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Abstract: Time series forecasting is one of the main venues followed by researchers in all areas. For
this reason, we develop a new Kalman filter approach, which we call the alternative Kalman filter.
The search conditions associated with the standard deviation of the time series determined by the
alternative Kalman filter were suggested as a generalization that is supposed to improve the classical
Kalman filter. We studied three different time series and found that in all three cases, the alternative
Kalman filter is more accurate than the classical Kalman filter. The algorithm could be generalized to
time series of a different length and nature. Therefore, the developed approach can be used to predict
any time series of data with large variance in the model error that causes convergence problems in
the prediction.
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1. Introduction

Forecasting has become one of the main objectives on which many researchers around
the world focus their efforts. Advances in computing and the ease of collecting and storing
large time series contribute to the development of predictive models in countless areas.
This is because good forecast accuracy can improve decision making and planning in each
of these areas.

The approaches to time series forecasting are basically divided into single-factor and
multi-factor time series models. The former considers time as the unique independent
variable and builds mathematical models to produce predictions about the future; the latter
also takes into account other factors that influence the system.

External factors, such as prices, costs, crop management, consumer behavior or
weather conditions, often require economic and demographic data that may not be avail-
able or that are difficult to obtain, in addition to the need to make predictions regarding
how these factors will affect the accuracy of the production predictions. Therefore, it is
worth considering, in the first instance, whether single-factor models offer sufficiently
accurate predictions.

One of the most applied methods for forecasting, especially in the field of time se-
ries, is ARIMA (autoregressive integrated moving average), which consists of a linear
predictive system that is applied to time series, offering, so far, good predictive results
in the short term in different areas [1–7]. Thus, our first objective is to generate fast and
reliable forecasts produced only from the time series, with time considered as the unique
independent variable, developing an algorithm that automatically identifies the optimal
ARIMA components.
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Another method widely used in predictive models is the Kalman filter, which is ap-
plied to dynamic systems in the state space to predict the state of a system from previous
states. This algorithm is based on an the a priori prediction of the state of a system at an
instant t from its previous states, to make a subsequent correction that refines the result.
As with other time series models, the Kalman filter includes a stochastic component that is
responsible for the dispersion of the prediction but, in this case, the stochastic component
does not act only as a summation element, but rather forms part of the algorithm, and its
value must be computationally simulated for the instant we want to predict. Therefore,
a large variance in the model error would cause a large distortion in the prediction. How-
ever, for stable time series without large variability, we can find some recent examples in
which the Kalman filter is used to predict [8–14]. Moreover, it usually appears combined
with ARIMA, as can be seen in recent studies applied to different areas [15–18].

The situation described above about the convergence problems of the Kalman filter
due to the excessively large standard deviation of the noise associated with the process
have been systematically avoided by several authors. Our second and relevant contribution
in this work is to propose a possible solution that solves the convergence problems of
the classical Kalman filter. Therefore, following the hypotheses of the classical Kalman
filter and, in order to increase the predictive reliability of time series in different fields, we
develop a new hybrid process with the Kalman filter, which we will call the alternative
Kalman filter, to include the ARIMA model in the state space.

We can find similar approaches to this in autoregression (AR) processes [19–22], but
the main advantage of AR is that it uses only the time series and the system error. In this
paper, we try to prove that we can obtain a good prediction without the need for other
variables or complex algorithms, such as machine learning process or neural networks,
and also improve the results obtained by the classical Kalman filter.

The performance of the new algorithm is evaluated in accordance with usual error
metrics commonly employed to assess forecasting models [1,4,5,8,10,14,23], such as root
mean squared error (RMSE), mean absolute error (MAE), symmetric mean absolute per-
centage error (sMAPE), mean absolute scaled error (MASE), and some other metrics, such
as the Akaike information criteria (AIC) and Bayesian information criteria (BIC), as well as
the goodness of fit of the model through the R2

adjusted.

