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Abstract

Genome-wide association studies (GWAS) for quantitative traits and disease in humans and other species have shown that
there are many loci that contribute to the observed resemblance between relatives. GWAS to date have mostly focussed on
discovery of genes or regulatory regions habouring causative polymorphisms, using single SNP analyses and setting
stringent type-I error rates. Genome-wide marker data can also be used to predict genetic values and therefore predict
phenotypes. Here, we propose a Bayesian method that utilises all marker data simultaneously to predict phenotypes. We
apply the method to three traits: coat colour, %CD8 cells, and mean cell haemoglobin, measured in a heterogeneous stock
mouse population. We find that a model that contains both additive and dominance effects, estimated from genome-wide
marker data, is successful in predicting unobserved phenotypes and is significantly better than a prediction based upon the
phenotypes of close relatives. Correlations between predicted and actual phenotypes were in the range of 0.4 to 0.9 when
half of the number of families was used to estimate effects and the other half for prediction. Posterior probabilities of SNPs
being associated with coat colour were high for regions that are known to contain loci for this trait. The prediction of
phenotypes using large samples, high-density SNP data, and appropriate statistical methodology is feasible and can be
applied in human medicine, forensics, or artificial selection programs.
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Introduction

Results from linkage analyses and, more recently, genome-wide

association studies (GWAS) imply that a large number of loci

underlie the genetic architecture of complex traits [1–15]. GWAS

are usually multi-staged, have mostly focused on gene discovery

and typically set very stringent type-I error rates in the first stage to

avoid false positives. Analysis is most frequently performed one

SNP at a time. Consequently, these studies may not properly

capture all of the genetic variation that is present in the samples,

The initial wave of GWAS has found many genetic variants that

are robustly associated with disease or quantitative traits, but these

variants typically explain only a small fraction of the genetic

variance, and so the utility of predictions made using this

information can be limited.

An alternative to gene discovery is to focus on the prediction of

phenotypes using all genotypic (SNP) information across the whole

genome simultaneously. The prediction of phenotypes is useful in

a range of fields, from artificial selection programs [16] to risk

prediction in human medicine [17] and forensics. To predict

phenotypes, identification or genotyping of causal variants is not

necessary, as long as there are variants genotyped that are in

linkage disequilibrium (LD) with the causal variants [16,17].

To predict phenotypes from genomic data, the relationship

between genome-wide marker data and phenotypes needs to be

modeled. The single SNP regression approach that is often applied

in conjunction with stringent thresholds would be expected to

inaccurately estimate the proportion of variance that can be

explained from genotypic data. Instead, model selection approach-

es are required to find the set of SNPs that best explains and

predicts variation in phenotype. Such approaches have already

been proposed for mapping multiple quantitative trait loci (QTL)

[18–23] and recently a method was suggested for the simultaneous

analysis of all SNPs in a GWAS [24].

In this study, we use statistical modeling to fit multiple SNP

effects from a GWAS and derive the best model with a Bayesian

model selection approach termed Reversible Jump Markov Chain

Monte Carlo (RJMCMC) [25]. We predict unobserved phenotypes

for individuals based on genome-wide SNP data only, family

information (without genetic data) only, or on a combination of

the two.

Methods

Data
Publicly available data including pedigree, genotypic and

phenotypic information on heterogeneous stock mice were used

([26]; http://gscan.well.ox.ac.uk/). The total number of animals

was 2,296 from 85 unrelated families. The available pedigree

spanned four generations, generating complex relationships. In the
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last generation, there were 172 full sib families with an average size of

,11 (SD ,8). Genotypes were available for 12,112 SNPs on most

animals in the pedigree, and we used the 11,730 SNPs on the

autosomal chromosomes. Phenotypes were already adjusted for the

environmental fixed effects, e.g. sex, age, year and season [26,27].

We chose three phenotypes, coat colour as a complex trait with a

number of known causal loci (estimated h2<0.72), and percentage of

CD8+ cells (%CD8) as a quantitative trait having high heritability

(estimated h2<0.99), and mean cellular haemoglobin (MCH) as a

quantitative trait having moderate heritability (estimated h2<0.55).

Coat colour, as used here, is a measure of the darkness of the coat

from white to black. For more detail about the data, see [26,27].

Models
We fitted a range of linear mixed models, with multiple SNPs as

fixed effects and, in some models, a polygenic effect to account for

additive genetic effects not detected by the SNPs. These polygenic

effects are estimated from the pedigree. The effect of a SNP

genotype on the phenotype was modeled either by fitting the

additive term of one of the alleles or by fitting both additive and

dominance terms.

