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Abstract Recent developments in identifying Lagrangian coherent structures from finite-time velocity data
have provided a theoretical basis for understanding chaotic transport in general flows with aperiodic depen-
dence on time. As these theoretical developments are extended and applied to more complex flows, an accurate
and general numerical method for computing these structures is needed to exploit these ideas for engineering
applications. We present an unstructured high-order hp/spectral-element method for solving the two-dimen-
sional compressible form of the Navier–Stokes equations. A corresponding high-order particle tracking method
is also developed for extracting the Lagrangian coherent structures from the numerically computed velocity
fields. Two different techniques are used; the first computes the direct Lyapunov exponent from an unstruc-
tured initial particle distribution, providing easier resolution of structures located close to physical boundaries,
whereas the second advects a small material line initialized close to a Lagrangian saddle point to delineate
these structures. We demonstrate our algorithm on simulations of a bluff-body flow at a Reynolds number of
Re = 150 and a Mach number of M = 0.2 with and without flow forcing. We show that, in the unforced flow,
periodic vortex shedding is predicted by our numerical simulations that is in stark contrast to the aperiodic flow
field in the case with forcing. An analysis of the Lagrangian structures reveals a transport barrier that inhibits
cross-wake transport in the unforced flow. The transport barrier is broken with forcing, producing enhanced
transport properties by chaotic advection and consequently improved mixing of advected scalars within the
wake.

1 Introduction

It has become well established that coherent structures, which arise in many engineering and geophysical flows,
play an important role in characterizing transport and mixing of passively advected quantities [1]. Despite the
abundant evidence of their presence, a unique definition of a coherent structure does not exist and identifying
them has been for some time a subjective topic. In general, we can separate the contrasting definitions into
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one of two basic categories: Eulerian or Lagrangian. In the Eulerian definition, coherent structures are often
defined in terms of instantaneous distributions of a scalar field such as vorticity, kinetic energy, enstrophy,
pressure (see Benzi et al. [2] and McWilliams [3] for examples). A combination of these quantities can also
be used leading to some of the most commonly used criteria (e.g. the Okubo–Weiss criterion). In contrast,
the Lagrangian definition is associated with the emergence of patterns from passively advected particles (e.g.
Babiano et al. [4] and Provenzale [5]). The Lagrangian definition is, therefore, directly related to the question
of transport and mixing and henceforth is the preferred approach in this study.

For time-periodic flows, Lagrangian coherent structures can be defined through appropriate Poincaré maps
to locate material lines that are stable and unstable manifolds, and Kolmogorov–Arnold–Moser (KAM) tori that
either enhance or inhibit mixing. The stable and unstable manifolds are particularly important in understanding
and quantifying transport in such flows through the application of lobe dynamics (see [6–9] for examples).
Given the success of such techniques in explaining transport with simple time-periodic flows, and inspired
by applications arising from geophysical flows with aperiodic dependence on time, there was an immediate
interest in generalizing the definitions of Lagrangian coherent structures to these more realistic flows. Several
approaches to the location and extraction of finite-time stable and unstable manifolds (also referred to as
repelling and attracting material lines, respectively) have been proposed and include the methods of Malho-
tra and Wiggins [10], Coulliette and Wiggins [11], Haller and Poje [12] , Miller et al. [13], Rogerson [14],
and Jones and Winkler [15]. The developments in the theory have now reached a level of maturity provid-
ing frame-independent definitions for identifying and computing these structures in flows with general time
dependence (see Haller [16]). Despite these developments, the majority of the proposed techniques have been
tested on geophysical flows with relatively simple boundary conditions (e.g. flows that are periodic in space
or in rectangular domains). To resolve these structures in the vicinity of complex physical boundaries, one can
employ a non-boundary-conforming grid for the initial positions of the Lagrangian tracers (e.g. by using a
stepwise approximation of the boundaries). While this approach can yield reasonable results far away from the
boundary, structures attached to boundaries cannot be resolved with such an approach. The role of Lagrangian
structures attached to boundaries on mixing and transport within the interior of the flow turns out to be very
important, as reflected in the work of Shariff et al. [17], and Yuster and Hackborn [18]. In fact, only recently, a
theoretical basis for establishing the location of structures attached to solid boundaries was presented by Haller
[19]. Given these observations, there is a need to develop numerical methods that can accurately compute these
structures in flows with more complex physical boundaries such as those arising in a number of engineering
applications.

The question associated with the computation of Lagrangian coherent structures can be approached from
the point of view that they serve as a purely diagnostic tool in that one is interested in extracting these struc-
tures from some approximation of a velocity field, whether obtained numerically or experimentally. In general,
however, we will also be interested in the prediction of these structures to understand how changes in a flow can
alter their associated transport properties. This is important in applications such as flow control where mixing
enhancement may be desirable and can often be achieved through active methods of forcing whereby the flow
field is perturbed. We will, therefore, seek a computational approach that provides an accurate prediction of
a given flow field and its associated Lagrangian structures while at the same time removing the constraints
and problems associated with the presence of complex boundaries. The first requirement that one can accu-
rately simulate complex unsteady flows comprising a range of time and length scales over extended periods of
time motivates the use of high-order/spectral-element methods. The second requirement that problems with
complex boundaries can be handled by the method motivates the use of unstructured grids that conform to
the physical boundaries of the flow. For some time, these two conflicting requirements have been difficult to
achieve simultaneously. High-order spectral-element methods were originally developed by Patera [20] for
grids consisting of quadrilateral elements. While these provide significant flexibility over spectral methods, they
remain restrictive in comparison to traditional fully unstructured finite-element methods. Recent developments
in unstructured hp/spectral-element methods by Karniadakis and Sherwin [21], however, have circumvented
these difficulties and have produced highly accurate methods for the computation of complex flows. For these
reasons we employ a high-order spectral-element formulation for resolving the fully compressible form of
the Navier–Stokes equations on unstructured grids. In contrast to past attempts to develop high-order unstruc-
tured grid methods employing modal expansions, our formulation employs nodal elements. Furthermore, our
equations are satisfied in a discontinuous/Galerkin penalty fashion. The differences between the formulation
presented here and other methods are clarified later. To fully exploit the high-order spatial discretization of
the spectral element scheme, we develop a high-order particle-tracking algorithm that is consistent with our
formulation and allows accurate computation of the Lagrangian coherent structures.
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We begin by describing the high-order unstructured hp/spectral-element numerical scheme that we employ
in our study. The high-order particle-tracking method developed for extracting the Lagrangian structures is
also described. Results are then presented for three different flows. The first is a simulation of the temporal
instability in a compressible plane Poiseuille flow that occurs above a critical Reynolds number. This flow
serves as a test case to verify the high-order spectral-element method used in this work. The second is a baseline
simulation of the flow around a bluff body without forcing that is used to demonstrate the method and to verify
the Lagrangian coherent structures are in agreement with previous results of Shariff et al. [17], and Duan and
Wiggins [22]. The third simulation is carried out under the same flow conditions but with forcing provided
by four wall-mounted actuators. This form of forcing was motivated by the recent work of Wang et al. [23]
who used a point vortex reduced-order model to demonstrate how this form of forcing can excite Lagrangian
coherent structures within the flow. Using our more refined spectral element simulations, we present a more
detailed study of the transport mechanisms associated with these Lagrangian structures. A striking feature of
the result is the breaking of a transport barrier within the wake cavity providing a means for the upper and
lower streams to mix together more effectively in comparison to the unforced flow. We end with a summary
of the key results and conclusions.