In addition to the descriptive criteria, the modified Diebold and Mariano test [24,25],
abbreviated M-DM, is used to compare the results of both methods.

Therefore, our paper is organized as follows: a methodology section, where we will
describe the classical and alternative version of the Kalman filter and an exhaustive de-
scription of the datasets used for our study; a results section, where the findings obtained
by both variants of the Kalman filter are compared; and a final discussion and conclu-
sions section with an analysis of the advantages and disadvantages of using our models,
and recommendations for future lines of research.

2. Materials and Methods
2.1. Methods

Integrated autoregressive moving average processes are a type of linear model that
is frequently used as a time series predictive system. In order to use an ARIMA process,
the time series that is used must be stationary. Usually, time series are not stationary and we
need to transform them through operations, such as a differencing or the use of continuous
and increasing functions that do not change the trend of the series, such as the square root
or natural logarithm. Consequently, considering Zt a time series, and taking Yt as Zt after
applying some function of the above and d ∈ N differencings, a stationary series with zero
mean, a process ARIMA(p, d, q) is defined on Zt by the expression

Yt =
p

∑
i=1

φiYt−i +
q

∑
j=1

θjεt−j + εt, (1)
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where εt ∼ N (0, σ2
ε ) is the system error term that follows a white noise distribution and

φi, and θj ∈ R are the process coefficients.
As opposed to other studies, where a comparative method is applied to calculate the

lags p and q in (1), in this work, we program our algorithm in R [26] and automate the
process by taking the autocorrelation (ACF) and partial autocorrelation (PACF) functions
according to the Box–Jenkins methodology [27].

Based on previous research [28,29], the procedure automatically finds ARIMA coeffi-
cients. To do this, we set a significant value as zero, usually

β =
1.96√

n
, (2)

with n ∈ N being the number of elements in the series.
Then, we calculate p ∈ N as a value such that

|pacf(p)| > β and |pacf(p + 1)| ≤ β, (3)

and q ∈ N as a value such that

|acf(q)| > β and |acf(q + 1)| ≤ β. (4)

To calculate the coefficients φi and θj, we implement the Hannan–Rissanen method,
which consists of first calculating the coefficients πi ∈ R of an AR(m) system with m > p+ q
by the least squares method in order to generate a noise process target associated with the
system, at. Subsequently, we recalculate the definitive coefficients again by the least squares
method, using the error at generated in the first step. Finally, we validate the residuals and
apply the resulting system on the time series.

In our work, we use ARIMA models as the basis of a well-known and widely used
algorithm, the Kalman filter. The Kalman filter, which has been applied to linear dynamical
systems described in the state space, is an algorithm that allows the establishment of the
state of a dynamical system at time t using the previous state. We define the following
dynamical system as

xt = Axt−1 + Gωt, (5)

yt = Hxt + νt, (6)

where xt ∈ Rn is the state vector of the system, ωt ∼ Ns(0, Q) and νt ∼ Nm(0, R) are white
noise processes, yt ∈ Rm is the output vector of the system, and A ∈ Rn×n, G ∈ Rn×s

and H ∈ Rm×n are the dynamic system matrix, the noise matrix, and the output matrix,
respectively, which in this work are considered constant. For its part, (5) is known as the
equation of state of the system and (6) as the observation or output equation of the system.

The Kalman filter is applied to systems (5)and(6) and is divided into a first prediction
phase followed by a correction phase.

The prediction phase consists of a priori estimation based on the prediction of the
previous state.

x̂t|t−1 = Ax̂t−1, (7)

Pt|t−1 = APt−1 A′ + GQG′. (8)

In (7), x̂t|t−1 represents the a priori estimation of the vector of states at instant t,
knowing the previous state. On the other hand, (8) is the covariance matrix of the prior
error; that is, of the difference between the equation of state (5) and the prior estimation (7).
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The second phase consists of correcting the a priori estimation.