Additive Genetic Model (Model A)
In the additive genetic model, phenotypic observations are a

linear function of fixed effects, a polygenic term representing the

sum of unidentified additive genetic effects, the additive effects due

to SNPs associated with QTL and residuals. The linear model can

be written as,

y~m1Nr
zZuz

Xnq

i~1

Liaize ð1Þ

where y is a vector of length Nr, with single trait phenotypes for all

animals corrected for fixed environmental effects (Nr = no.

observations in Table 1), nq is the number of SNPs associated

with the QTL involved in phenotypic expression, m is the overall

mean, 1Nr
is a vector of Nr ones, u is a vector of N random

polygenic effects for N animals (N = 2296), ai is the fixed effect of

the ith SNP and e is a vector of residuals. Z is an incidence matrix

for the random polygenic effects relating observations to individual

animals, with dimensions Nr6N. Note that N.Nr as some animals

have a polygenic effect estimated based upon phenotypic

information from relatives without having a phenotypic observa-

tion themselves. Li is a column vector of length Nr having

coefficients 0, 1 or 2 representing indicator variables of the

genotype for each animal at the ith SNP. The variance structure of

phenotypic observations is written as V~Z As2
u

� �
Z0zIs2

e , where

A is the numerator relationship matrix, I is a identity matrix, s2
u is

polygenic additive genetic variance and s2
e is error variance.

Additive and Dominance Genetic Model (Model AD)
In the model containing additive and dominance effects, all

terms are the same as the additive genetic model except that

dominance effects due to SNPs are added. The model is written as,

y~m1Nr
zZuz

Xnq

i~1

LiaizDidið Þze ð2Þ

where di is the dominance effect of the ith SNP and Di is a column

vector having coefficients that are 1 for a heterozygous genotype

and 0 for a homozygous genotype at the ith SNP.

Estimation of Effects and Model Selection
Reversible Jump MCMC to Simultaneously Consider the

Whole Genome. The number of QTL (nq) across the whole

genome involved in phenotypic expression and the position of

each QTL (ri, i = 12nq) were sampled, and maximum likelihood

(ML) estimates for u, a and d (H) are obtained in every MCMC

round. In each MCMC round, unknown phenotypes for

individuals are predicted based on estimates of u, a and d, and

Author Summary

Results from recent genome-wide association studies
indicate that for most complex traits, there are many loci
that contribute to variation in observed phenotype and
that the effect of a single variant (single nucleotide
polymorphism, SNP) on a phenotype is small. Here, we
propose a method that combines the effects of multiple
SNPs to make a prediction of a phenotype that has not
been observed. We apply the method to data on mice,
using phenotypic and genomic data from some individuals
to predict phenotypes in other, either related or unrelated,
individuals. We find that correlations between predicted
and actual phenotypes are in the range of 0.4 to 0.9. The
method also shows that the SNPs used in the prediction
appear in regions that are known to contain genes
associated with the traits studied. The prediction of
unobserved phenotypes from high-density SNP data and
appropriate statistical methodology is feasible and can be
applied in human medicine, forensics, or artificial breeding
programs.

Table 1. The number of observations (and SDa) in the entire data set and the test and prediction sets.

Trait Total no. observations Strategy No. observations

Estimation set Prediction set

coat colour 1940 intra-family 975 (12) 965 (12)

inter-family 993 (237) 947 (237)

%CD8 1410 intra-family 714 (14) 696 (14)

inter-family 719 (177) 691 (177)

MCH 1580 intra-family 797 (11) 783 (11)

inter-family 800 (200) 780 (200)

aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t001

Prediction of Phenotypes from Genetic Data
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predicted phenotypes are finally averaged over all MCMC rounds.

The probability of the sampled parameters given observed

phenotypes is

pr nq,r,H yjð Þ~ pr y nq,j r,Hð Þpr nq,r,Hð ÞP
pr y nq,r,Hjð Þpr nq,r,Hð Þ ð3Þ

where pr(y|nq, r, H) is the likelihood of the observed phenotypes

given the sampled variables, pr(nq, r, H) is the joint prior

probability of the variables, and the denominator is summed over

the probabilities of all possible parameter states. If the parameter

states are many, a MCMC method can be an efficient tool to

obtain the posterior distribution for the parameters. When varying

the number of QTL in the model, the model dimension varies. A

Metropolis-Hastings sampler cannot properly infer the correct

distribution unless the model dimension is fixed. However, a

reversible jump MCMC [25] can communicate across all possible

states of different dimensions according to the proper acceptance

ratio and give the correct posterior distribution [28]. We give more

details on the RJMCMC procedure in the online Supporting

Information (text S1).