2 Governing equations

We are interested in resolving the compressible form of the Navier–Stokes equations in two spatial dimensions.
After writing these equations in conservation form, we have

∂

∂t

∫

�

qdA +
∮

∂�

F(q, ∇q̃) · nds = 0, (1)

where q = (ρ, ρu, ρv, ρE)⊤ is the conservative state vector, q̃ = (p, u, v, T )⊤ is the primitive state vector,
and n is an outward unit normal vector to the surface ∂�. The flux tensor F(q, ∇q̃) = FI(q) − FV(̃q, ∇q̃) is
given by

FI =




ρu ρv

ρu2 + p ρuv

ρuv ρv2 + p

ρuH ρvH


 , FV =




0 0
τxx τxy

τyx τyy

τxxu + τxyv − Qx τyxu + τyyv − Q y


 . (2)

In the above expressions, ρ(x, t) denotes the density of the fluid, p(x, t) is the static pressure, u(x, t) =
(u(x, t), v(x, t)) is the local velocity vector, E(x, t) is the total energy per unit volume, and H(x, t) is the
specific total enthalpy of the fluid. Assuming air as the working fluid, the perfect gas law relation is given by

p = ρRT = (γ − 1)ρ

[
E − 1

2
(u2 + v2)

]
, (3)

where T (x, t) is the static temperature, R is the gas constant, and γ is the ratio of specific enthalpies. For a
Newtonian fluid such as air, the viscous stress tensor can be expressed in terms of the local velocity gradients
by

τ = µ
(
∇u + (∇u)T

)
− 2µ

3
I (∇ · u) . (4)

For air, the dependence of the molecular viscosity µ on temperature is described by Sutherland’s law which
can be written as

µ = 1.461 × 10−6T 3/2

T + 110.3
. (5)

The heat flux vector Q = (Qx , Q y) is assumed to obey Fourier’s law such that

Q = −κ∇T, (6)

where κ is the thermal conductivity. It is common to relate κ to µ through the Prandtl number

Pr = µC p

κ
, (7)

which we take as 0.72. In (7), C p is the specific heat for air at constant pressure.



42 H. Salman et al.

3 Numerical scheme

3.1 Basic discretization

Our computational domain � is now represented by the union of the non-overlapping triangular elements Dk .
To formulate our scheme, we approximate the state vector in each element by

q(x, t) ≈ qN (x, t) =
N∑

i=1

q̂i (t)ψi (x) : ∀x ∈ Dk (8)

where N denotes the number of unknowns in each element. We assume a similar polynomial representa-
tion of the flux FN . We denote the minimal polynomial space for approximating these quantities by PN (i.e.
PN = span{xα1 yα2}|α|≤n = span{ψi }N

i=1 with α = (α1, α2) being a multi-index). The number of unknowns
in each element is, therefore, given by

dim PN = N = (n + 1)(n + 2)

2
. (9)

We construct equations for these N unknowns in each element Dk by requiring our solution to satisfy the
discontinuous Galerkin formulation

∫

Dk

(
∂qN

∂t
+ ∇ · FN

)
ψi (x)dx =

∮

∂ Dk

ψi (x)n · [FN − F∗]dx. (10)

The numerical flux F∗ is used to pass information between adjacent elements and to impose the boundary con-
ditions. We note that our formulation imposes the boundary/interface conditions weakly through the surface
integral and leads to an inherently discontinuous scheme. To proceed, we introduce the local operators

M̂i j =
∫

Dk

ψ jψi dx, Ŝi j =
∫

Dk

∇ψ jψi dx, (11)

F̂i j =
∮

∂ Dk

ψiψ j dx, (12)

thus transforming (10) into

M̂
dq̂

dt
+ Ŝ · F̂ = F̂n ·

[
F̂(q−, ∇q̃−) − F̂∗(q+, ∇q̃+, q−, ∇q̃−)

]
(13)

In this form, q̂ represents the 4N vector of coefficients for qN , and similarly for F̂ and F̂∗. The superscript ‘−’
refers to values local to the element whereas the superscript ‘+’ refers to values from the neighboring element.

To complete the formulation, we must define the numerical flux F̂∗. To ensure consistency of the numerical
scheme, a consistent flux must be selected with the desired properties for numerical stability. In this work, we
have chosen to model the inviscid contribution using a Lax–Friedrichs flux to produce

n ·
[
F̂I − F̂I,∗

]
= 1

2
n ·

[
F̂I,− − F̂I,+

]
+ 1

2
|	|(q+ − q−), (14)

where |	| is the largest eigenvalue of the linearized system of equations. In this work we have computed |	|
by evaluating |(u2 + v2)1/2 + cair| locally for every point in each element Dk , where cair is the local speed
of sound, and then taking the global maximum. This results in a slightly higher numerical dissipation than a
Riemann solver in which the eigenvalue is computed using |u · n + cair| but produces a more stable numerical
scheme. Given the high-order discretization we employ in this work, this particular choice of the numerical
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flux has little impact on the accuracy of the results to be presented later. The discretization of the viscous fluxes
is based on the work of Bassi and Rebay [24] so that

n ·
[
F̂V − F̂V,∗

]
= 1

2
n ·

[
F̂V,−(̃q−, ∇q̃− + r−

e ) − F̂V,+(̃q+, ∇q̃+ + r+
e )

]
, (15)

r−
e = ∂lk,e

2Ak

n ·
[
q̃+ − q̃−]

, (16)

r+
e = ∂lk,e

2Ak

n ·
[
q̃− − q̃+]

. (17)

∂lk,e corresponds to the length of edge e in element k, and Ak is the area of the element. To compute the spatial
derivatives ∇q̃ appearing in the viscous fluxes, we directly differentiate the basis functions used in (8).

