision. As long as K was close to one, CK performed nearly

equally well as UK. Table 4 shows that the above relations also hold if we predict
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Fig. 4 Spatial distribution of terms relevant for point predictions by CK (Gaussian signal process {δG(s)}).
(A)

√
P , (B)

√
Q, (C) K and (D) MSPE[ŶCK (s)]–MSPE[ŶUK (s)]. Note that at the target blocks B1–B4

the block values of the corresponding terms are shown, which are also listed in Table 4

Table 4 Relevant terms for

computing the CK predictions of

the block means for the

Gaussian signal process {δG(s)}.
The spatial point distributions of

those terms within the

simulation domain D are shown

in Fig. 4

B1 B2 B3 B4

√
P 4.444 4.846 4.732 5.094

√
Q 4.302 4.341 3.868 2.207

K 1.033 1.116 1.223 2.308

MSPE[ŶCK ]–MSPE[ŶUK ] 0.0202 0.255 0.745 8.336

block means. The sample points were densest around B1 and B2 and sparsest in the

neighbourhood of B4. Consequently, unlike for B1 and B2,
√

Q was small for B4 and

the difference in the precision of CK and UK was largest for this block as the smooth-

ing effect of UK increases in sparsely sampled areas (Goovaerts 1997, p. 370).

We can thus conclude that the use of CK (and CMCK) does not result in a sub-

stantial loss of precision as long as the sampling is not too sparse. Densely sampled

data convey enough information to tie the UK predictions locally to the data. The UK

predictions differ quite strongly from the fitted trend, and their variance is not much
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smaller than the variance of the target data. In such circumstances, CK (CMCK) need

not amplify the GLS residuals strongly to match the (co-)variances of the data, there-

fore K ≈ 1 (K ≈ I), and, consequently, the mean square errors of CK (CMCK) and

UK do not differ much.

4.2 Threshold Exceedance

4.2.1 Marginal Bias

The bias score (BS) of UK reflected the well-known smoothing bias of that method

for nonlinear predictions. No matter what block was considered and irrespective of

the signal, we found BS > 1 if l̃ < c and BS < 1 if l̃ > c with c ≈ 0.5 for {δG(s)}
(Figs. 5A–5C) and c ≈ 0.65–0.8 for {δS(s)} (Figs. 5D–5F). Exceedance of small

and large thresholds was thus overestimated and underestimated by UK, respectively.

Much the same results were obtained from the conditional simulations when thresh-

old exceedance was predicted by their conditional medians. The CS results are there-

fore not shown in Fig. 5. The magnitude of the bias of UK differed between the

blocks and the signal processes. For {δG(s)}, the bias was generally smaller and for

block B1 the predictor I (ŶUK(B1) > T[l]) was nearly unbiased for l̃ < 0.9 because

Var[ŶUK(B1)] ≈ Var[Y(B1)] (Fig. 6A). However, for block B4, the bias of UK was

substantial, in particular for {δS(s)}, because Var[ŶUK(B4)] was distinctly smaller

than Var[Y(B4)] (Figs. 6C and 6F), and this resulted in strongly biased predictions

for the small and large thresholds.

Unlike UK, the bias scores of CMCK and CK were close to one for {δG(s)} as

long as l̃ < 0.9 (Figs. 5A–5C). There were some deviations beyond that point, but one

must bear in mind that BS becomes unstable for l̃ → 1 as the counts in the numerator

and denominator of (21) decrease. For the positively skewed signal, also CMCK and

CK exhibited some bias (Figs. 5D–5F): BS was negative for the small (l̃ < 0.3–0.4)

and large thresholds (l̃ > 0.9) and positive in between. This pattern resulted from

matching the means and the (co-)variances of the predictions and the block means. As

the distributions of the latter were skewed for {δS(s)}, CMCK and CK overestimated

the extent of the lower tails in these instances (Figs. 6D–6F). UK modelled the lower

tails more accurately, but it strongly underestimated the extent of the upper tails of

the distributions of the block means, in particular for block B4. On the whole, CMCK

and CK reproduced the skewed distributions of the block means more successfully

than UK, and this is the main reason for their lesser bias. There were no distinct

differences between CK and CMCK. Based on the BS criterion neither method can

be preferred.

