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Abstract

Background: Human cancer cell line profiling and drug sensitivity studies provide valuable information about the

therapeutic potential of drugs and their possible mechanisms of action. The goal of those studies is to translate the

findings from in vitro studies of cancer cell lines into in vivo therapeutic relevance and, eventually, patients’ care.

Tremendous progress has been made.

Results: In this work, we built predictive models for 453 drugs using data on gene expression and drug sensitivity

(IC50) from cancer cell lines. We identified many known drug-gene interactions and uncovered several potentially

novel drug-gene associations. Importantly, we further applied these predictive models to ~ 17,000 bulk RNA-seq

samples from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) database to predict

drug sensitivity for both normal and tumor tissues. We created a web site for users to visualize and download our

predicted data (https://manticore.niehs.nih.gov/cancerRxTissue). Using trametinib as an example, we showed that

our approach can faithfully recapitulate the known tumor specificity of the drug.

Conclusions: We demonstrated that our approach can predict drugs that 1) are tumor-type specific; 2) elicit higher

sensitivity from tumor compared to corresponding normal tissue; 3) elicit differential sensitivity across breast cancer

subtypes. If validated, our prediction could have relevance for preclinical drug testing and in phase I clinical design.
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Background
Studies that characterize human cancer cell lines and

evaluate their sensitivity to drugs provide valuable infor-

mation about the therapeutic potential and the possible

mechanisms of action of those drugs. Those studies allow

the identification of genomic features that are predictive

of drug responses and make it possible to relate findings

from cell lines to tissue samples and, ultimately, to trans-

late laboratory results into patients’ care.

The Genomics of Drug Sensitivity in Cancer (GDSC)

Project has assayed the sensitivity of 987 cancer cell lines

to 320 compounds in their phase 1 (GDSC1) assay and

of an additional 809 cancer cell lines to 175 compounds

(some of which were included in the GDSC1 assay) in

their phase 2 (GDSC2) assay [1–3]. The sensitivity of

each cancer cell line to the drugs was represented as an

IC50 value (the concentration at which a cell line exhib-

ited an absolute inhibition in growth of 50%; lower IC50

implies higher sensitivity). GDSC also quantified the

basal level gene expression of many of the cancer cell

lines using microarray [1]. Concomitantly, other consor-

tia such as the CCLE (cancer cell line encyclopedia) also

profiled genome-wide gene expression of many of the

cancer cell lines using RNA-seq [4, 5]. Additional genomic

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: li3@niehs.nih.gov
1Biostatistics and Computational Biology Branch, National Institute of

Environmental Health Sciences, 111 T.W. Alexander Dr., Research Triangle

Park, MD A3-03, Durham, NC 27709, USA

Full list of author information is available at the end of the article

Li et al. BMC Genomics          (2021) 22:272 

https://doi.org/10.1186/s12864-021-07581-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07581-7&domain=pdf
http://orcid.org/0000-0003-4208-0259
https://manticore.niehs.nih.gov/cancerRxTissue
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:li3@niehs.nih.gov


features such as somatic mutation and copy number

variation, DNA methylation, epigenetic modifications,

microRNA expression, and protein expression were also

characterized by CCLE and others [4, 5]. The Cancer

Therapeutics Response Portal (CTRP) project profiled the

sensitivity of 860 cancer cell lines to 481 small molecules

[6, 7]. The National Cancer Institute (NCI) has carried out

a screening assay for a large number of small molecule

compounds to detect potential anticancer activity using a

group of 60 human cancer cell lines (NCI60) [8]. Recently,

the transcriptomes of the NCI-60 cancer cell lines were

also analyzed using RNA-seq [9]. Those resources make it

possible to associate sensitivity of cancer cells to different

drugs with genomic information on the cells, thereby,

facilitating the discovery of molecular biomarkers of sensi-

tivity and the identification genomic and genetic features

that are predictive of cell sensitivity [5, 8–10].

GDSC applied various statistical and computational

methods including elastic net regression and machine

learning algorithms to identify multiple interacting

genomic features influencing each cell line’s sensitivity

to drugs. These analyses identified many interactions

between cancer gene mutations and specific drugs [3].

For example, cancer cell lines with mutations in the

BRAF genes are significantly more sensitive to PLX4730,

a BRAF-inhibitor, than those with wild-type BRAF [3].

Additional computational methods for predicting sensi-

tivity to drugs using gene expression data from cancer

cell lines have been developed, for example [11–14]. Sev-

eral publications have recent efforts in this area [15–18].

In addition to efforts directed at understanding the

relationship between drug sensitivity and the genomic and

genetic characteristics of cancer cell lines, major efforts

have been put into relating the findings from in vitro stud-

ies of cancer cell lines to in vivo relevance. For example,

Iorio et al. [2] carried out a comprehensive characterization

of genomic alternations including somatic mutations, copy

number alterations, and DNA methylation in 11,289

tumors and 1001 cancer cell lines. Tumor sensitivity to 265

drugs was predicted using corresponding sensitivity data

from cancer cell lines by mapping cancer-driven alterations

- the cancer functional events (CFEs) - in the tumors to

cancer cell lines [2]. The authors identified single CFEs or

combinations of them as markers of response and used a

deep learning method to identify associations between drug

molecular descriptors and mutational fingerprints in cancer

cell lines. They subsequently used such associations

to predict the potential of repurposing FDA approved

drugs for cancer treatment [19]. Similarly, DeepDR

considered genomic profiles of both cancer cell lines

and tumors to predict tumor sensitivity to drugs using a

deep neural network [20].

Those genomic-based approaches uncovered oncogenic

alterations that are susceptible to anti-cancer drugs,

thereby helping to identify treatment options that are teth-

ered to specific genetic aberrations.

Conversely, other approaches relate cell-line findings

to tumors based on transcriptome data. For example,

using expression and drug sensitivity data from cancer

cell lines, Geeleher et al. [21, 22] developed gene

expression-based models to predict sensitivity to drugs;

they subsequently applied the models to gene-expression

data from TCGA tumor samples to impute sensitivity of

the tumor samples to 138 drugs.

Similarly, we sought to identify gene expression

signatures from cancer cell lines that can predict their

sensitivity to drugs; and, subsequently, we used those

signatures to predict the sensitivity of normal and tumor

tissue to the drugs. Our work, however, differs from the

previous work in several ways: a) our analysis is more

comprehensive by including the latest drug sensitivity

data from GDSC2 for 453 drugs; b) our work empha-

sizes identification of putative biomarkers of sensitivity

to drugs and potential therapeutic options for cancer

subpopulations; and c) we also predict toxicity of drugs

to normal tissues using transcriptomic data from normal

human tissues available from both The Cancer Genome

Atlas (TCGA) and The Genotype-Tissue Expression (GTEx)

project.