The polygenic heritability used in models A and AD was fixed

as 0.72, 0.99 and 0.55, for coat colour, CD8% and MCH,

respectively. We adjusted the phenotypes for the estimated

polygenic effects using best linear unbiased prediction (BLUP,

[29]) and then proceeded with modeling the SNPs. This two-stage

procedure was done in every MCMC round because of

computational efficiency. The heritabilities used were estimates

of the total additive variance whereas in our model they should

have been only the additive variance not explained by the SNPs in

the model. However, using a heritability that is too high is

conservative in that it reduces the likelihood that a SNP will be

included in the model. Using a constant heritability, rather than

re-estimating it in every round of MCMC, saved computer time

which was important in carrying out multiple replicates of the

analysis to estimate the accuracy of predicted phenotypes. The

length of the MCMC chains was 10,000, in addition to an initial

1000 iterations of burn-in.

Single SNP Analyses. To perform a comparison with a

‘standard’ GWAS analysis, multiple SNP models were compared

to single SNP analyses. In these analyses, the model AD (2) was

used but fitting only a single SNP at a time. To mimic a typical

GWAS analysis, we used linear regression of the phenotype on

indicator variables for additive and dominance effects at a single

SNP, analysed the data by maximum likelihood, calculated a

likelihood-ratio test statistic for each SNP and selected the best set

of SNPs according to a pre-defined threshold for the test statistic.

We used (genome-wide) thresholds of 10.83, 15.14, 21.14 and

24.24, corresponding to nominal significance levels of 0.0045,

0.00052, 0.000026 and 0.0000055, respectively, assuming that the

test statistic is distributed as a x2 with 2 degrees of freedom.

However, due to linkage disequilibrium there were many

significant SNPs within a small region, and only the SNP with

the largest test statistic within a 4 cM region was chosen.

Predicting Unobserved Phenotypes
We predicted phenotypes of individuals by using information on

relatives and/or the estimated effects of their SNP genotypes.

Prediction of phenotypes was based on BLUP of polygenic values

[29] using pedigree and phenotype information only (i.e. (1) with

the third term omitted), or on additional genomic information

where the prediction model was based on additive effects only

(model A) or on both additive and dominance effects (model AD).

Both A and AD models were fitted with and without the effects of

additional polygenic factors from pedigree relationships. For the

single SNP analyses, the prediction was performed from a multiple

Table 2. Correlation (SDa) of actual and predicted phenotypes and their standard deviationsa.

Model Intra-family wise Inter-family wise

Coat colour %CD8 MCH Coat colour %CD8 MCH

BLUP (Ignoring genotypic data) 0.54 (0.02) 0.64 (0.02) 0.41 (0.01) 0.00 0.00 0.00

Fitting genotypic data and pedigree

Model A 0.72 (0.02) 0.71 (0.02) 0.52 (0.02) 0.58 (0.06) 0.50 (0.05) 0.35 (0.07)

Model AD 0.89 (0.03) 0.73 (0.02) 0.55 (0.02) 0.87 (0.05) 0.58 (0.05) 0.36 (0.09)

Fitting genotypic data and ignoring pedigree

Model A 0.65 (0.02) 0.65 (0.02) 0.46 (0.04) 0.54 (0.06) 0.51 (0.05) 0.33 (0.06)

Model AD 0.85 (0.04) 0.69 (0.02) 0.50 (0.04) 0.81 (0.08) 0.56 (0.06) 0.33 (0.09)

aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t002

Table 3. Correlation (SDa) between predicted and inferred additive genetic values.

Intra-family wise Inter-family wise

Coat colour %CD8 MCH Coat colour %CD8 MCH

BLUP 0.63 (0.03) 0.64 (0.02) 0.55 (0.02) 0.00 0.00 0.00

Model A 0.84 (0.02) 0.71 (0.02) 0.71 (0.03) 0.68 (0.07) 0.50 (0.05) 0.47 (0.09)

Model AD 1.05 (0.04) 0.73 (0.02) 0.75 (0.03) 1.02 (0.06) 0.59 (0.05) 0.48 (0.12)

aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t003

Prediction of Phenotypes from Genetic Data
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regression analysis using those SNPs that were selected previously

from the single SNP analyses. As for the AD model, the single SNP

analyses also fitted polygenic effects, plus the additive and

dominance effect of the SNP.