4.2.2 Conditional Bias

The BS criterion signals if a method systematically over or underpredicts thresh-

old exceedances, but it does not provide information on how well a method detects

(non)exceedance of a threshold given that there is one (none). Only conditional sta-

tistics such as the hit (H) and false alarm rate (F) or their difference, the PSS criterion,

convey this information. Figure 7 shows the hit and false alarm rates of UK, CK, and
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Fig. 5 Bias scores (BS) for predicting threshold exceedance vs. the relative ranks l̃ of the thresholds T[l]:
(A–C) {δG(s)}; (D–F) {δS(s)}

CMCK for block B4 and {δG(s)}, and Fig. 8 displays PSS of these methods for blocks

B1, B2, and B4 (both signal processes). Predicting threshold exceedance by the con-

ditional medians of CS gave again very similar results to UK, and they are therefore

not shown in Figs. 7 and 8. Although UK had a larger hit rate than CMCK and CK

for the small thresholds (Fig. 7A), it did not outperform these methods with respect

to PSS (Fig. 8C) because the advantage in H was more than compensated by a poor F

(Fig. 7B). For large thresholds, the advantage in F was similarly overcompensated by

a bad hit rate so that CMCK and CK again outperformed UK with respect to PSS.

UK matched the performance of CMCK and CK only for the intermediate thresholds

(l̃ ≈ 0.4–0.6, Fig. 8C), below and above this range, the PSS of UK deteriorated. In
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Fig. 6 Quantile–quantile plots of the predictions, Ŷ (Bi ) and the simulated true block means Y (Bi ) for

{δG(s)} (A–C) and {δS(s)} (D–F)
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Fig. 7 (A) Hit rate H and (B) false alarm rate F for predicting threshold exceedance vs. the relative ranks

l̃ of the thresholds T[l] (block B4, {δG(s)})

contrast, the PSS of CMCK and CK were approximately constant for l̃ ranging from

0.2 to 0.9.

The advantage of CMCK and CK over UK and CS was observed for all the blocks

and both signal processes, but it was small for B1 and moderate for B2 and B3 (not

shown). For {δS(s)}, PSS of UK was no longer symmetrical to l̃ = 0.5. The advan-

tage of CMCK/CK over UK/CS was more pronounced for the small than the large

thresholds. Finally, excepting block B2 and {δG(s)} (Fig. 8B), PSS showed a slight

but consistent advantage of CK over CMCK.

In view of the advantage of CMCK and CK over UK and, seemingly, also CS, one

might rightly object that one could compute more informed predictions of threshold

exceedance with the CS results. Instead of using the conditional medians, one could

predict exceedance by the conditional quantiles, thereby specifically controlling the

rate of false negatives. The other methods do not offer this possibility as they provide

only the predictions and estimates of the MSPEs. It is therefore of interest to compare

CMCK/CK and CS, taking into account the full information provided by CS.

Mason (1979) showed that given a probabilistic forecast of a binary event with out-

comes yes and no, PSS is maximised by issuing a yes forecast if the modelled prob-

ability of the yes event exceeds the marginal probability of the yes events in the pop-

ulation. PSS of CS should therefore be maximised if instead of the conditional me-

dians; the conditional l̃-quantiles were used to predict exceedance of threshold T[l].
For the Gaussian signal process, this was indeed the case for all the blocks; predict-

ing exceedance by the conditional quantiles clearly outperformed CK for l̃ < 0.3 and

l̃ > 0.7 and was as good in between for B4 (Fig. 9A). The hit and the false alarm rates

were now approximately constant for the intermediate thresholds and increased (H)

or decreased (F) for l̃ → 0 and l̃ → 1, respectively.

However, for {δS(s)}, the tuned version of CS was not equally successful for

block B4. It was better than CK only for the largest thresholds, and for l̃ ∈ (0.5–0.7)

it was even worse than UK (Fig. 9D). Compared with {δG(s)}, H and F showed now

a completely different pattern, which indicates that CS largely failed to model the
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Fig. 8 Peirce skill score (PSS) for predicting threshold exceedance vs. the relative ranks l̃ of the thresholds

T[l]: (A–C) {δG(s)}; (D–F) {δS(s)}

conditional distributions of the block means for {δS(s)}. This was confirmed by the

coverage of one-sided prediction intervals computed from the conditional simulations

for block B4. The observed coverage differed considerably from the expected cover-

age of the intervals (Fig. 9E). For the Gaussian signal, this was not the case (Fig. 9B).