We identified many known drug-gene interactions and

uncovered several potentially novel drug-gene associa-

tions. We predicted that OSI-027 (mTOR inhibitor) is a

breast cancer specific drug with high specificity for the

Her2-positive subtype breast tumors. Our analysis also

suggests that MULC1 expression is a surrogate marker

for tumor response to OSI-027. Our analysis rediscov-

ered the interaction between bleomycin and ACE (angio-

tensin I converting enzyme) [23]. We also predicted that

other drugs are potentially specific for cancer (sub)types.

Our prediction, if validated, could have relevance for

preclinical drug testing and in phase I clinical design.

Results
Using cancer cell line gene expression data and cancer

cell line drug sensitivity data, we built predictive models

that were subsequently used to impute/predict tissue

drug sensitivity using gene expression data for the

tissues (Fig. 1). Details are provided in Methods.

Training and testing performance for the cell-line data

First, we divided the cancer cell-line data into a training

and testing set. We predicted the IC50 values of the can-

cer cell lines in the testing set for each of the 453 drugs.

We computed both the Pearson (ρP) and Spearman (ρs)

correlation coefficients between the observed and pre-

dicted IC50 values for the samples in the testing set. The

median ρP and ρs coefficients between the observed and

predicted IC50 values were 0.466 and 0.437 (Table 1),
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indicating that the basal transcriptomes of the cancer

cell lines can reasonably predict the sensitivity (IC50s) of

the cell lines to most of the drugs. Of the 453 drugs, 272

(60%) had both ρP and ρs testing-set correlations ≥0.4.

We refer to those drugs as predictable drugs.

Interestingly, for 34 (7.5%) of the drugs, the cancer cell

lines’ transcriptomes had little or no predictive power

for the cell lines’ sensitivities to the drug (either ρP or ρs
testing-set correlation coefficients ≤0.25). Moreover, we

also confirmed that other transcriptomic data such as

microRNA expression, DNA methylation, and protein

expression (from reverse phase protein array) from

CCLE and GDSC [4, 5] also had little or no predictive

power for those drugs (data not shown). It is unclear

why the transcriptomes of cancer cell lines failed to

predict their sensitivity to those drugs. Some of 34 drugs

had fewer than 100 samples with both gene expression

and IC50 data and the lack of data may have contributed

to those drugs’ poor prediction performance; for most of

the others, however, data availability was not an issue.

For the remaining analyses, we focus on the top 272

predictable drugs – those having the highest testing-set

correlations between the observed and predicted IC50

values (both ρP ≥ 0.4 and ρs ≥ 0.4). The top 10 predict-

able drugs (additional file 1: Table S1) appear to have

diverse mechanisms of action.

Top-ranked genes predictive of drug sensitivity

For each of the top 272 predictable drugs, we counted

how many times each gene was selected into the 100

sets of the d (d = 30) predictive genes. For a transcrip-

tome of 19,163 genes, a gene is expected by chance to

be selected only 0.155 times [(30/19163) × 100] into 100

sets of 30 genes. We observed that many genes were be-

ing selected at frequencies more than 100 times above

that expected by chance. The most frequently selected

Fig. 1 Schematic diagram of the work-flow. First, GDSC cancer cell line drug sensitivity data, CCLE cancer cell gene expression data and TCGA/GTEx

tissue gene expression data are combined and transformed. The CCLE gene expression data and GDSC drug sensitivity data (collectively referred to as

the cell-line data) were used to build predictive models that were subsequently used to predict/impute the tissue drug sensitivity for the TCGA and

GTEx samples. Broadly, for each drug, we divided the cell-line data into a training and testing set. We aimed to identify a 30-gene set whose gene

expression levels are most predictive of the IC50 values of the drug for the samples in the testing set. The resulting model (a 30-gene set) was

subsequently used to predict the IC50 value of the TCGA/GTEx samples. This process was repeated 100 times independently. The predicted IC50 values

from the 100 runs were then averaged and taken as the predicted IC50 value of the drug for the samples. For details, see Methods

Table 1 Summary statistics of correlations between the

observed and predicted ln (IC50) of the 453 drugs in the test set

Correlation Min. 1st Qu. Median Mean 3rd Qu. Max.

ρP −0.1990 0.3710 0.4660 0.4573 0.5510 0.7660

ρs −0.1800 0.3580 0.4370 0.4267 0.5070 0.6800
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genes for each drug are potentially informative about

that drug’s mechanism of action as well as about a

cancer cell line’s sensitivity to the drugs. For some other

drugs, multiple genes were selected with lower but dis-

tinctly higher-than-random frequencies, suggesting that

multiple genes together are necessary for predicting cell-

line sensitivity for those drugs. Many of the drug-gene

interactions were also identified by others [1, 2, 5].

Among the predictable drugs, the number of genes

selected into more than 20 of 100 predictive gene sets

(i.e., > 100-fold above chance) ranged from 1 to 17

(additional file 2: Table S2).

C19orf33 (chromosome 19 open reading frame 33)

was among the most frequently included predictive

genes for the largest number of drugs, appearing in more

than 20% of the predictive gene sets for 17 drugs (add-

itional file 2: Table S2). The expression level of C19orf33

in cancer cell lines was positively correlated (ρs > 0.3)

with the IC50 values of more than 100 drugs for those

cell lines (additional file 3: Table S3), suggesting that

higher expression of C19orf33 in cancer cell lines was

positively associated with higher resistance of the cancer

cell lines to the drugs. No other genes were correlated

with the IC50 values of as many drugs as was C19orf33.

Most of the positively correlated drugs are DNA synthe-

sis inhibitors, microtubule assembly inhibitors, or cell

cycle inhibitors. Interestingly, C19orf33 expression in

cancer cell lines showed a negative correlation with the

IC50 values of the kinase (MEK, ERK, SRC) inhibitors for

the cell lines (additional file 3: Table S3), suggesting that

cancer cell lines with higher C19orf33 expression are

more sensitive to kinase inhibitors than those with lower

C19orf33 expression. C19orf33 encodes two transcript

variants (Immortalization up-regulated protein 1 and 2:

IMUP-1 and IMUP-2); both were discovered and

characterized in immortalized cells as being upregu-

lated compared to senescent cells [24]. IMUP-1 and

IMUP-2 are more frequently expressed in cancer cells

compared to normal tissues [24–26]. Overexpression

of IMUP-1 and IMPU-2 in normal fibroblasts induces

neoplastic transformation [27]. Our data suggested

that C19orf33 expression may be a general biomarker

for the sensitivity of cancer cell lines to many chemo-

therapeutic agents.

For 14 drugs of diverse mechanisms of action, ABCB1 ap-

peared in more than 20% of the predictive gene sets. ABCB1

encodes ATP binding cassette subfamily B member 1, a

member of the superfamily of ATP-binding cassette (ABC)

transporters. ABCB1, also commonly known as MDR1, is

an ATP-dependent drug efflux pump for xenobiotic

compounds with broad substrate specificity [28]. Expression

of ABCB1 is responsible for decreased drug accumulation in

multidrug-resistant cells and often mediates the develop-

ment of resistance to anticancer drugs [28–30].