Kt = Pt|t−1H′(HPt|t−1H′ + R)−1, (9)

x̂t = x̂t|t−1 + Kt(yt − Hx̂t|t−1), (10)

Pt = Pt|t−1 − KtHPt|t−1. (11)

where H’ is the transpose of H defined in the observation equation of the Kalman filter,
and R is the variance of the observation error νt, both from Equation (6).

Equation (9) is known as the Kalman gain. Likewise, in (10) the definitive prediction
that will be the starting point for the new iteration is calculated, and in (11) the covariance
of the a posteriori error is updated. To start the algorithm, we need some initial conditions,
x0, P0, which are not decisive for the result, as the filter depends minimally on the choice
of conditions.

Once the different methods that we use as a basis have been described, we combine
them to obtain a better predictive result.

The main novelty introduced in current paper is the method of introducing the system
obtained in the ARIMA(p, d, q) process into the state space so that the Kalman filter can be
implemented on it.

Therefore, we propose a new method that can serve as a solution to the convergence
problems of the Kalman filter caused by the singularities of the studied dynamic system.

To do this, we take m = max{p, q + 1} and use αt = (αt,1, ..., αt,m)
′ as the states of

the variable at time t defined according to [30]. The equation of state, also according to
Harvey’s method [30], is defined as

αt,1
αt,2

...
αt,m−1

αt,m

 =


φ1 1 · · · 0
φ2 0 · · · 0
...

...
. . .

...
φm−1 0 · · · 1

φm 0 · · · 0




αt−1,1
αt−1,2

...
αt−1,m−1

αt−1,m

+


1
θ1
...

θm−2
θm−1

εt, (12)

where εt ∼ N (0, σ2
ε ) is the error term of the ARIMA(p, d, q) process, and φi and θi are the

parameters associated with (1), with the condition that φi = 0 if i > p and θi = 0 if i > q.
On the other hand, the observation equation is

Zt = (1 · · · 0)


αt,1
αt,2

...
αt,m−1

αt,m

 with νt = 0. (13)

The identification between (5)–(6) and (12)–(13) is immediate. It is easy to verify that,
if we consider

G = I and ωt =


1
θ1
...

θm−2
θm−1

εt, (14)

we have
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Q =


1
θ1
...

θm−1

(1 θ1 · · · θm−1)σ
2
ε , (15)

which makes it simple to implement if the data of the associated ARIMA(p, d, q) process.
To obtain these data, we consider

αt,1 = φ1αt−1,1 + αt−1,2 + εt. (16)

Substituting αt−1,2 in (16),

αt,1 = φ1αt−1,1 + φ2αt−2,1 + αt−2,3 + θ1εt−1 + εt. (17)

repeating the procedure in (17) and proceeding recursively, we can see how the ARIMA(p, d, q)
reappears.

If we focus attention on (12), we can observe that εt is the value of the system error in
step t, and because we cannot know that value, we must model it as white noise.

Computationally, we need to simulate this value by calculating a random value
and, although this method is easy to implement, we can find two main problems which
occur because the white noise that models the system error has a too large value of the
standard deviation.

The first problem is that the large deviation causes the results to vary greatly each
time the program is executed, meaning that the error becomes unstable, preventing clear
conclusions about the validity of the method.

On the other hand, the second issue is that, if we consider a short time prediction,
such as 24 hours, it is possible that we cannot find computational problems of convergence.
However, if we want to make a prediction with a broader horizon, i.e., 7 or 15 days,
we must simulate more random values over a large standard deviation whose values
are accumulated step by step, and it could cause an instability in the numerical method;
consequently, points of divergence may appear, making it impossible to obtain results.

Therefore, in this work, we develop a new approach to include the ARIMA(p, d, q)
process in the state space, making use of the characteristics of the ARIMA(p, d, q) and the
theoretical framework necessary to be able to apply the Kalman filter [31] and eliminating
the simulation of random values of the error in the algorithm, based on the history of the
already known system error.