When imposing the boundary conditions, the numerical flux F̂I,∗ is modified to obtain the desired state at
the boundary. For no-slip boundaries, we set the local velocity vector to zero and impose a constant wall tem-
perature equal to the free-stream value at the inlet. At inflow and outflow, we impose characteristic boundary

conditions for F̂I,∗ by linearizing the equations around the computed flow state. At the same time, we set the
contribution from the viscous flux to zero. Although this introduces some errors, the effect on the computations
will be extremely small given that the inflow and outflow boundaries are located far away from the regions
of interest. The exact procedure of how this is accomplished can be found in Hesthaven [25]. In addition,
a notoriously common problem is the reflection of waves that occurs near the outflow boundary. While the
characteristic boundary conditions tend to minimize these effects, reflected waves continue to occur. In our
high-order numerical simulations, these reflected waves take longer to dissipate as a result of the lower dissi-
pative properties of the scheme. To prevent our numerical solution further upstream from being contaminated
by these reflecting waves, a sponge layer is introduced near the outflow boundary that essentially absorbs these
waves. The sponge layer introduces spurious results in the region in which it is employed and we will therefore
not present any results in this part of the flow.

3.2 The nodal element

In discretizing our flow equations, we have introduced a set of unspecified basis functions ψi (x). In this second
part of our numerical scheme, we present a set of basis functions ψi (x) that allow us to construct well-con-
ditioned operators. With the basis functions appropriately chosen, we can define the expansion coefficients
q̂ as required. In this work, we will define q̂ such that qN is an interpolating polynomial. Our coefficients,
therefore, directly correspond to the state vector evaluated at a set of predefined nodes producing the nodal
element method which forms the distinguishable aspect of our scheme from other hp/spectral-element methods
(e.g. Karniadakis and Sherwin [21]).

We will begin by defining a smooth mapping from any given triangular element Dk in our domain to a
standard triangular element I . We define this standard element in (ξ, η) space by

I = {(ξ, η) ∈ R2|(ξ, η) ≥ −1; ξ + η ≤ 1}. (18)

In this work, we will only consider straight-sided triangles, for which the transformation Jacobian (J ) will
be constant. This provides a significant simplification for the construction of all operators since we need to
construct them for only the standard element I and then subsequent operators for all other physical elements
Dk can be computed through simple linear rescaling. This assumption can affect the accuracy near curved
boundaries. However, since we are interested in regions of the flow that are remote from such curved surfaces,
this assumption will have very little impact on our results. We now seek a basis ψi (ξ, η) for our standard
element to allow us to construct well-conditioned operators. Such a basis can be obtained from Proriol [26],
and Koornwinder [27] and is given by

ψ̃i = P(0,0)
α1

(r)

(
1 − s

2

)α1

P(2α1+1,0)
α2

(s),

γi =
(

2

2α1 + 1

)(
2

α1 + α2 + 1

)
, (19)

ψi (ξ) = ψ̃(ξ)
√

γi

, (20)
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(a) 1st order element (b) 6th order element

Fig. 1 Nodal elements of spectral element scheme

where

r = 2(1 + ξ)

(1 − η)
− 1, s = η (21)

and P
(α,β)
n (x) represents the classical Jacobi polynomial of order n [28].

With the basis defined as above, we are now left with the freedom of how to compute the expansion
coefficients q̂. For this purpose, we shall define q̂ such that qN is an interpolating polynomial

qN (ξ i , t) =
N∑

j=1

q̂ j (t)ψ j (ξ i ) : ∀i, (22)

where ξ i are N predefined grid-points in I . Such an approach naturally preserves the explicit dependence of
the boundary integrals of (10) on quantities on the boundary thus improving the overall scheme. Equation (22)
can be written in matrix form as

qN = Vq̂, Vi j = ψ j (ξ i ), (23)

where V is the Vandermonde matrix. We now define a Lagrangian basis as

qN (ξ , t) =
N∑

i=1

qN (ξ i , t)L i (ξ), VTL = ψ . (24)

Here L = [L1(ξ), . . . , L N (ξ)]T and the basis is given by ψ = [ψ1(ξ), . . . , ψN (ξ)]T.
By working with a Lagrangian basis, we obtain a formulation that has an inherent separation between the

boundary and interior modes. In so doing, we have assumed that our Lagrangian basis is associated with a given
set of interpolating points. It turns out that the success of the method depends strongly on the distribution of
the interpolating nodes associated with the triangular element I . This issue has been dealt with separately by a
number of investigators as can be found in [29,30] and allows Lagrange polynomials of up to 16th order to be
constructed that yield well-conditioned operators. In this work, the nodal distributions computed by Hesthaven
[29] have been used. An example of the nodal distribution for a sixth-order element is illustrated in Fig. 1.
We note that the nodes are distributed at the vertices and edges of the triangle as well as in the interior. This
element has been used for the computations to be presented later.

With the numerical representation of the state vector given by (24), we can now define the discrete pointwise
operators appearing in (11) by

Mi j =
∫

Dk

L i L j dx, M = (VVT)−1, (25)

Si j =
∫

Dk

L i∇L j dx, S = (V−1)TŜV−1. (26)
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The boundary operator F appearing in (12) is now simplified and can be expressed as a one-dimensional
integral over the edges leading to

F
edge
i j =

∮

edge

l1D
i l1D

j dx, (27)

F =
∑

faces

RT
edge(V

−1
1D)TFedgeV−1

1DRedge. (28)

l1D
i denotes the one-dimensional Lagrange polynomial defined by the nodes on each edge, V1D is the associated

Vandermonde matrix (defined in a similar way to its two-dimensional counterpart), and Redge is an N1d ∗ N

matrix which serves to extract the nodes located at the element’s edges where N1d = (n + 1) (i.e. the number
of nodes lying on any one edge of the element).

To stabilize the scheme, we employ an exponential filter as is becoming standard in many high-order/spec-
tral codes. Such filters are designed to damp out only the very-high-frequency modes and have very little
impact on the numerical results. Details of this approach are discussed in [31]. With the spatial discretization
complete, the resulting set of ordinary differential equations are integrated using the fourth-order low-storage
Runge–Kutta scheme of Carpenter and Kennedy [32].