Drugs whose top-ranked predictive genes matched the drug

targets

Many of the most frequently selected genes were also

known targets of the drugs (additional file 2: Table S2).

The drug nutlin-3a inhibits the interaction between p53

and MDM2, leading to activation of the p53 pathway

[31]. Gratifyingly, MDM2 was selected in nearly 100% of

gene sets predicting sensitivity to nutlin-3a. Other

known p53 known target genes (CDKN1A and RPL22L1)

were also selected in nearly 90% of those predictive gene

sets, suggesting that high expression of these genes iden-

tifies tumors with a wild-type p53, and thus responsive

to a further p53 activation by nutlin-3a.

The drugs PD173074 and AZD4547 are two potent

fibroblast growth factor receptor (FGFR) inhibitors [32];

FGFR2 was the most frequently selected gene for

predicting sensitivity to these two drugs. Venetoclax is

known to target BLC2 protein [33]; BCL2 was selected

in almost 100% of the predictive gene sets for sensitivity

to venetoclax. Tanespimycin (also known as 17-AAG) is

a HSP90 inhibitor, and NQO1 expression is inversely

correlated with 17-AAG IC50s in cancer cell lines [34].

Similarly, we found that NQO1 was selected in 100% in

the predicted gene sets for tanespimycin sensitivity. ADK

(adenosine kinase) was selected in 100% of gene sets

predicting sensitivity to AICAR. AICAR is an analog of

adenosine monophosphate (AMP) that is capable of

stimulating AMP-dependent protein kinase (AMPK)

activity [35]. AICAR prevents the production of the

enzymes adenosine kinase (ADK) and adenosine deami-

nase (ADA) [36].

SPRY2 (sprouty RTK signaling antagonist 2) was

among the most frequently selected genes for predicting

sensitivity to all six MEK1/2 inhibitors in GDSC datasets

(CI-1040, PD0325901, refametinib, SCH772984, selumeti-

nib, and trametinib) (additional file 2: Table S2). Sprouty

specifically inhibits activation of MAPK/ERK in response

to a wide range of trophic growth factors [37, 38]. SPRY2

expression in cancer cell lines was inversely correlated

with the IC50 values of all MEK inhibitors for the cancer

cell lines (additional file 4: Fig. S1) with ρs ranging from −

0.24 to − 0.43 (all p-values <4E-08), indicating that cancer

cell lines with higher SPRY2 expression are more sensitive

to the MEK inhibitors. The other most frequently selected

genes for MEK1/2, BRAF, and ERK1/2 kinase inhibitors

were ETV4 (ETS variant transcription factor 4) and SPRY4

(additional file 2: Table S2). ETV4 is a downstream target

of ERK signaling pathway. In a mouse model, ETV4 pro-

motes prostate cancer metastasis in response to coactiva-

tion of PI3-kinase and Ras signaling pathways [39]. Our

results suggest that expression levels of SPRY2 and ETV4

are likely indicative of the sensitivity of cancer cell lines to

many MAP kinase inhibitors. Other examples of drugs

whose most frequently selected genes matched the drug-
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target genes include venetoclax-BCL2, navitoclax-BCL2,

daporinad-NAMPT and savolitinib-MET (additional file 2:

Table S2).

Drugs whose top-ranked genes did not match the drug

targets

Our analysis also identified predictive genes that did not

match the drug targets or genes for drugs with unknown

mechanism of action. Here we provide one such

example. TRPM4 (transient receptor potential melastatin

4) was selected in 100% of gene sets that predicted

sensitivity to acetalax. On the other hand, TRPM4 was

selected in fewer than 5% of the sets for all other drugs,

suggesting that the TRPM4-acetalax interaction is spe-

cific. The mechanism of action for acetalax is unknown.

Recent studies suggested that TRPM4 may be implicated

in regulating cancer cell migration and in the epithelial-

to-mesenchymal transition [40, 41]. The authors showed

that overexpression of TRPM4 in prostate cancer cell

lines increased Snail protein expression and reduced

expression of E-cadherin [40]. TRPM4 expression in the

CCLE cancer cell lines was inversely correlated with the

IC50 of acetalax in those cell lines (ρs = − 0.45, p-value <

2.2E-16) (additional file 4: Fig. S2), suggesting that

cancer cell lines with higher TRPM4 expression are

more sensitive to acetalax. It remains unclear, however,

if acetalax has any effect on cancer cell migration or

EMT in vitro.

Predicting in-vivo drug sensitivity based on in-vitro data:

proof of concept

If the transcriptome of a cancer cell line is predictive of

that cell line’s sensitivity to a drug, we hypothesize that

the transcriptome of a corresponding normal tissue is

also predictive of that tissue’s sensitivity to the drug. To

probe this hypothesis, we chose trametinib (GDSC drug

ID = 1372, a MEK1/MEK2 inhibitor) [42] as an example.

From the cell-line data, we observed that the ranks of

the observed IC50 values of trametinib in the 571 cancer

cell lines were associated with the corresponding IC50

values predicted by the cell-line gene expression levels

(ρs = 0.635, p-value <1E-16) (Fig. 2). Trametinib specific-

ally binds to and inhibits MEK1 and MEK2, resulting in

an inhibition of growth factor-mediated cell signaling

and cellular proliferation in various cancers [42]. Trame-

tinib is clinically approved for stage IV as palliative treat-

ment and for stage III as adjuvant treatment combined

with BRAF inhibitors for BRAF+ melanoma [43–48].

GDSC assays also demonstrated that cancer cell lines

from the skin and intestine are especially sensitive to tra-

metinib [2] compared to those from other organs.

Using the cell-line data as the training data, we pre-

dicted the IC50 values of trametinib for the ~ 11,000

TCGA RNA-seq samples. Our results indicated that the

median predicted IC50 values of trametinib for melan-

oma (both skin and uveal) and intestine tumors (colo-

rectal and rectal,) were much lower (showing higher

sensitivity to trametinib) than those for all other tumor

types (Fig. 3a). Those results are consistent with both

trametinib’s specificity for cancer cell lines derived from

those tissues [2] and its clinical efficacies; these consist-

encies suggest that our approach of linking in-vitro and

in-vivo drug sensitivities is sound. Trametinib is effective

in treating patients with colorectal tumors with BRAF

V600E mutations [46, 47] and melanoma [49]. More-

over, our analysis further demonstrated that the median

predicted IC50 values of trametinib are overall much

lower for colorectal tumors than for the adjacent

“normal” tissues (Fig. 3b). Likewise, our result indicated

that trametinib is less cytotoxic to most normal organs

except blood and spleen (Fig. 3b), both of which are

hematopoietic related. Such tumor-to-normal selectivity

is not common among the 272 drugs (additional file 5:

Table S4; see below ‘Tumor-to-normal sensitivity’). It is

also reassuring that the predicted IC50 values of trameti-

nib for normal intestines from GTEx are comparable to

those for the TCGA “normal” colon tissues (Fig. 3b).