Thus, let us consider m = max{p, q}, let Yt be a stationary time series, and take φi
θi to be the parameters associated with the ARIMA(p, d, q) process. In addition, consider
ε = (εt−1, ..., εt−m−1)

′ ∼ Nm(0, σ2
ε ) to be the noise of the ARIMA(p, d, q) up to time t− 1,

as defined in (1). We can therefore consider the new equation of state:


Yt

Yt−1
...

Yt−m

 =


φ1 · · · φm−1 φm
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0




Yt−1
Yt−2

...
Yt−m−1

+


θ1 · · · θm
0 · · · 0
...

...
...

0 · · · 0




εt−1
εt−2

...
εt−m−1

, (18)

where φi and θi = 0 if i > p or i > q. Therefore, the state vector will be made up of the
previous data in the series, while the error will be modeled by the system error, which will
have been validated as white noise in the ARIMA(p, d, q) process. Given the nature of ε,
we have
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Q = Var(ε) =


σ2

ε 0 · · · 0
0 σ2

ε · · · 0
...

...
. . .

...
0 0 · · · σ2

ε

. (19)

As an observation equation, we use

Zt = (1 · · · 0)


Yt

Yt−1
...

Yt−m

 with νt = 0, (20)

with which we are left with the first component of the vector of states as the output of the
system. System (18)–(20) fulfills the hypotheses of the Kalman filter, so we can apply the
algorithm collected in (6)–(11).

In this work, we test the system which we name the alternative Kalman filter and
we check its reliability against the ARIMA(p, d, q) process and Kalman filter with system
(12)–(13), which we call the classical Kalman filter to distinguish it from our variation
represented in Equations (18) and (20).

2.2. Data Analysis

To validate our algorithm, the selected time series must contain a large variability in its
values, showing many peaks and structural changes in its graphs. For this reason, we focus
our comparative between the classical Kalman filter and alternative Kalman filter in three
time series: berry production, Bitoin price and SARS-COV-2 cases. The choice of these time
series is due to a perfect fit in the conditions that we demand for our test. In addition, when
studying time series of different sectors and different lengths, it can help us to generalize
the result so that any time series that meets the conditions of high variability can be well
adapted to this model regardless of its origin.

We work with the datasets as time series to which we apply a logarithmic transforma-
tion to make them smoother, implementing the algorithms in the R software.

In all cases, we have time series with daily data ending on 31 March 2021. We split
the datasets into two parts, where the first part was used to build the models with the
parameters of an ARIMA model and the second part was used to test the models. In all
three cases, as the predictive system is built on an ARIMA model, and the accuracy of
these long-term models is limited, the model was tested in a short-term forecast of 90 days,
framed in the first quarter of 2021.

In what follows in this section, we focus on describing each dataset separately in
more detail.

In 2009, Bitcoin was created by a developer known only with the pseudonym Satoshi
Nakamoto. Since this date, the relevance of Bitcoin and other cryptocurrencies has not
stopped growing day by day, achieving a greater impact on the economy and modern
society, as might be read in the recent literature [32–35].

Due to the security and confidentiality that blockchain technology confers, Bitcoin has
also become one of the best options for doing business in the online world, and for this
reason, Bitcoin has appreciated in recent years, and its price has increased. It becomes one
of the main targets to be predicted by economists using all possible models [36–39].

We use the closing price dataset from https://coinmarketcap.com/ (accessed on
30 October 2021) in daily dates from 19 September 2014 to 31 March 2021 and we split the
dataset into two parts: the period between 19 September 2014 and 31 December 2020 to
adjust the model, and the remaining data to test the model.

https://coinmarketcap.com/
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Secondly, we are going to talk about SARS-COV-2 case time series data. The world
stopped in February 2020 for a new unknown virus called SARS-COV-2. Its strong impact
on health systems around the world caused countless cases of death and serious illness.