3.3 Lagrangian particle tracking

The problem of tracking a set of particles given a velocity field u(x, t) produced by the solution of the governing
equations (1)–(7) can be formulated as a set of ordinary differential equations

dx

dt
= u(x, t), (29)

with the initial conditions given by specifying the position xo of each particle at some initial time t = to (i.e.
x(to) = xo).

In this study, we will generally be interested in integrating particles as a postprocessing step after having
solved the governing flow equations. We will therefore assume that the velocity field has been stored at a
set of discrete time intervals to, tt , . . . , tnt . Given this assumption, the particle-tracking process completely
decouples from the solution of the governing flow equations, allowing us to employ a separate time-integration
algorithm for the solution of (29). The key problem associated with the integration of (29) is rooted in the
fact that, while our numerically computed velocity field is described in an Eulerian frame of reference on a
fixed set of points, the evolution of the particles we wish to track is given in a Lagrangian frame of reference.
We will therefore be faced with the problem of determining the velocity vector u(xp, t) at a particle location
xp(t) that generally does not coincide with the finite set of mesh points used to represent our velocity vector.
In particular, we wish to perform this reconstruction of the velocity in a way that maintains consistency with
our numerical discretization and would therefore retain the high-order representation of the velocity vector.
Recalling that the velocity in each element Dk is represented by our polynomial representation given by (24),
we can express the velocity at any point within each element in terms of the nodal values to yield an inter-
polation scheme that is consistent with the accuracy of the nodal element employed in our computations. To
perform this interpolation, we identify three key steps. Firstly, an element searching algorithm is required to
determine the element (Dk) that contains the respective particle. To ensure this is performed efficiently, we
employ a local searching algorithm which uses the inter-element connectivity information to keep track of the
elements that particles reside in. The searching algorithm we develop is based on the method introduced by
Xiu and Karniadakis [33]. In their method, the searching for a particle at the current time step is initialized
with the element where the particle was last found at time tn . After integrating the particle to its new position
xp(t

n+1), we compute the scalar product (xp(t
n+1)−xi ) ·ni where (xi denotes an element vertex) and ni is the

inward normal vector of the corresponding edge as illustrated in Fig. 2. For the point to be inside the element,
all scalar products must be positive . If any of them is negative, the particle is located outside the element and
in that direction. The searching is therefore moved to the neighboring element in that direction by making use
of the inter-element connectivity information. The process is repeated until the element satisfying the scalar
product condition is found. At startup, we have no information of the particles’ locations at the previous time
step. For this case we initialize our search with a random element and then proceed with our search as above.



46 H. Salman et al.

x1 x2

x3

n1

n2n3

Fig. 2 Definition of normals used in the element-searching routine

In a worst-case scenario, we might have to search all the elements but this would be performed only once at
startup. The algorithm is, therefore, efficient and allows us to search for a large number of particles. After we
have identified all the elements containing the particles to be advected, our second step involves the mapping
of the particles’ positions from physical space (x, y) to the parametric space (ξ, η) of the parent element. As
noted by Coppola et al. [34], while the mapping from parametric to physical space is generally analytic, the
corresponding inverse for nonlinear elements with curved edges is typically nonanalytic. In this study, however,
we will only use straight-sided elements, thus alleviating the problems associated with the computation of the
inverse mapping. For a particle located at xpi

, we denote the corresponding position in parametric space by
ξ pi

. The third and final step requires the interpolation of the velocity to the mapped particle position ξ pi
. Given

that we have the state vector at the nodal points denoted by qN (ξ i , t), the state vector at ξ pi
can be written as

q(ξ pi
) =

N∑

j=1

V−1qN (ξ j , t)ψ j (ξ pi
) (30)

where we have used (23) to express the coefficients of the orthonormal basis in terms of our solution. With
the velocity u(ξ p, t) known, we can now integrate (29) using a standard fourth-order Runge–Kutta scheme.
In the results to be presented later, we have employed a time step of t = 0.005 corresponding to the interval
size at which our data is stored. To obtain the state vector field at intermediate times, we perform a third-order
Lagrangian interpolation in time. In general, one has the freedom to choose the order in which to perform
the temporal–spatial interpolation of the flow field. Given that the spatial interpolation is generally far more
expensive, we perform the temporal interpolation initially, followed by the spatial interpolation.

4 Results

4.1 Plane Poiseuille flow

Before we present results for Lagrangian coherent structures in a bluff-body flow, we will first verify our
high-order spectral-element method. To do this, we have chosen to test the numerical scheme on the plane
Poiseuille flow. The hydrodynamic instability of the incompressible plane Poiseuille flow is a much-studied
and well-documented problem (see Drazin and Reid [35], and Drazin [36] for further details). These studies
have shown that the flow is stable to all small disturbances below a critical Reynolds number Rec of 5,779
based on the center-line velocity and half the channel height. Above this critical value of Rec, the flow becomes
linearly unstable due to an unstable eigenmode that can be computed from the Orr–Sommerfeld equation [35].
The linear stability analysis can be used to determine both the onset of instability as well as its growth rate.
We will, therefore, use analytical results of the linearized stability analysis to verify that we can correctly
compute the growth and decay of a perturbation superimposed on a background mean flow. However, given
that we are interested in verifying our compressible Navier–Stokes numerical scheme, we will use results for
the linearized form of the compressible Navier–Stokes equations. The corresponding linearized equations can
be found in [37] and have already been used by other investigators to study the stability of several compressible
flows (e.g. Hanifi et al. [38]).
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In the simulations that we will present, we have chosen a channel with periodic boundaries and a length-
to-height aspect ratio of 2π/α where α was set to 1.02. This ratio was chosen based on results quoted in [36],
which specifies that the most unstable eigenmode occurring in the temporal developing plane Poiseuille flow
based on linear stability theory has a wavelength of 2π/1.02. The initial conditions in our simulations were
prescribed by assuming a fully developed channel flow. For compressible plane Poiseuille flow, Maslen [39]
showed that, for a channel with insulated boundaries (i.e. zero heat flux at the walls), the mean flow satisfies

U (y) = (1 − y2), (31)