Interestingly, breast invasive carcinoma (BRCA) and

prostate adenocarcinoma (PRAD) tumors are predicted

to be the least sensitive to trametinib among the 33

TCGA tumor types (Fig. 3a).

Although the median predicted IC50 values of trameti-

nib for samples from other tumor types were relatively

high, some individual tumor samples were predicted to be

as sensitive as the colorectal tumor samples to trametinib,

Fig. 2 Scatter plot of predicted and observed ln (IC50) values for

trametinib in the 571 cancer cell lines with both gene expression

data and IC50 data for trametinib
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e.g., a few of the PAAD (pancreatic adenocarcinoma)

samples. The ability to predict drug sensitivity of indi-

vidual tumors is important for personalized medicine.

We examined whether the predicted sensitivity of tumor

samples to trametinib is correlated with gene mutations.

We analyzed all 31 TCGA tumor types (see Methods). For

Fig. 3 Predicted sensitivity of tumor-types and normal tissue to trametinib. a, Violin plots of predicted ln (IC50) values of trametinib based on

RNA-seq gene expression data from TCGA tumor samples from 33 tumor types. Overall COAD, READ, SKCM and UVM tumors (yellow) had the

lowest predicted median IC50 values. For the description of the 33 TCGA tumor types, see supplementary data (additional file 1: Table S7A). The

solid line shows the median of the medians of the predicted IC50 values for all 33 tumor types whereas the dashed line is one logarithmic unit

below the solid line. b, Violin plots of the predicted ln (IC50) values of trametinib for COAD tumor (red) and normal (blue) samples from TCGA

and for GTEx normal tissue samples from 15 major organs (green); here the solid line shows the median of the medians of the predicted IC50
values for all 16 normal tissues. In each violin, the red dot is located at the median; the vertical red bar extends from 25th to 75th percentiles
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each gene, we divided the TCGA samples for each tumor

type into two groups based on whether or not the sample

carried mutations in that gene. We considered all genes in

the mutation data. To conduct this analysis on a gene and

tumor type combination, we required the tumor type to

have at least five samples that carried the gene mutation.

We then used the Wilcoxon rank-sum test to assess

whether predicted sensitivity to trametinib differs between

the two groups. Interestingly, we found that BRAF muta-

tions were not associated with the predicted sensitivity to

trametinib (Fig. 4a). However, among all genes analyzed,

we found that KRAS is the top-ranked gene whose muta-

tion status was significantly associated with predicted

tumor sensitivity to trametinib for the largest number of

tumor types (seven of the 31) (Fig. 4b). Similarly, a close

related oncogene, NRAS whose mutation status was found

to significantly associated with the predicted sensitivity to

trametinib for three tumor types (Fig. 4c). Specifically, we

predicted that patients with either KRAS or NRAS muta-

tions would be more sensitive to trametinib than those

without the mutations. NRAS and KRAS are upstream

molecules of the BRAF signaling pathway [50]. Those

Fig. 4 Predicted sensitivity based on mutation status. Violin plots of predicted ln (IC50) values of trametinib based on RNA-seq gene expression

data from TCGA tumor samples for those with and without mutations in BRAF a, KRAS b and NRAS c. * p < 0.05; ** p < 0.005; **** p < 10− 6.

Wilcoxon rank-sum test, two-sided
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results suggest that our algorithm selected genes whose

transcriptomic profiles are indictive of a role for broader

RAS signaling in trametinib sensitivity. Other top-ranked

genes whose mutations were found to be associated with

predicted sensitivity to trametinib in four of the tumor

types include ADAMTS2, ANKRD5, MYCBP2, TTN, and

VCAN.

Predicting sample-specific IC50s for all TCGA and GTEx

samples to all 272 drugs

After establishing the potential utility of our concept, we

predicted the sensitivities (IC50 values) of all TCGA

(additional file 6: Table S5) and GTEx samples for the

top 272 drugs using our tumor and GTEx data, respect-

ively. Overall, most of the TCGA tumor samples were

predicted to be highly sensitive (pan cancer median

predicted ln (IC50) < 0) to about 35 of the 272 drugs

(additional file 5: Table S4). Many of the drugs target

DNA/protein synthesis, cell cycle, microtubules, and the

mTOR pathway. Most of the drugs were also predicted

to be similarly cytotoxic to normal samples from TCGA

(additional file 5: Table S4). Those drugs are among the

most commonly used chemotherapeutic agents. Unfor-

tunately, they are also associated with high cytotoxicity

to normal organs.

Tumor-to-normal sensitivity

For each of the 272 drugs, we compared the median pre-

dicted IC50 of the drug for all tumor samples with the

median predicted IC50 value for all normal samples from

the same tumor type from TCGA. We only considered

the 14 tumor types (BRCA, COAD, HNSC, KICH, KIRC,

KIRP, LIHC, LUAD, LUSC, PRAD, STAD, STES, THCA,

and UCEC) with more than 20 normal samples.

We identified eight drugs whose median predicted ln

(IC50) value for tumor samples was more than one loga-

rithmic unit lower than that for corresponding normal

samples in at least one of the 14 tumor types (additional

file 4: Fig. S3). One logarithmic unit corresponds to

tumor tissue being about 2.7-fold more sensitive than

normal tissues. Though we selected drugs based on at

least one tumor type having this high ratio of tumor-to-

normal sensitivity, for most drugs the high ratio was not

limited to a single tumor type. Among the eight drugs,

trametinib is an exceptional example for which a drug is

predicted to not only be specific for a tumor type

(COAD, in this case) but also have high tumor-to-

normal sensitivity for only a single tissue type among

the 14 tumor-normal pairs (Fig. 5a). Similarly, lumine-

spib (Hsp90 inhibitor) (Fig. 5b) and sapitinib (Erbb in-

hibitor) (Fig. 5c) are predicted to have high tumor

specificity largely for LUSC with high tumor-to-normal

sensitivity for the tissue type.

Tumor-type-specific drugs

For each drug, we compared its median predicted IC50

value among samples from one tumor type with the me-

dian of the medians of the predicted IC50 values from all

33 tumor types. We considered a drug to be specific for

a tumor type if the median predicted IC50 value for the

tumor type is one logarithmic unit (~ 2.7 times) lower

than the median of the medians from all tumor types.