CK outperformed the tuned version of CS also when predicting threshold exceedance

for B3 (not shown), albeit the differences between the methods were less pronounced.

For blocks B1 and B2 the tuned version of CS showed a lesser conditional bias than

CK for large l̃, but the bias score signalled substantial marginal bias (not shown). Irre-

spective of the signal process and for all the blocks, predicting threshold exceedance

by upper tail conditional quantiles resulted in many false positives (Figs. 9C and 9F
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Fig. 9 Peirce skill score (PSS), (A, D), coverage of one sided prediction intervals (B, E) and bias score

(BS), (C, F) for predicting threshold exceedance vs. the relative ranks l̃ of the thresholds: block B4; (A–C)

{δG(s)}; (D–F) {δS(s)}
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for B4). Thus, the price for lesser conditional bias was a very substantial increase in

the marginal bias.

To summarise, we can state that UK failed to predict threshold exceedance, ex-

cept in the case where local information was so dense that the smoothing bias of

the method did not matter. CK consistently outperformed UK (clearly) and CMCK

(slightly). CK was outdone only by CS for the Gaussian signal when threshold ex-

ceedance was predicted by the conditional quantiles. CS performed well in this in-

stance because it captured prediction uncertainty successfully. However, CS failed in

this respect for the positively skewed data and this impaired the predictions. CK (and

CMCK) were quite resistant to distributional deviations and captured the upper tails

of the skewed marginal distributions of the block means remarkably well.

5 Summary and Conclusions

Motivated by the task to survey soil contamination in the vicinity of stationary emit-

ters of pollutants, our goal in this study was to find a simple, robust, and precise

method for predicting linear and nonlinear functionals of the block means from data

observed at points that show a spatial trend. So far, CS was the preferred tool for such

prediction problems with local change of support. However, CS is highly parametric,

is susceptible to model misspecification and, therefore, lacks the attractive, nonpara-

metric flavor and the robustness of UK. Our simulations showed that CK offers a

good compromise between robustness, acceptable precision for predicting the block

means, and small bias when predicting threshold exceedance. Theoretically, the CK

predictor might not exist, but we think that this is unlikely to happen in practise. In

our simulations experiments, the CK predictor failed to exist only if the nugget-to-

total-sill ratios were very large (e.g., >0.9 for block B1) or if the blocks were far

outside of the sampled domain and the spatial trend had to be extrapolated. Com-

pared to UK, CK lost precision in predicting the block means only if the sampling

was locally sparse. The variances of the UK predictions were then distinctly smaller

than the variances of the block means. This discrepancy in the variances was the

main cause for the bias of UK when predicting threshold exceedance. CK avoided

this bias by inflating the variation of the GLS residuals, but this leads to a loss in

precision when predicting the block means. By amplifying the moduli of the kriging

weights, negative predictions are more likely to occur in CK. If this is a problem, CK

predictions can be forced to nonnegative values by the method of Barnes and You

(1992). For dense sampling, CK was hardly less precise than UK because no am-

plification of the GLS residuals was required as the variance of the UK predictions

nearly matched the variances of the block means. Thus, irrespective of the sampling

density and unlike UK, CK predicted threshold exceedance always well. CK was

outperformed consistently in the Gaussian case when threshold exceedance was pre-

dicted by the conditional quantiles of CS. However, when sampling was sparse, CS

was badly conditionally biased for the skewed data, and this demonstrates the vulner-

ability of the method to misspecification of the model. Furthermore, unlike CK, CS

always showed a large marginal bias for large l̃, irrespective of the data distribution.

CMCK did not show any advantage over CK in the simulations, neither for predict-

ing linear nor nonlinear functionals of the block means. This contrasts Aldworth and
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Cressie’s findings and suggests that data with an apparent trend and/or local change

of support prediction problems ask for a different optimal method.