T (y) = T ∞ + 2Pr

γ

(
y2

2
− y4

4

)
, (32)

p(y) = p∞, v(y) = 0, (33)

where −1 ≤ y ≤ 1, and overlines denote quantities nondimensionalized with respect to the center-line velocity
and half the channel height. We have taken the pressure to be constant and independent of x since we assume
a periodic flow along the length of the channel. Using (31)–(33) as our basic mean state, we seek solutions of
the linearized compressible Navier–Stokes equations given in [37] (Eqs. (5.97–5.102)) in which we assume
the perturbed flow field to have the form

(u, v, p, T , ρ) = (U , 0, p∞, T , ρ)(y) + ( f , αφ, �, θ, r)(y)eiα(x−ct). (34)

The corresponding boundary conditions for the perturbations are given by

f (±1) = φ(±1) = ∂θ

∂ y

∣∣∣∣∣
(y=±1)

= 0. (35)

For the temporally growing instability we are interested in here, we will prescribe α = 1.02 and solve for
complex values of the propagation speed c = cr + ici . From (34), it can be seen that if ci is negative then
perturbations will grow in time, otherwise they will decay. For the flow to be stable to general perturbations,
all eigenvalues must have an imaginary part greater than zero.

We will use the linearized equations to verify our numerical algorithm for the plane Poiseuille flow under
two different conditions. In the first case, we consider a flow at a Mach number of 0.2 and a subcritical Reynolds
number of 4,000. In the second case, we increase the Reynolds number to a supercritical value of 8,000 whilst
maintaining the same Mach number. A key point we wish to verify with our numerical algorithm is its ability
to capture correctly the change in the stability properties of the flow between these two Reynolds number
regimes. For this purpose, we identify the eigenmode that changes its stability properties as the Reynolds
number is increased above the critical value Rec. After computing this eigenmode for Re = 4,000 and rescaling
the magnitude such that v′

max ≈ 0.0012, (i.e. small perturbations are used to ensure our linear stability analy-
sis is justified), the initial conditions are constructed by superimposing the perturbations associated with this
eigenmode on to the mean flow given by (31)–(33). The linearized form of the governing flow equations is then
integrated in time using our numerical scheme to produce the results presented in Fig. 3a for the variation of the
transverse components of velocity at the center line. Included are the corresponding predictions obtained from
the linear stability analysis. The oscillations in the transverse velocity depict a traveling wave of the form given
by (34). At Re = 4,000, linear stability theory shows that the eigenmode employed for our disturbance should
decay with time. As can be seen, both the theory and the simulations are in excellent agreement, showing that
at Re = 4, 000, the perturbation decays. To test that the scheme correctly predicts the transition of the flow
to an unstable regime at higher Reynolds numbers, we have performed a second simulation at Re = 8, 000.
As shown in Fig. 3b, the theory now shows a gradual growth in the amplitude of the disturbance, a behavior
that is reproduced by our numerical simulations. The results we have presented therefore verify our numerical
scheme and demonstrate its ability to compute flow-excited instabilities. Given these results, we can now
apply our numerical method with confidence to compute the bluff-body flows and their associated Lagrangian
structures.

4.2 Bluff-body flow

The bluff-body configuration we model in this work is based on a flameholder design similar to the one studied
by Raffoul et al. [40] which consists of a rectangular cylinder of height (H = 12.7 mm) with a rounded leading
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Fig. 3 Time trace of transverse velocity in plane Poiseuille flow

edge. The bluff body is positioned symmetrically within a channel of height (h) and length (L) as shown in
Fig. 4. To model the flow with forcing, we employ active actuation by means of blowing on the surface of the
bluff body. This form of forcing is similar to the approaches employed in the work of Min and Choi [41], Park
et al. [42], and Gunzburger and Lee [43]. Alternative forms of forcing have been discussed by Karniadakis
and Triantafyllou [44] who used a vibrating wire located in the vicinity of the cylinder (modeled as a potential
flow), by He et al. [45] and Homescu et al. [46] who used cylinder rotations, and by Blackburn and Henderson
[47] who used transverse motion of the cylinder. Our motivation for using flow forcing by blowing on the
surface of the bluff body was to extend the recent work of Wang et al. [23] using a reduced-order point vortex
model to a numerical simulation of the Navier–Stokes equations. The blowing is provided by four actuators,
two of which are located on the upper surface and two on the lower surface of the bluff body. To model these
actuators, a recess is introduced on the upper and lower surfaces. The recess is extended in both directions
forming channels that restrict the local flow in the tangential direction as illustrated in Fig. 4c.

The flow domain which we denote by � consists of the region bounded by the bluff-body geometry, the
upper and the lower walls of the channel, and the inlet and outlet flow boundaries used in our simulations.
This flow region was discretized into a finite number of non-overlapping body conforming triangular elements
DI as shown in Fig. 5. These computational grids were generated using the commercial software GAMBIT.
In our computations, we have modeled all physical boundaries as no-slip walls. To allow efficient resolution
of the boundary layers around these surfaces, we have generated stretched anisotropic triangular elements as
illustrated in Fig. 5a. A magnified portion of the grid generated for the flameholder with the actuators in place
is shown in Fig. 5b and illustrates the mesh used in the vicinity of the wall jets. The total number of elements
generated for the case without forcing was 5,534 elements and for the case with forcing was 10,509 elements.
We point out that the area ratio of the largest to smallest computational element that arises with the forced flow
(Amax/Amin = 1.2 × 103) makes this case a particularly challenging problem.

The flow conditions that we used for our simulations correspond to a Reynolds number of Re = 150 based
on the bluff-body height and a Mach number of M = 0.2. Both quantities are evaluated with respect to flow
conditions at inlet where we have assumed a parabolic inlet velocity profile. For the simulation with forcing,
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we prescribed the stream-wise velocities of our actuators to correspond to

u1,3 = 1.25U∞ − 0.75U∞ cos(2π fet),

u2,4 = −1.75U∞ − 0.75U∞ cos(2π fet), (36)

where U∞ is the free-stream velocity at the channel’s inlet, and fe is the excitation frequency which was set
to 0.23 for the simulations to be presented later. This particular choice of fe will be discussed further. We
emphasize, however, that no attempt was made to optimize these forcing parameters. We have simply used
these values to produce flows with different transport characteristics that demonstrate the capability of our
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Fig. 6 Contours for the span-wise component of vorticity for the case without forcing

method in predicting Lagrangian coherent structures for these complex flows. A separate study will be required
to identify how the forcing strategy can be optimized to enhance mixing in our flow.