We identified 109 such drugs (additional file 7: Table

S6), most (96) of which were predicted to have lower

IC50s for either diffuse large B cell lymphoma (DLBC),

thymoma (THYM) or both. Interestingly, 12 of the

remaining 13 drugs that were predicted not specific for

DLBC, THYM or both are kinase inhibitors, consistent

with the notion that kinase inhibitors target specific cel-

lular pathways. Eighty-three drugs were predicted to

have higher specificity for a unique tumor type; 74 for

DLBC, 5 for SKCM (skin cutaneous melanoma), 2 for

THYM, and 1 for HNSC (head-neck squamous cell

carcinoma) and 1 for KIRP (kidney renal papillary cell

carcinoma). Our analysis suggested that the B-Raf

proto-oncogene (BRAF) inhibitors (AZ628, Dabrafe-

nib, PLX-4720, and SB590885) are specific for melan-

oma (additional file 7: Table S6). We also predicted

that the four mitogen-activated protein kinase kinase

(MEK/ERK) inhibitors (PD0325901, SCH772984, selu-

metinib, and trametinib) are specific for both colorec-

tal cancer and melanoma. Indeed, clinical trials have

demonstrated clinical efficacy of BRAF inhibitors for

a portion of melanoma patients harboring activating

BRAF mutations [43, 44, 47, 49, 51]. Thus, our pre-

dictions are consistent with those human clinical trial

results.

We predicted that acetalax, with unknown mechanism

of action, was specific for multiple tumor types including

prostate adenocarcinoma (PRAD) and breast invasive

carcinoma (BRCA) (Fig. 6a, additional file 7: Table S6).

We predicted alisertib was specific for DLBC and lower-

grade glioma (LGG) (Fig. 6b). Several tumor types

including MESO (mesothelioma) and OV (ovarian ser-

ous cystadenocarcinoma) were predicted to be highly

sensitive to dasatinib (Fig. 6c). We predicted dabrafenib

to be specific for DLBC and SKCM (Fig. 6d). OSI-027

(mTOR inhibitor) showed high specificity to BRCA and

PRAD (Fig. 6e). Sapitinib (EGFR/HER2 inhibitor) was

specific for HNSC and cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC), esophageal

carcinoma (ESCA), and lung squamous cell carcinoma

(LUSC) (Fig. 6f).

Drug sensitivity of breast cancer subtypes

Breast cancers may be classified into subtypes bases

gene-expression signatures [52]. To see if subtypes of breast

cancer were predicted to show differential sensitivity to any
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Fig. 5 Examples of drugs that are predicted to have high tumor-to-normal sensitivity for some tumor types. Violin plots of predicted IC50 values in

tumor (red) and normal (blue) tissue for trametinib a sapitinib b and luminespib c that showed the ratio of tumor-to-normal sensitivity exceeding 2.7

(1 logarithmic unit) for at least one of 14 tissue types. The ln (IC50) values of the drugs were predicted based on the RNA-seq data of the tumor and

normal tissue samples from TCGA. Violin plots for normal and tumor samples from the same tissue type are shown as side-by-side pairs with their

TCGA type on the X-axis. See Fig. 2 legend for additional description of the violin plots. Red star (*) indicates the difference between the median of

predicted IC50 values for normal samples and the median of predicted IC50 values for tumor samples is more than one logarithmic unit
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of the 270 drugs, we divided the ~ 1100 TCGA BRCA sam-

ples into five subgroups (basal-like, Her2-positive, luminal

A, luminal B, and normal-like) based on the PAM50 classi-

fication [53, 54]. For each subtype, we compared the me-

dian of the predicted IC50 values of a drug for the samples

of the subtype with the median of the medians of the pre-

dicted IC50 values for the five subtypes. We focused on

drugs for which the difference in the medians exceeded 0.5

logarithmic units (corresponding to a 1.65-fold difference

in IC50). Among the 270 drugs, seven drugs met this criter-

ion (Table 2). Although OSI-027 did not meet the criterion,

we also included it in Table 2 as it is the only drug among

the top 272 drugs that showed the highest overall specificity

for breast cancer compared to all other TCGA tumor types

(Fig. 6e). We showed that Her2-positive breast cancer

subtype is predicted to have higher sensitivity to OSI-027

compared to all other four subtypes. We also predicted that

basal-like subtype breast cancer has higher sensitivity to five

(bleomycin, daporinad, sepantronium bromide, etoposide,

and ICL1100013) of the seven drugs, luminal B subtype

breast cancer has higher sensitivity to ABT737 and navito-

clax, both of which are BCL2 inhibitors.

Fig. 6 Selected drugs that are predicted to be tumor-type-specific. Violin plots of the predicted ln (IC50) values of Acetalax a, Alisertib b, Dasatinib

c, Debrafenib d, OSI-027 e, and Sapitinib f for TCGA tumor samples from 33 tumor types. The solid line shows the median of the medians of the

predicted IC50 values for all 33 tumor types; whereas the dashed line is one logarithmic unit below the solid line. See Fig. 2 legend for additional

description of the violin plots
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Bleomycin is effective for elderly patients with meta-

static breast cancer [55]. Bleomycin sulfate followed by

electroporation treatment in patients with recurrent in-

breast or chest-wall tumors is effective [56]. We predicted

that bleomycin has the highest sensitivity for basal-like

breast cancer among the three subtypes (Fig. 7a). Interest-

ingly, the most frequently selected gene for predicting sen-

sitivity to bleomycin was ACE (additional file 2: Table S2).

The ACE gene encodes the angiotensin I converting

enzyme. Although the exact mechanism of action for

bleomycin is unclear, it is thought to inhibit DNA synthe-

sis. ACE expression in cancer cell lines was positively cor-

related with the IC50 value of bleomycin in those cell lines

(Fig. 7b), suggesting that higher ACE expression in cancer

cell lines is associated with higher resistance to bleomycin.

Although the literature on the relationship between

bleomycin and ACE is limited, Day et al. [23] demon-

strated that treatment of primary bovine pulmonary artery

endothelial cells with bleomycin did increase ACE enzym-

atic activity and ACE mRNA and that the increased ACE

expression resulted in fibrosis. Mechanistically, bleomycin

activated p42/p44 MAP kinase which in turn up-regulated

EGR1, a transcription factor that positively regulates ACE

expression [23]. Bleomycin-induced ACE overexpression

can be inhibited using MEK1/2 inhibitors [23]. Similarly,

Li et al. reported that inactivation of ACE alleviated

bleomycin-Induced lung Injury [57]. Those studies clearly

establish a link between bleomycin and ACE in fibrosis.

Interestingly, patients treated with ACE inhibitors have a

lower than expected chance of developing cancer [58].

Both fibrosis [59] and MAP kinase activation [60] are as-

sociated with tumor progression. Taken together, those

results suggest that combination therapy using bleomycin

and MEK and/or ACE inhibitors could be beneficial for

treating cancers, particularly basal-like type breast cancer.

ACE gene expression in breast basal-like tumor sam-

ples was significantly lower than that in all other breast

cancer subtypes except luminal B subtype (Fig. 7c). Our

algorithm predicted that breast tumors with lower ACE

expression are more sensitive to bleomycin than those

with higher expression. It is worth to mention that the

TCGA tumor samples were taken before any chemo-

therapy, thus, no induction of ACE expression by bleo-

mycin. Lastly, we would like to emphasize that tumor

samples are heterogeneous and ACE gene expression in

tumors not only came from cancer cells but also stromal

cells. Therefore, the pattern of ACE expression in cancer

cell lines may not correlate perfectly well with that in

bulk tumor tissues. Our results together with the

relationship between bleomycin and ACE expression de-

scribed in the preceding paragraph suggest that patients

with basal-like breast tumors would be more sensitive to

bleomycin; and if treated with bleomycin, would have

lower ACE expression, thus, less fibrosis, than similarly

treated patients with the luminal subtypes and Her2-

positive subtype.