To assess how well we predicted unobserved phenotypes, we

used one part of the data for estimation and the remaining part for

prediction and validation. Approximately half of the phenotypic

data for each trait were randomly selected. Using only half of the

phenotypes and all genotypes, the other half of the phenotypes (i.e.

future, unobserved, phenotypes) were predicted with the proposed

genetic model using whole genome SNP data. We tested how well

we could predict phenotypes from genetic data in two ways. The

first prediction was within families, using phenotypic data from

approximately half of the animals in each full sib family to predict

the phenotypes of the other half of the animals (intra-family

comparison). The second prediction was across families, using

phenotypic data from approximately half of the 85 unrelated

families to predict the phenotypes of the animals in the other half

of the families (inter-family comparison). The latter prediction

could also be used for data sets that lack pedigree information.

When fitting the pedigree only, i.e. not using any marker data,

there is no ability to predict the phenotypes of animals in other,

unrelated families, so the accuracy of the inter-family prediction is

zero.

For each comparison, we correlated the predicted genotype of

an animal in the prediction set with its phenotype (which was not

used in the estimation phase). We term the correlation between

predicted phenotypes and actual phenotypes as the accuracy of

prediction. To gauge the precision with which this correlation is

estimated we performed 10 replicates. For each replicate, the

estimation and prediction sets were sampled and analyzed.

In addition to performing the model selection procedure and

prediction from the entire autosomal SNP genotype set, we also

investigated how well genotypic data from a single chromosome

could predict phenotypes. For individual chromosome analyses,

the AD model was used for the inter-family prediction with a

single replicate per trait.

Results

Unobserved Phenotypes Can Be Predicted from
Genome-Wide SNP Data

The total number of original phenotypes, the number of

phenotypes used in the estimation analysis and the number of

phenotypes to be predicted but not used in the estimation step are

shown in Table 1. For the prediction set, on average approxi-

mately 700 (%CD8) to 950 (coat colour) observations were used.

Table 2 shows the correlation between true and estimated

phenotypes of the three different traits when using the intra- or

inter-family prediction. It shows that the use of genomic

information substantially increases the accuracy of predicting

unobserved phenotypes, compared to BLUP (fitting only the

pedigree), and a substantial accuracy was achieved even with inter-

family prediction, where genomic and phenotypes data in some

families was used to predict phenotypes in other families. The

accuracy of prediction is highest with intra-family prediction when

using genomic information and phenotypic information from

relatives to predict an individual phenotype. For example, for

%CD8 and an additive model of gene action and fitting the

pedigree, the correlation between predicted and observed

phenotype is 0.71 whereas it is 0.64 when using only pedigree

information.

The accuracies of prediction with the model AD are generally

greater than those with model A for intra- and inter-family

prediction. The difference between the accuracies with and

without considering dominance varies across the traits. For coat

Figure 1. Correlation between predicted and actual phenotype
for coat colour. Results from the additive and dominance genetic
model and inter-family prediction when using each chromosome at a
time (vertical bars), and when using whole genome information
(horizontal line, 0.88).
doi:10.1371/journal.pgen.1000231.g001

Figure 2. Correlation between predicted and actual phenotype
for %CD8. Results from the additive and dominance genetic model
and inter-family prediction when using each chromosome at a time
(vertical bars), and when using whole genome information (horizontal
line, 0.63).
doi:10.1371/journal.pgen.1000231.g002

Figure 3. Correlation between predicted and actual phenotype
for MCH. Results from the additive and dominance genetic model and
inter-family prediction when using each chromosome at a time (vertical
bars), and when using whole genome information (horizontal line, 0.4).
doi:10.1371/journal.pgen.1000231.g003

Prediction of Phenotypes from Genetic Data
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colour, the accuracy of prediction substantially increases in both

intra-family (0.72 to 0.89) and inter-family (0.58 to 0.87)

prediction. For %CD8, the accuracy increases slightly for the

intra-family prediction (0.71 to 0.73). The increase due to

inclusion of dominance is larger for the inter-family prediction

(0.50 to 0.58). For MCH, the accuracy slightly increases for both

intra- and inter-family prediction. These results are consistent with

a substantial amount of dominance variance for coat colour, some

dominance variance for %CD8 and little dominance variance for

MCH.

When omitting polygenic terms in the genetic model and using

whole genome marker information only, the correlations between

predicted and actual phenotypes are generally decreased for the

intra-family prediction, and practically unchanged in inter-family

prediction except for coat colour (Table 2). The bottom two rows

of Table 2 for the inter-family prediction show that phenotypes

can be predicted from marker data and phenotypes observed in

‘unrelated’ families. For coat colour and the AD model, the

prediction is very good (correlation of 0.81).