Given these flow conditions, simulations for the two bluff-body flows with and without forcing were carried
out. We will present results for the unforced flow initially, focusing on aspects pertaining to the Lagrangian
transport characteristics of the flow. This will be used to illustrate how Lagrangian coherent structures can be
used together with lobe dynamics to provide a geometric representation of transport in this flow. Moreover, it
serves as a benchmark against which the forced flow can be compared with to identify how forcing enhances
mixing in our simulations. We begin by considering the computed span-wise component of vorticity for the
unforced case, which is defined as ω = ∇ × u and is shown in Fig. 6. The vorticity distribution clearly shows
the presence of the von Karman vortex street, a counter-rotating array of span-wise vortex structures, down-
stream of the bluff body. The vorticity contained within these vortices originates from the vorticity within
the boundary layers that are formed over the upper and lower surfaces of the bluff body. Once the boundary
layers reach the trailing edge of the body, they separate producing two free shear layers with oppositely signed
vorticity. The two shear layers are susceptible to instabilities which grow as they travel further downstream.
Eventually, the instabilities result in the rolling-up of the vorticity sheets into regions of concentrated vorticity.
These concentrated regions of vorticity grow in size producing a strong interaction between the two shear
layers. Ultimately, the two layers become locked together and begin to alternately shed their concentrated
vorticity regions into large-scale vortices that we observe further downstream.

Consideration of the vorticity field has revealed an essentially time-periodic flow producing the regular
shedding of vortices behind the bluff body. Despite the dynamical significance of the vorticity field, such an
Eulerian description of the flow provides little insight with regards to its transport properties, a process that
is intrinsically Lagrangian in nature. In fact, we will show that our time-periodic bluff-body flow possesses
Lagrangian chaos through chaotic advection of material particles. This property has been known to arise in
many time-periodic two-dimensional flows (see [1,7]) and can be studied geometrically through the identifica-
tion of Lagrangian coherent structures associated with repelling material lines arising in these flows. For flows
with more complex aperiodic dependence on time, a finite-time definition of these material lines is needed to
compute them from numerically generated velocity fields. We will employ two different, though complemen-
tary, approaches for locating these structures. In the first instance, we will use the direct Lyapunov exponent
(DLE) introduced by Haller [48] and also used in the bluff-body study of Wang et al. [23]. A key property of
the DLE is that the positive eigenvalue of the Cauchy–Green strain tensor assumes a local maximum along
repelling material lines. In order to exploit this property, we evaluate the scalar field

σt (xo, yo) = 1

2(t − to)
log λmax

(
[∇F t

to
(xo, yo)]T [∇F t

to
(xo, yo)]

)
(37)

Here, F t
to

denotes the flow map that maps the fluid particles located at (xo, yo) at time to to the positions
(x(t), y(t)) at time t , whereas λmax(·) is used to denote the maximum eigenvalue of the Cauchy–Green strain
tensor. If we choose a time t > to and calculate the scalar σt in forward time, then repelling material lines
begin to appear as ridges of σt . A similar calculation carried out in backward time with t < to reveals attracting
material lines. In practice, we compute σt by placing an initial grid of fluid particles within the computa-
tional domain. The particles are then advected in either forward or backward time. By differentiating the
final particle positions with respect to their initial positions, the deformation gradient ∇F can be evaluated
allowing a straightforward derivation of σt . To allow us to resolve the Lagrangian coherent structures easily
from our numerically computed velocity fields with the presence of the complex bluff-body geometries, the
flow domain was seeded with an unstructured grid of particles. The particles are taken to lie at the vertices of a
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Fig. 7 Direct Lyapunov exponent contour plots for flow without forcing

mesh consisting of unstructured triangular elements. These set of particles are then advected from their initial
positions at time to to time t by our numerically computed velocity field using the particle tracking algorithm
outlined in the previous section. The deformation tensor is then computed using the finite-element formulation
for triangular elements (see Hirsch [49]).

Using the method described above, both attracting and repelling material lines can be computed. While
both of these structures play an important role in the advective transport of tracer particles [7], it turns out that
passive tracer patterns observed in numerical and experimental studies tend to accumulate along attracting
material lines. Consequently, we expect that, by producing a flow that contains widespread coverage by these
structures, the advective transport properties of passive tracers are enhanced leading to higher mixing rates.
(We refer the reader to the recent work of Voth et al. [50] for experimental evidence of the important role
played by these structures in the mixing of passive tracers.) To illustrate these arguments with our flow, we
have computed the DLE corresponding to attracting material lines, as shown in Fig. 7. The spatial pattern we
observe is reminiscent of typical flow-visualization experiments carried out for this flow (see van Dyke [51]
and Perry et al. [52]), and underlines the importance of these structures in controlling tracer transport and
mixing. The DLE plot also reveals structures associated with the boundary layers on the upper and lower walls
of the domain which become more distinguished further downstream, an indication of the increasing flow
entrainment caused by the growing size of the vortices that make up the von Karman street.

Computations of the DLE such as that presented above provide an effective way of extracting the coverage
of the flow by Lagrangian coherent structures. Unfortunately, however, these Lagrangian structures have the
tendency to fold back and forth to create a highly convoluted lamellar-like structure. Moreover, the spacing
between consecutive folds tends to be extremely small, as will be illustrated in our results. Accurate resolution
of these structures by the DLE method is, therefore, not very practical. To refine the computation of the struc-
tures we have identified, we have used a second method described by Malhotra and Wiggins [10] to compute
both the stable and unstable manifolds associated with this flow. The key obstacle with their method is to
identify the location of the free hyperbolic saddle points within the flow. In this respect, the DLE computations
can be extremely useful. If the computations presented above are repeated in forward time, we can extract the
corresponding repelling Lagrangian structures of the flow. The intersections of these repelling and attracting
structures can then be used as an indicator for regions of the flow that can potentially have a hyperbolic saddle
point. Once these points are identified, their respective manifolds (Lagrangian structures) are recomputed by
introducing small material lines into the flow that straddle one of the manifolds. The evolution of these material
lines is then computed as described in [10]. To help quantify the number of material lines we need to compute,
it is intuitive to consider a schematic of the streamlines of the steady flow at subcritical Reynolds numbers as
shown in Fig. 8a. We note that, at this value of the Reynolds number, the flow consists of two separation bubbles
that enclose closed streamlines. Any material particles initially located within the bubbles remain there for all
time. The boundaries of the bubbles, therefore, act as separatrices dividing phase space into regions in which
particles exhibit qualitatively different behavior. The key separatrices we identify correspond to five critical
points: a free saddle point and two separation and two reattachment points located on the surface of the bluff
body.