Discussion
In this work, we began by investigating if a cancer cell

line’s transcriptome [4, 5] can predict the IC50 of a drug

acting on that cell line for each of the 473 GDSC drugs

and 1019 cell lines [1–3]. We found that, for about half

of the drugs, transcriptomes were reasonably predictive

of the sensitivity of the cell lines to those drugs, i.e., that

Spearman correlation between predicted and observed

IC50 values > 0.4.

Among those drugs for which gene expression data

can reasonably predict a cancer cell line’s sensitivity, we

identified many known drug-gene interactions as well as

several novel associations. Our results are consistent

with and lend additional support to the notion that the

expression levels of ABCB1 and SLFN11 are potential

biomarkers for cancer cell line sensitivity to multiple

drugs [30, 61–63]. Our results also revealed that SPRY2

expression is positively correlated with the sensitivity of

the cancer cell lines to many MEK inhibitors from

GDSC, suggesting that SPRY2 expression may be a

predictive biomarker for the effectiveness of MEK kinase

Table 2 Drugs to which breast cancer subtype(s) in TCGA samples were predicted to be sensitive. The lowest predicted ln (IC50)

values among the subtypes are in bold

Drug Median Predicted ln (IC50) value (Number of samples)

ID Name Target Basal-like (191) Her2-pos (82) Luminal A (567) Luminal B (219) Normal-like (41)

1378 Bleomycin DNA 2.482 3.225 3.186 3.371 2.775

1248 Daporinad NAMPT −2.439 −1.441 −1.665 −1.768 −1.864

268 Sepantronium br. BIRC5 −3.622 −3.388 −2.824 − 3.040 − 2.957

134 Etoposide TOP2 1.734 2.344 2.403 2.369 2.073

1266 ICL1100013 NMT1 2.443 3.032 2.988 3.064 2.822

1910 ABT737 BCL2 2.037 2.176 1.500 1.401 1.940

1011 Navitoclax BCL2 1.873 1.951 1.357 1.188 1.693

1594 OSI-027 mTOR 2.928 2.444 2.829 2.748 2.842
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inhibitors. We also uncovered that C19orf33 expression

in cancer cell lines is positively correlated (ρS ≥ 0.3) with

the IC50 values of hundreds of chemotherapeutic drugs

in those cell lines (additional file 3: Table S3), suggesting

that C19orf33 expression may be a general biomarker

for cancer cell line sensitivity to chemotherapeutic

agents. Many of the putative biomarkers that we identified

in this study may be ‘proxy’ markers for oncomutations.

We have no direct evidence of a causal relationship

between the expression of the predictive genes and the

sensitivity of cell lines to the drugs. Without such evi-

dence, the use transcriptome data to guide clinical prac-

tice will remain problematic.

We applied the predictive models learned from the cell

line data to both tumor and normal TCGA and normal

GTEx RNA-seq data. We used trametinib, a MEK kinase

inhibitor [42], as a proof-of-concept exemplar. Based on

the GDSC assay data, cancer cell lines from the skin and

intestine had the highest sensitivity to trametinib.

Trametinib has been shown to be effective in inhibiting

the proliferation of BRAFV600E and KRAS mutant

cancer cell lines [64]. Clinically, trametinib has been

approved for treating cancer patients with the BRAF

V600E mutation [43–48]. In clinical practice, MEK

inhibitors are used as part of combination treatment to

provide potentially clinically relevant activity for colorec-

tal cancer [65]. Conceivably, combination of KRAS in-

hibitor and MEK inhibitor might be evaluated in clinical

trials in the future. Our analyses of the TCGA tumors

revealed that trametinib has the highest specificity for

melanoma, colorectal cancer, and rectal cancer among

all 33 TCGA tumor types, consistent with the clinical

application of trametinib. This result prompted us to ex-

tend our predictions to the top 272 predictable GDSC

drugs, those for which a cancer cell line’s sensitivity can

be predicted from transcriptome data.

We found that some of the drugs are highly cytotoxic

to all tumors from all tumor types. Those drugs were

also predicted to be cytotoxic to normal organ tissues.

Unfortunately, those drugs are among the most

Fig. 7 Basal breast tumors are predicted to be more sensitive to

bleomycin than luminal A, luminal B or Her2-positive breast tumors

and the sensitivity is inversely correlated with ACE expression. a,

Predicted bleomycin sensitivity for the five subtypes of TCGA BRCA

samples: violin plots of the predicted ln (IC50) values of bleomycin for

the five subtypes of breast tumors based on gene expression data and

PAM50 classification of TCGA BRCA samples. b, ACE gene expression in

cancer cell lines versus sensitivity to bleomycin: ACE expression in the

CCLE cancer cell lines was positively correlated with observed ln (IC50)

values for bleomycin (ρs = 0.27, p-value = 6.6E-11). The red line is the

least-squares regression line. c, TCGA breast cancer tumor gene

expression data: violin plots of ACE expression in TCGA basal-like, Her2-

positive, luminal A, luminal B, and normal-like breast tumor samples. *

p < 0.05; ** p < 0.005; **** p < 10− 6. Wilcoxon rank-sum test, two-sided
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frequently used chemotherapeutic agents and are associ-

ated with side effects. We also identified drugs that show

higher specificity towards one or a few tumor types, e.g.,

ERK, MEK and BRAF inhibitors (AZ628, dabrafenib,

PD0325901, PLX-4720, SB590885, SCH772984, and

trametinib) for melanoma and colorectal cancer,

ERBB/EGFR inhibitors (afatinib and sapitinib) for

head-neck squamous cell carcinoma, and BCL2 inhibitors

(ABT737, navitoclax and venetoclax) for low grade gli-

oma and glioblastoma multiforme. We further uncov-

ered that OSI-027 was highly specific for breast cancer,

especially the Her2-positive subtype breast cancer tumors.

Furthermore, our result suggests that MUCL1 expression

may be a surrogate marker for tumor response to OSI-

027.

We also predicted that a few drugs not only were

tumor-type specific but also induced higher sensitivity in

tumor tissue than normal tissue for those tumor types.

Those drugs may have better clinical efficacies. Our

result suggested that paclitaxel (microtubule inhibitor)

(commonly known as taxol) was more specific for breast,

lung, and uterine tumors than other tumor types and

that those tumors were overall more sensitive to

paclitaxel than corresponding normal tissue. Similarly,

we predicted that trametinib was specific for melanoma,

colorectal tumors and rectal tumors; our analysis also

found that those tumors were also more sensitive to

trametinib than the normal tissues of the same origins.