For this reason, the forecast of new cases has become the main obsession of govern-
ments and researchers around the world, in order to keep control and make the right
decisions that help reduce the impact of the virus on our society. Therefore, it is possible to
find recent literature in this way since the first case was detected [40–43].

We focus our study on the dataset of new cases in Italy, since the first case in Europe
was detected in this country, and for this reason, this dataset is the most extensive of all those
that can be found in Europe in this sense. We use daily data from https://ourworldindata.
org (accessed on 30 October 2021), which has free data.

Exactly like in the previous time series, we split the dataset into two parts: first from
31th of January 2020 to 31th of December 2020 to build the model, and the data remaining
to test the model.

Finally, we analyze the berry production time series. The global fresh berry industry
handles a highly perishable product that requires high levels of coordination among food
value chain agents due to the great complexity of the transactions between producers
and retailers [44]. In this context of a globalized market, large-scale retailers have the
greatest bargaining power, setting prices for future sales programs. A deviation from the
quantity set in these programs can entail very great economic damage for the producer,
whether it offers a lower quantity than what was contractually agreed upon (penalties for
non-compliance) or it has a greater offer (sale at lower price). For this reason, the berry
production data series is a good area to implement our model in order to assist farmers in
harvest planning.

The dataset is made up of the daily production data of five large companies in the
berry sector in Huelva (Spain) corresponding to the last three harvesting campaigns.

To homogenize the data and equalize the size of all seasons, since the campaigns do
not have the same duration, we choose a start date and an end date of the season, taking
as the start date the first harvest date of all campaigns and the last date as the end date.
Finally, we fill the days without data with zeros, since if there are no data on a specific date,
it is because there was no production that day.

We split the dataset into two parts: one which contains the first two thirds of the data
(2018–2019 and 2019–2020 campaigns), which was used for training, and the second which
contains the remaining data (first quarter of 2021), which served to test the system.

3. Results

AIC, BIC, R2
adjusted, MAE, RMSE, sMAPE and MASE are the criteria to evaluate and

choose the best model.
In addition, the modified Diebold and Mariano test [24,25], abbreviated M-DM, is

used to compare the results of both methods. Concretely, we use the hypotheses H0 and
H1 contrast {

H0 : S ≤ 0,
H1 : S > 0,

implemented in R through the dm.test function. In this context, when the value of our
statistic is in the positive critical region or the p-value is less than 0.1, we can reject H0 and
accept that the second method (alternative Kalman filter) is better than the first (classical
Kalman filter).

The model for bitcoin prices, SARS-COV-2 cases and berry production were built on
an ARIMA(1, 1, 1), ARIMA(2, 1, 1) and ARIMA(2, 1, 1) respectively, on which the classical
Kalman filter and the alternative Kalman filter were applied.

The results based on descriptive criteria are shown in Table 1, where we can see that
the alternative Kalman filter obtained the best results in all cases, minimizing the different
criteria that are used (AIC,BIC, MAE, RMSE, SMAPE and MASE) and maximizing the

https://ourworldindata.org
https://ourworldindata.org
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goodness of fit of the curve as we can see by looking at the R2
adjusted, especially in the

Bitcoin price and SARS-COV-2 cases time series. We also add in the Table 1 a comparison
of our results with other simpler methods, such as ARIMA and Naïve. ARIMA was
included due to its wide use in forecasting studies in recent years. Naïve forecasting,
the simplest forecasting method that uses the most recent observation as the forecast for
the next observation, was used only for comparison with the forecasts generated by the
other more advanced techniques presented.

Table 1. Results for different time series predictions in the first quarter of 2021.