We point out that, although the entire boundary consists of fixed points due to the no-slip velocity condi-
tion, only four points admit stable/unstable manifolds. These points are non-hyperbolic fixed points in the
sense that they exhibit nonexponential rates of deformation of material elements. This is in contrast to
the hyperbolic free saddle point shown in Fig. 8a. As the Reynolds number of the flow is increased above
the critical value, the flow undergoes a bifurcation transitioning from a steady equilibrium state to an unsteady
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time-periodic flow. This causes the heteroclinic orbits connecting stable/unstable branches of the saddle point
to the separation/reattachment points on the boundary to break up, creating a network of intersections between
corresponding stable and unstable manifolds. This is illustrated by the numerically computed manifolds for
our unforced flow presented in Fig. 8b. For our time-periodic flow, these manifolds will have a continuous
time-periodic dependence on time with their period corresponding to that of the shedding frequency of the von
Karman vortex street. They are, however, invariant under appropriately defined Poincaré maps of the flow. It
is this property that allows us to exploit the information contained within a single snapshot of the geometric
configuration of the manifolds to study the transport mechanisms associated with our flow. The key idea is to
note that, since manifolds are a set of material lines, material particles cannot move across their boundaries.
We, therefore, begin by identifying a set of lobes that are defined by the boundaries of stable and unstable
manifolds as illustrated by the shaded region in Fig. 9a. For clarity, we have focused on a segment of the
manifold structure to identify its essential components. Based on the invariance properties of these structures,
the manifolds remain unchanged after one period of the flow. The fluid identified with the shaded region, will,
however be mapped from region L1 into region F t

to
(L1) as shown in Fig. 9b. Fluid in region L1 is, there-

fore, entrained into the wake cavity. Analogously, the region identified by the lobe L2 is mapped into region
F t

to
(L2) and is associated with the detrainment of fluid from the wake cavity. So, in contrast to the steady flow

where fluid lying inside and outside the separation bubbles cannot be exchanged, a clear mechanism exists
for stirring fluid between these two regions in the unsteady flow. This stirring mechanism is enhanced by the
re-intersection of lobes after several periods as depicted by the region L2 ∩ F t

to
(L1) shown in Fig. 9c. Here a

portion of the fluid that was entrained in the wake cavity from lobe L1 lies within a subset of lobe L2. This
fluid is subsequently detrained into the lobe defined by the mapping F t

to
(L2) over the next period of the flow.

This complex sequence of lobe intersections sets up a very effective mechanism for stirring fluid between
the two regions of the flow. By symmetry, a similar transport mechanism will exist for the lobes defined by
the manifolds delineating the lower boundary of the wake cavity. Another distinct set of unstable and stable
manifolds is shown in Fig. 9d. A striking observation for this manifold pair is the lack of a well-defined lobe
structure despite their perturbation by the unsteady flow. Consequently, this structure acts as a transport barrier
preventing cross-stream transport from the upper to lower regions of the flow. Direct experimental evidence
of the effect of this transport barrier can be seen in the dye experiments of Perry et al. [52] for the flow over a
circular cylinder at a Reynolds number (based on the cylinder diameter) of 100. In these experiments, blue and
red dyes were released on the upper and lower boundaries of the cylinder, respectively, to delineate the vortex
structure within the flow downstream of the body. The dye visualization experiments reveal a complex and
convoluted structure within the two dyes. Despite their complex spatial patterns, the two dyes remain unmixed,
a direct manifestation of the presence of the transport barrier we have identified in these types of flow.
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Fig. 9 Transport mechanism by manifolds for flow without forcing

The presence of the transport barrier within the flow is undesirable for applications requiring effective mix-
ing of passively advected tracers. We will, therefore, explore the possibility of using flow forcing to break the
transport barrier identified above. Having recognized that attracting material lines are the organizing structures
within a flow, a desirable objective of our forcing would be to break the transport barrier whilst at the same
time increasing the coverage of the flow by these structures. This would consequently result in the effective
stretching and rapid stirring of passively advected quantities. This reasoning is in part what motivated the
configuration of four wall mounted actuators illustrated in Fig. 4c. By opting for two actuators on each of the
upper and lower boundaries, a separation profile can be created by appropriate setting of the wall jet velocities
(see (36)). An additional parameter is the forcing frequency ( fe) which we set in such a way as to excite the
large-scale structures observed in our unforced flow. Based on the work of Karniadakis and Triantafyllou [44],
we have chosen a value of fe ≈ 1.05 fs, where fs is the natural shedding frequency of the large-scale vortices.
To determine fs, we have extracted the variation of the streamwise component of velocity (u) as a function of
time for a point located within the wake. For the results presented here, we have chosen the coordinates of our
point to lie at (x p, yp) = (1.0, 0.25). The corresponding time history is shown in Fig. 10a. The plot reveals the
signal to be made up of a higher-frequency harmonic superimposed with a low-frequency modulation of the
amplitude. Decomposing this signal into its constituent Fourier modes, as shown in Fig. 10b, we observe that a
large percentage of the energy in the power spectrum is confined to a narrow range located around a frequency
of 0.22. This corresponds to the natural shedding frequency (Strouhal frequency) of the large-scale vortices
in the unforced flow and is well documented in the literature on bluff-body flows (e.g. Williamson [53]). It
is natural to consider what implication does the lack of strict periodicity have on the lobe dynamic analysis
presented in Fig. 9. Since the large-scale coherent vortices shed alternately from the body in a regular manner
as depicted in Fig. 6, we can conclude that the qualitative description of the transport mechanisms presented
in Fig. 9 will not be impacted by the low-frequency modulation. The lack of strict periodicity can, however,
alter the areas of the lobes shown in the figure so that a different mass of fluid is entrained and detrained into
and out of the wake cavity on each shedding cycle of the vortices.

Using the above parameters, we have simulated the forced flow to produce the span-wise component of
the vorticity field shown in Fig. 11. As can be seen, the forcing introduced by our actuators results in the
production of stronger vortical structures that shed off in a more irregular fashion. This irregular shedding is a
direct result of the intrinsic forcing frequency we have used to excite the flow. A consequence of the irregular
and stronger vortex structure produced within the wake is the broader cross-stream migration that the vortices
show in the forced flow producing strong interactions with the boundary layers of the tunnel walls. This causes
fluid to be detrained from the viscous boundary layers, as can be seen from the undulations in the vorticity
field. In stark contrast, such interactions are much weaker in the unforced flow (Fig. 6).