In addition to the favourable statistical properties, CK is also simple to implement

and does not requires more computing resources than UK. This contrasts with CS,

which is still demanding with respect to computing time and storage capacity for

medium to big real world problems. Based on these considerations, we recommend

CK for spatial prediction of nonlinear quantities of block means from data observed

at points.
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Appendix A: Taylor Series Approximation of a Nonlinear Predictor

Suppose g(·) is a smooth nonlinear scalar function of Y for which the first and second

derivative exist and are continuous. Aldworth and Cressie (2003, p. 12) showed that

g(Y) can be approximated by a second-order Taylor series using the δ-method (Schott

1997, pp. 323–332) at μ = E[Y]

g(Y) ≈ g(μ) +
(
g′(μ)

)′
(Y − μ) +

1

2
(Y − μ)′g′′(μ)(Y − μ), (25)

where g′(μ) = ∂g(μ)
∂μ

is the m × 1 vector with the first-order partial derivatives of

g(μ); g′′(μ) = ∂2g(μ)
∂μ∂μ′ is the m × m Hessian matrix with the second-order partial

derivatives of g(μ). Consequently,

E
[
g(Y)

]
≈ g(μ) +

1

2
tr
(
g′′(μ)Cov[Y,Y′]

)
(26)

and similarly

E
[
g(Ŷ)

]
≈ g

(
E[Ŷ]

)
+

1

2
tr
(
g′′(E[Ŷ]

)
Cov[Ŷ, Ŷ′]

)
, (27)

where tr(·) denotes the trace. The bias, E[g(Ŷ) − g(Y)], of g(Ŷ) vanishes approx-

imately if the first and the second moments of Ŷ and Y match. If in addition Y is

Gaussian, then E[g(Ŷ) − g(Y)] = 0. Hence, unlike g(ŶCMCK ), g(ŶUK ) is a biased

predictor of g(Y) because Cov[ŶUK , Ŷ′
UK ] 	= Cov[Y,Y′].

Appendix B: Expressing the Variance of Fitted Trend as a Mahalanobis

Distance

We assume that the trend model includes an intercept. Hence, we can write x(s)′ =
(1,x(s)′) and X = (1,X). Next, we compute the Cholesky decomposition of the co-

variance matrix of the data � = LL′ and orthogonalise the design matrix X̃ = L−1X

and its components 1̃ = L−11, X̃ = L−1X.
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The covariance matrix of β̂GLS can be expressed by

Var[β̂GLS, β̂
′
GLS] =

(
X′�−1X

)−1 =
(

1′�−11 1′�−1X

X′�−11 X′�−1X

)−1

= (X̃′X̃)−1 =
(

1̃′̃1 1̃′X̃

X̃
′̃
1 X̃

′
X̃

)−1

.

Standard results from regression analysis provide

Var[β̂GLS, β̂
′
GLS] =

(
1/̃n + x̃

′
V−1x̃ −̃x

′
V−1

−V−1x̃ V−1

)
,

where

x̃ =
1

ñ
X̃

′
1̃ =

1

(1′�−11)
X′ �−11

is the mean vector (centroid) of the columns of X̃ and

V = (X̃ − 1̃ x̃
′
)′(X̃ − 1̃ x̃

′
)

is the cross-product matrix of the centred, orthogonalised design matrix compo-

nent X.

The variance of the fitted trend at location s can now be expressed

Var
[
x(s)′β̂GLS

]
=

(
1,x(s)′]

)
Var[β̂GLS, β̂

′
GLS]

(
1

x(s)

)

=
(
1, x̃

′ +
[
x(s)′ − x̃

′])
Var[β̂GLS, β̂

′
GLS]

(
1

x̃ + [x(s) − x̃]

)

= 1/̃n +
(
x(s) − x̃

)′
V−1

(
x(s) − x̃

)
, (28)

where again 1/̃n = (1′�−11)−1.

Appendix C: An Alternate Expression for Q

The variance of the universal kriging predictor for location s0 can be expressed by

Roth (1998, p. 1,001)

Var
[
ŶUK (s0)

]
= Var

[
ŶSK(s0)

]
+ Var

[
x(s0)

′β̂GLS

]

− c(s1...n, s0)
′�−1Var[Xβ̂GLS]�−1c(s1...n, s0),

where ŶSK(s0) is the simple kriging predictor of Y(s0). Q(s0) is therefore equal to

Q(s0) = c(s1...n, s0)
′�−1c(s1...n, s0)

− c(s1...n, s0)
′�−1X

(
X′�−1X

)−1
X′�−1c(s1...n, s0)

and depends on s0 only by c(s1...n, s0) but not by x(s0).
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