Bitcoin price

MODEL AIC BIC R2
adjusted MAE RMSE sMAPE MASE

Naïve 1379.43 1384.43 0.95 1574.70 2082.42 0.04 0.99
ARIMA(1, 1, 1) 1379.48 1384.48 0.95 2082.94 1575.26 0.04 0.99

Classical
Kalman 1556.79 1561.79 0.65 4245.83 5578.01 0.09 2.67

Alternative
Kalman 1381.02 1386.02 0.95 1590.81 2100.83 0.04 1.00

SARS-COV-2 cases

MODEL AIC BIC R2
adjusted MAE RMSE sMAPE MASE

Naïve 1461.43 1468.93 0.57 2631.80 3247.74 0.17 0.99
ARIMA(2, 1, 1) 1472.94 1480.44 0.51 2757.92 3462.19 0.18 1.04

Classical
Kalman 1509.28 1516.78 0.26 3054.33 4236.70 0.19 1.13

Alternative
Kalman 1467.17 1474.67 0.54 2608.73 3353.02 0.16 0.98

Berry production

MODEL AIC BIC R2
adjusted MAE RMSE sMAPE MASE

Naïve 1962.97 1970.43 0.59 32, 873.87 59, 527.62 0.44 1.19
ARIMA(2, 1, 1) 1954.77 1962.23 0.63 31, 315.76 56, 848.12 0.41 1.11

Classical
Kalman 1958.43 1965.90 0.61 32, 206.78 58, 029.63 0.42 1.14

Alternative
Kalman 1953.68 1961.15 0.65 31, 287.77 56, 502.33 0.41 1.11

If we now turn our attention to the M-MD test, we can see that in the first two cases,
the value of the statistic is in the positive critical region and its p-value<0.1, so we can reject
H0 and reaffirm that the alternative Kalman filter has better precision than the classical
Kalman filter. However, if we focus on the case of berry production, we can see that their
p-value >0.1 and we are not in a position to refute H0. That is, we cannot affirm that the
alternative Kalman filter is better than classical Kalman filter in a preliminary analysis.
However, if we go to the definition of the M-MD statistic, we have evidence to affirm that
the classical Kalman is not better than the alternative Kalman in this case because S > 0.
It could be that they were really just as precise, but taking into account that the value of
the p-value is at the limit of significance, and that both the descriptive criteria and the
statistics themselves indicate that the classical Kalman filter is not better than the alternative
Kalman filter. We can also conclude by means of the M-MD statistic that the alternative
Kalman filter improves the classical Kalman filter in the latter case. We show the value of
the statistics and their corresponding p-values in the Table 2.
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Table 2. Results of M-MD test for different time series predictions in the first quarter of 2021.

Time Series M-MD Statistic Value (S) p-Value

Bitcoin price 4.7586 3.745 × 10−6

SARS-COV-2 cases 2.5770 0.0058
Berry production 1.0281 0.1534

Finally, if we analyze the graphs of our predictions, we can observe that in all our
study cases the alternative Kalman filter has a softer shape and contains fewer peaks than
the classical Kalman filter, offering a better fit to the real values, in accord with the empirical
values obtained. The graphs are shown in Figures 1–3 respectively.

(a) (b)

Figure 1. Bitcoin price prediction between 01/01/2021-31/03/2021. (a) Classical Kalman filter;
(b) alternative Kalman filter.

(a) (b)

Figure 2. SARS-COV-2 cases prediction between 1 January 2021–31 March 2021. (a) Classical Kalman
filter; (b) alternative Kalman filter.

(a) (b)

Figure 3. Berry production prediction between 1 January 2021–31 March 2021. (a) Classical Kalman
filter; (b) alternative Kalman filter.
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4. Discussion and Conclusions

The Kalman filter has traditionally been used for modeling predictive systems as a
hybrid method together with the ARIMA [15,16,18] process, offering very good results.
In time series where the standard deviation of the noise is large, as it happens in all the
cases of our study, the Kalman filter diverges due to the simulation that must be carried
out of the error as seen in the Equation (12). For high values of the standard deviation of
the error, the variability that occurs in this simulation makes the method unstable. For this
reason, the alternative Kalman filter developed in this work shows the best results, giving
as a solution to this problem the elimination of the simulation of the error as seen in
Equation (18); so we propose it as a variant of this state space anomaly for cases where the
noise standard deviation is large.