Sapitinib (ERBB inhibitor) was predicted to have the

highest specificity for lung squamous cell carcinoma and

was also predicted to be more cytotoxic to lung carcin-

oma than to normal lung tissue.

We used breast cancer as example to identify tumor

subtypes that may be especially sensitive to a drug. For

example, we predicted that five drugs (bleomycin, dapori-

nad, sepantronium bromide, etoposide, and ICL1100013)

are more specific for basal-like breast cancer subtypes

whereas ABT737 and navitoclax sapitinib and afatinib are

more specific for the luminal subtypes especially luminal

B. We predicted that OSI-027 (mTOR inhibitor) is specific

for breast cancer among all 33 TCGA tumor types, espe-

cially the Her2-positive breast cancer subtype. Since we

have provided the predicted IC50 values for all TCGA

tumor samples (additional file 7: Table S6), our approach

can be easily applied to other tumor types.

It is worth pointing out that OSI-027 was assayed

twice (GDSC1 by the Massachusetts General Hospital

and GDSC2 by the Sanger) with two different drug IDs

(299 for GDSC1 and 1594 for GDSC2). GDSC1 screened

906 cancer cell lines for the drug; whereas GDSC2

screened 265 cancer cell lines. The IC50 values of OSI-027

for breast cancer cell lines from GDSC2 are the lowest

among all 265 cancer cell lines; however, OSI-027 IC50s for

breast cancer cell lines from GDSC1 were not among the

lowest. Consequently, we predicted that OSI-027 with drug

ID 1594, but not drug ID 299, is specific for breast cancer.

GDSC recommends using assay data from GDSC2 when

available, our results for OSI-027 were based GDSC2 data.

However, additional replications are warranted.

There are many challenges associated with relating

findings from cell lines to tumors and clinical applica-

tions. For example, in vitro assays do not capture organ

responses. Although we used the largest collection of

cancer cell lines in our predictive models, our models

have limitations when applied to datasets that may not

be represented by the training data. Nonetheless, trans-

lating findings from cell lines to tumors has had some

success [5, 8–10, 21, 22].

Our method uses the k-nearest neighbor rule to

predict drug response of an unknown sample. The

predicted value of a sample is taken as the average of

the values of its k-nearest neighbors. Because of the

averaging, the most extreme predicted values, either

high or low, usually cannot be as extreme as the

corresponding observed values. Therefore, although

the correlation between the predicted and observed

values can be high, e.g., 0.8, the magnitude of the

predicted values is generally pulled in from the

extremes; the trend of the predicted values among the

samples, however, is usually preserved (Fig. 1). This

information should be kept in mind when interpreting

the “face value” of predicted values. Lastly, we would

like to emphasize that our predictions about sensitiv-

ity were solely based on the transcriptomic data; we

did not consider information on specific gene muta-

tions. While pan-cancer classification and prediction

using transcriptomic data have been successfully ap-

plied for identification of biomarkers and of cancer

subtypes as well as for prediction of disease progres-

sion [66–68], clinical cancer treatment options are

often in part guided by oncomutations. Translating

results from transcriptomic analyses like ours to

clinical practice remains challenging.

Conclusions
In summary, our predicted drug sensitivity data for all

TCGA tumor and normal samples should be a valuable

resource to researchers and clinicians. We identified

known and novel drug-gene interactions and potential

biomarkers for drug effectiveness. Our approach is

unique in that we not only predicted drug specificity for

tumor types and subtypes, but also drug sensitivity to-

wards normal tissues. We predicted a few drugs to have

high specificity for some tumor types compared to all

others and high ratios of tumor-to-normal sensitivity. If

true, our predictions could have clinical relevance for

patients’ care.
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Methods
Overview of the GA/KNN algorithm

The GA/KNN (genetic algorithm/k-nearest neighbors)

algorithm combines a genetic algorithm for feature se-

lection and the k-nearest neighbor method for classifica-

tion or prediction [69]. In the present context, the main

idea of the GA/KNN algorithm is to use an evolutionary

algorithm to select many sets of d genes (see below)

whose expression levels can accurately predict observed

IC50 values using the k-nearest-neighbors prediction rule.

The prediction rule is simple: the predicted IC50 value of a

sample is defined as the average of the observed IC50

values of its k nearest neighbor samples (excluding itself)

as determined by Euclidean distance in the d-dimensional

space defined by a gene set. In making predictions for a

testing-set sample (see below), we considered only sam-

ples within the corresponding training set as potential

neighbors.

The GA/KNN algorithm is designed to optimize,

either minimize or maximize, an objective function. For

prediction, a typical objective function being minimized

is the sum of the squared deviations between the

observed and predicted IC50 values across all training

samples (i.e., squared-error loss). The squared-error

loss =
PN

i¼1ðObsi−PrediÞ
2 , where N is the number of

samples in the training set. The GA/KNN algorithm

applied here sought a set of d genes to minimize this

loss function.

The main parameters for the GA/KNN algorithm were

set to be the same for the analyses of all datasets (additional

file 1: Table S8). To identify the optimal number of nearest

neighbors (k) and the “chromosome” length d, we systemat-

ically evaluated 16 combinations of k (k = 1, 3, 5, and 7) and

d (d = 10, 20, 30, and 40) (additional file 1: Table S9). Con-

sistent with our earlier findings [69], k = 3 and d = 30

seemed to provide the near-optimal performance and is

computationally efficient.

Because GA/KNN is computationally intensive, we only

carried out 100 independent runs for each drug. To see if

100 runs were sufficient, we also analyzed trametinib with

1000 runs. The results from both runs were comparable

(additional file 1: Table S10 and additional file 4: Fig. S4).

Training and cross-validation

For high dimensional data, multiple sets of d genes that

can deliver similar near-optimal performance. To iden-

tify multiple sets of predictive genes, the GA/KNN algo-

rithm uses a Monte Carlo cross-validation procedure

[70]. For each drug separately, we randomly partitioned

its cell-line data into a training set (90%) and a testing

set (10%). We used the training data to identify a set of

d (d = 30) genes whose expression levels were best pre-

dictive of the IC50 values of samples in the training set

using a leave-one-out cross-validation procedure [69].

That set of d genes was subsequently used to predict the

IC50 values of the testing-set samples. The average IC50

value of the k-nearest (k = 3) training neighbors of a test-

ing sample was taken as the predicted IC50 value for the

testing sample. The above procedure was repeated 100

times independently, each started with a new random

partition into training and testing sets. Over the 100 ran-

dom training-testing partitions for a given drug, each

sample would be expected to appear in about 90 training

sets and about 10 testing sets. The final predicted value

for a training-set sample was the average of the pre-

dicted IC50 values for that sample over the subset of the

100 independent training-testing partitions in which that

sample appeared in a training set; analogously, the final

predicted value for a testing-set sample was the average

predicted IC50 value over the partitions where that sam-

ple appeared in a testing set.