In order to obtain a clearer geometrical picture of the system’s response and to identify the temporal devel-
opment of the flow, we conducted a phase-plane analysis by projecting the trajectory of the system onto a
two-dimensional space defined by two arbitrary independent state variables. Motivated by a similar analysis
conducted by Karniadakis and Triantafyllou [44], we have chosen the stream-wise and transverse components
of the velocity vector as our two independent state vector variables with measurements taken at the point
(x p, yp) = (1.0, 0.25). This point coincides with the point used to extract our time traces. On such a plot, we
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Fig. 10 Time trace and power spectrum of streamwise velocity for flow without forcing

Fig. 11 Contours for the span-wise component of vorticity for the case with forcing

expect a periodic state to be represented by a limit-cycle behavior. We observe from Fig. 12a that the unforced
flow is not perfectly periodic as already noted from our time traces. A possible cause is the proximity of the
wind-tunnel walls to the vortex shedding and the consequent disturbance to the wall boundary layers which
can couple with the wake to introduce additional time scales into the flow. Nevertheless, the phase portrait
does reveal a clear underlying structure that represents the regular vortex shedding in the unforced flow. In
comparison, Fig. 12b for the forced flow shows far more irregularity that is indicative of a chaotic behavior.

To identify the transport characteristics of the forced flow, we have recomputed the DLE. Contour levels
of the DLE computed in backward time for the forced flow are presented in Fig. 13 and reveal a remarkably
more complex structure for the attracting material lines in comparison to the corresponding structure observed
in Fig. 7 for the unforced flow. The complex manifold structure observed in this case can be traced back to the
creation of Lagrangian separation profiles by our actuators that emanate from the upper and lower surfaces of
the body in the forced flow. Further downstream, the Lagrangian structure traverses a much wider region in the
cross-stream direction relative to the unforced flow, revealing the enhanced dispersion characteristics of the
forced flow produced by our actuation mechanism. The forcing we have introduced has, therefore, achieved
our first objective of increasing the coverage of the flow by the attracting material lines. To verify whether
the transport barrier has been broken, we have also computed the invariant stable/unstable manifold structure
that control the transport properties within the wake. Figure 14a shows that, for each of the upper and lower
surfaces, three unstable manifolds (attracting material lines) are created by the introduction of the actuators.
These interact with the vortices to produce a highly complicated and intertwined structure within the flow.
The stable and unstable manifolds associated with the transport barrier persist with the addition of forcing.
By isolating this manifold pair in Fig. 14b, we clearly observe a lobe structure that arises by the transverse
intersection of these manifolds. This structure provides a mechanism whereby fluid can be transported across
the wake from the upper to the lower streams. This lobe structure was clearly missing in the unforced flow,
thereby inhibiting the associated cross-wake transport characteristics. By using our forcing, we have therefore
accomplished our second objective of breaking the transport barrier. The resulting forced flow has enhanced
global transport and mixing properties relative to the unforced flow.
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5 Conclusions

We have presented an unstructured hp/spectral-element method for the solution of the compressible form of the
two-dimensional Navier–Stokes equations. Our numerical scheme employs triangular elements for increased
geometrical flexibility. In contrast to other high-order numerical schemes, we employ a nodal implementation
through a Lagrangian polynomial basis. In so doing, a natural decoupling arises between the boundary and
interior modes of our expansion, leading to significant improvements in the computational efficiency of the
scheme. To allow the method to be applied to the study of flow transport through the extraction of Lagrangian
coherent structures, a high-order particle-tracking algorithm was also developed for use with flow data com-
puted by our spectral element method. The accuracy of the spatial interpolation used in our particle tracking is
equal to the accuracy used in computing the flow field (sixth order in the simulations presented here), yielding
a completely self-consistent method for the computation of Lagrangian coherent structures.

We have verified the numerical algorithm for a compressible plane Poiseuille flow to determine the onset
of instability above a critical Reynolds number. Simulations were in excellent agreement with results obtained
from linear stability theory, reproducing the correct growth and decay rates for initial disturbances superim-
posed on a fully developed mean flow at Reynolds numbers of 8,000 and 4,000, respectively. We have also
employed our numerical scheme to simulate two bluff-body flows with and without forcing at a Reynolds
number of 150 and a Mach number of 0.2. In our first simulation without forcing, an analysis of the vorticity
field revealed the classical von Karman vortex street. To characterize the transport properties associated with
this flow, we have performed a Lagrangian particle-tracking analysis of the computed flow field. By using an
unstructured distribution of particles, we were able to compute the direct Lyapunov exponent in backward time
around the complex bluff-body geometry to reveal attracting material lines of the flow. These lines organize
passive tracers released in flow-visualization experiments. Taking this analysis a step further to compute the
intersection of corresponding attracting and repelling material lines, we have provided a geometric picture of
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the transport mechanisms that arise in this flow. A key observation arising from this Lagrangian analysis is the
identification of a transport barrier that inhibits cross-wake transport. To enhance the transport properties asso-
ciated with this flow, a second simulation was carried out using flow forcing provided by four wall-mounted
actuators. These actuators were used to introduce local unsteady perturbations into the flow. By modulating
the strength of the actuators at a frequency 1.05 times the natural shedding frequency of the baseline flow,
the regular vortex shedding was disrupted, leading to an irregular vortex structure downstream of the body. A
Lagrangian analysis of the flow field revealed that the forcing had increased the coverage of the flow by attract-
ing material lines. Moreover, the transport barrier identified in the flow without forcing was broken, providing
a mechanism for the stirring of fluid between the upper and lower streams. This Lagrangian analysis provided
a definitive indication of the success of the forcing employed in enhancing transport (and consequently mixing
of passively advected tracers) within the flow.

The high-order hp/spectral-element numerical method that we have presented provides an accurate simula-
tion tool for realistic engineering flows. Together with the high-order particle-tracking algorithm that we have
developed, important problems related to transport and mixing in complex geometries can now be simulated
and studied by extracting Lagrangian coherent structures associated with a given flow. Further extensions of
the work presented here to optimize the forcing parameters will require an in-depth study of the connection
between Lagrangian coherent structures and their dynamic signature and is the focus of a future investigation.
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