The proposed model has limitations that have also been observed in research on
ARIMA-based predictive systems. Firstly, our model has difficulties predicting the ap-
pearance of local maximums, so when the observations show highly variable behaviors in
successive days, the model approximates more poorly than if it follows a clear increasing or
decreasing trend for a longer period of time. For this reason, we appreciate that our model
is better suited to Bitcoin price than the other two time series.

Another limitation of the proposed model is that it does not react very well to sudden
changes in slope. If the berry yield increases very quickly in a short time period, our system
detects this late, showing large errors at specific times. This problem can be observed visually
in the graphs with a shift to the right of the forecasting with respect to the observed variable,
which is more accentuated the greater the increase in growth. This limitation is typical of the
ARIMA and ARIMA models with Kalman filter, as found in other studies [4,17,43,45]. Even
more, other predictive systems based on a priori prediction show the same limitation as we
can see in recent studies [46–49]. Therefore, we leave this as a limitation associated with the
nature of our system that must be taken into account when using it, and we will try to solve this
problem in the future with other types of models.

This work has addressed the issue of forecasting the production of fresh berries,
the price of Bitcoin and the new cases of SARS-COV-2. Taking these time series, a new vari-
ant of the Kalman filter with a short-term forecast time horizon was developed, analyzed
and validated.

Daily forecasts for a horizon of up to 90 days were determined by comparing the
performance of the new approach with the Kalman filter. The alternative Kalman filter
approach was found to be more accurate across all time series tested. The results confirm
that the developed approach can be used to predict our selected time series, as well as
other time series that present these same convergence problems. The search conditions
associated with the standard deviation of the time series determined by the alternative
Kalman filter were suggested as a generalization that improves the classical Kalman filter.

Finally, although the results of the alternative Kalman filter are similar to those ob-
tained with the ARIMA and Naïve methods, and although it was not the aim of this work
to compare the new algorithm with these simpler methods, it is important to pay attention
to the type of time series data before modeling, as evidenced by the failures in SARS-COV-2
epidemic forecasting [50,51]. Among the causes of these failures, we find erroneous mod-
eling assumptions and high sensitivity of the estimates. For example, the SARS-COV-2
pandemic death datasets (although our data refer to cases and not deaths) are fat-tailed,
which makes it a mistake to use Naïve first-order methods for forecasting [51]. However,
in these datasets, modeling predictive distributions rather than focusing on point estimates
may be useful [50,51].

In summary, taking into account the requested limitations, we obtained a simple
predictive system whose results are equal to or better than other more complex systems,
thus achieving the objective of obtaining a good prediction with a simple method and
information that is not sensible, and it is easy to obtain.

As the new algorithm was tested with three different time series from three different
fields, the use of this algorithm can be generalized to other studies of similar conditions,
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such as the series presented in [23] where it would be interesting as a future line to check
in what level is found with respect to the models proposed there. On the other hand, we
believe that practitioners and researchers can easily improve the accuracy of their forecasts
by adopting the alternative Kalman filter developed in this paper.

A final conclusion of this paper, which is often not sufficiently recognized in the
literature, is that a slight variation in traditional methods is more important than it seems
at first glance. For small- and medium-sized companies (SMEs), where due to the lack
of large datasets, the low-quality of other independent variables or scarce computational
resources, which is a real situation, accurate predictive algorithms that work without
external variables and with low time consumption, are welcome.

Finally, in addition to the ARIMA models and Kalman filter, it is also recommended to
compare the alternative Kalman filter approach with other types of more complex predictive
models, such as ARIMAX models or neural networks, which combine different independent
variables with the study variable, such as machine learning techniques [52–59].
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