Assessing the importance of individual gene’s expression

levels to prediction

Because each training-testing partition provided a set of

30 genes as predictors, we used the frequency with

which a gene was selected into the 100 sets of 30

predictor genes as a measure of the importance of that

gene in prediction.

Identifying predictable drugs

We computed both the Pearson (ρP) and Spearman (ρs)

correlation coefficients between the observed and pre-

dicted IC50 values for samples in the training and testing

sets, respectively. We designated those drugs whose ρP

and ρs values were both greater than or equal to 0.4

(ρP ≥ 0.4 and ρS ≥ 0.4) for the testing set samples as

predictable drugs.

Predicting IC50 values of TCGA tumor samples and GTEx

normal tissue samples

In these analyses, we only considered the 272 predictable

drugs identified from the cell-line data. For each of the

272 drugs, we repeated the same GA/KNN procedure

applied to the cell-line data to both the tumor and the

GTEx data. Specifically, for each of the 272 drugs, we

randomly partitioned the part of the tumor data from

the CCLE cell lines into a training set (90%) and a

testing set (10%), repeating the partitioning 100 times, as

above. In addition, with each partition, we treated all

TCGA samples in the tumor data and the GTEx samples

in the GTEx data as additional “testing” samples for

prediction.

Drug sensitivity of cancer cell lines

GDSC screened 397 distinct compounds and 1000 dis-

tinct cell lines in two releases: GDSC1 screened 320
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compounds in 987 cell lines whereas GDSC2 screened

175 compounds in 809 cell lines. GDSC reports the ln

(IC50) for each combination of cell line and compound

as a measure of the sensitivity of cell viability in that cell

line to the compound. We downloaded the ln (IC50) data

from the GDSC website https://www.cancerrxgene.org/

downloads/bulk_download. When combining data from

both releases, if IC50s for the same cell line and com-

pound were present in both, we kept only the one from

GDSC2 as advised by GDSC. In total, 453 drugs were

assayed, among which 397 were unique (56 had two

different drug IDs). For those with two unique drug

IDs, we did not combine them but rather treated

each as it were a unique drug as GDSC did on their

website. Like GDSC, we refer to the ln (IC50) values

simply as IC50 throughout the manuscript, unless

specified otherwise.

Gene expression of cancer cell lines

CCLE measured gene expression profiles using RNA-

seq for 1019 cancer cell lines. We downloaded the

gene expression data from the CCLE website (https://

portals.broadinstitute.org/ccle/) (CCLE_RNAseq_rsem_

genes_tpm_20180929.txt) and converted Ensembl gene

IDs into official gene symbols using the annotation

file (gencode.v19.genes.v7_model.patched_contigs.gtf).

For 111 genes (primarily small nucleolar genes),

multiple Ensembl entries corresponded to the same

gene symbol; we used the average expression value

for those genes. The distribution of the number of

cancer cell lines per drug across the 573 drugs is

summarized for each cancer type in Table 7A.

Gene expression of tumor tissue

TCGA makes available RNA-seq gene expression

profiles from 771 normal and 10,339 tumor samples

encompassing 33 tumor types (additional file 1: Table

S7B). We downloaded the RSEM-normalized expression

data from the Broad GDAC firehose (https://gdac.

broadinstitute.org/). We then log2-transformed those

expression values after adding 1 to each.

Gene expression of normal tissue

GTEx has available RNA-seq gene expression data for

normal tissue samples. We downloaded these data

(GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_

tpm.gct.gz) from the GTEx website https://www.

gtexportal.org/home/datasets; we extracted RNA-seq

expression data for 5894 tissue samples from 15 major

organs (bladder, blood, breast, colon, intestine, kidney,

liver, lung, ovary, pancreas, prostate, skin, spleen, stomach,

and uterus). We similarly transformed the data as above.

Combining GDSC drug sensitivity and CCLE gene

expression for cancer cell lines

Among the cell lines used by GDSC, we identified all

those for which CCLE provided gene expression profiles.

Accordingly, for each of the 453 drugs from GDSC, we

have CCLE gene expression profiles for a subset of the

cell lines with IC50s for that drug. Denote the number of

such cell lines for drug D by ND, CCLE and the number

of genes in the expression profile by G (same for every

drug, G = 19163). We created a gene expression data

matrix (G ×ND, CCLE) for each drug, with each row

indexing a gene and each column indexing a cell line.

We also created a corresponding drug-specific vector of

IC50 values (with length ND, CCLE). Here ND, CCLE ranged

from 38 to 579 with 25th, 50th, and 75th percentiles of

473, 538, and 553, respectively. For clarity, we refer to

these data matrices as “cell-line data”.

Combining GDSC drug sensitivity and CCLE gene

expression with TCGA or GTEx gene expression

We augmented each of the 453 matrices of cell-line data

with columns of RNA-seq expression profiles for the

tumor samples from the TCGA using the common

genes between the two (G = 19,163). Thus, we created

400 new expression data matrices (G ×ND, CCLE + TCGA),

one for each drug. Here ND, CCLE + TCGA ranged from 11,

129 to 11,670 with 25th, 50th, and 75th percentiles of

11,563, 11,629, and 11,644, respectively. We refer to

these data matrices as “tumor data”.

Similarly, we augmented each of the 453 matrices of

cell-line data with columns of RNA-seq expression

profiles for the normal tissue samples from GTEx using

the common genes between the two (G = 19163). We

created an additional 400 expression data matrices (G ×

ND, CCLE +GTEx), one for each drug. Here ND, CCLE +GTEx

ranged from 5932 to 6473 with 25th, 50th, and 75th per-

centiles of 6367, 6970, and 6447, respectively. We refer

to these data matrices as “GTEx data”.

TCGA tumor mutation data

We downloaded all mutation data from the Broad Institute

(https://gdac.broadinstitute.org/) for all 31 TCGA tumor

types (Table S7A). We declared a sample to have a gene

mutation when any of “nonsense mutation”, “missense

mutation”, “frame shift deletion”, “frame shift insertion”, “In

frame deletion” or “splice site mutation” was found in the

gene for all genes.

TCGA breast tumor sample clinical data

Hormone status of the TCGA breast invasive carcinoma

(BRCA) tumor samples (file name: BRCA.clin.merged.txt)

was downloaded from the Broad GDAC firehose (https://

gdac.broadinstitute.org/).
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Data integration

When combining data from different sources, it is im-

portant that the data are comparable. For this purpose,

we computed Z-scores across genes for each cell line

from CCLE and each sample from TCGA or GTEx (re-

ferred to collectively as “samples”). Thus, each sample

has a mean expression of 0 and standard deviation of 1.

Let xi, j and zi, j be the log2-transformed expression

values before and after Z-transformation, respectively,

for jth gene in ith sample, that is,

zi; j ¼
xi; j−xi

si
;

where i = 1, ⋯ND, CCLE + TCGA or ND, CCLE +GTEx

(depending on the data set) and j = i, ⋯, G and xi and si
are the mean and standard deviation of the expression

values for sample i.
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