Prediction of Genetic Factors
The precision with which phenotypes can be predicted from

genetic data is, of course, limited by how much of the variation

between individuals is due to genetic factors. Prediction of

unobserved phenotypes from genetic data will never be accurate

for traits with a low heritability, even if the prediction of the

genetic effect is 100% accurate. To quantify how much of the

variation between individuals due to genetic effects we detected,

we scaled the accuracy of predicting phenotypes by h, the square

root of the heritability. This parameter represents the correlation

between additive genetic value and phenotype, and is a key

parameter in artificial selection programs [30]. The scaled

accuracy is an estimate of the precision with which additive

genetic values are predicted. When using an additive genetic

model and whole genome information (Model A), this estimated

correlation between predicted and inferred genetic values for the

intra-family prediction was 0.84, 0.71 and 0.71 for coat colour,

%CD8 and MCH, respectively, and 0.68, 0.50 and 0.47 for the

inter-family prediction (Table 3). When using an additive and

dominance genetic model and whole genome information (Model

AD), the estimated correlation between predicted and inferred

additive genetic values for the intra-family prediction was 1.05,

0.73 and 0.75 for coat colour, %CD8 and MCH, respectively, and

1.02, 0.59 and 0.48 for the inter-family prediction (Table 3).

Therefore a large proportion of existing genetic variation was

detected and exploited by our application. It should be noted that

the values for model AD should be scaled by the square root of the

broad-sense heritability which was, however, unknown. Instead,

Figure 4. Posterior density of association of SNPs for coat colour using the whole-genome approach (A, C, E) or Likelihood Ratio of
single SNP regression (B, D, F). For comparison, the positions of known genes for coat colour are shown (diamonds).
doi:10.1371/journal.pgen.1000231.g004

Prediction of Phenotypes from Genetic Data
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we scaled the values for the AD model by narrow-sense

heritability, which may result in an overestimation of accuracy

depending on the amount of dominance variance.

Advantage of a Whole-Genome Approach
Figures 1, 2 and 3 show that the accuracy of prediction is higher

when considering whole genome information compared with using

information from one chromosome at a time. Even with coat colour,

a single gene or a single chromosome does not determine all

variation in phenotypic expression (Figure 1). Although the

accuracy of prediction when considering chromosome 7 alone is

high (0.79), the accuracy can be improved when using whole

genome information (0.88). With %CD8 (Figure 2), the accuracy of

prediction obtained by considering each chromosome at a time

ranges from 0.05 to 0.50, implying that most chromosomes

contribute to variation in this complex phenotype. When

considering the entire genome simultaneously, the accuracy of

prediction increases to 0.63. With MCH, the accuracy obtained

from individual chromosomes varies up to 0.23 (Figure 3). However,

again the accuracy of prediction is highest (0.40) when using whole

genome information. The estimated negative correlations between

actual phenotypes and predictions based upon a single chromosome

(e.g., Figure 1) is most likely due to sampling error. Chromosomal

analyses were done for a single replicate.

Location of Trait Loci from Whole-Genome Estimation
The whole genome approach based on fitting multiple SNPs

and using RJMCMC for model selection provides a posterior

density of each SNP being associated with the phenotype.

Therefore, the positions of trait loci can be estimated (e.g.

Figure 4A, C and E). For comparison, the method using regression

on single SNPs that considers one position at a time was used. This

method yields a likelihood ratio (LR) for each SNP which was

plotted against genomic position (Figure 4B, D and F). Averages of

the posterior QTL density or LR from the 10 replicates are shown

for the inter-family prediction.

For coat colour, high posterior densities are shown for the regions

around ,159 Mb on chromosome 2, ,80 Mb on chromosome 4

and ,80 Mb on chromosome 7 (Figure 4 A, C and E). These

regions agree very well with the positions of a number of known

genes for variation in coat colour [31] (diamonds in Figure 4).

Specifically, the non-agouti gene is at 154 Mb on chromosome 2,

tyrosinase-related protein is at 79 Mb on chromosome 4, and the

tyrosinase and Rab38 genes are at 81 Mb and 82 Mb, respectively,

on chromosome 7. The LR profiles from the single SNP method are

similar to that from the multiple SNP method (Figure 4B, D and F).

However, correlated estimates due to linkage disequilibrium

between the causal genes and multiple SNPs cause a broad

confidence interval when using the single SNP method.

Figure 5. Posterior density of association of SNPs for %CD8 using the whole genome approach (A, C, E) or Likelihood Ratio of
single SNP regression (B, D, F). For comparison, the positions of known genes for %CD8 are shown (diamonds).
doi:10.1371/journal.pgen.1000231.g005

Prediction of Phenotypes from Genetic Data
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For %CD8, high posterior densities are shown for the regions

around ,170 Mb on chromosome 1, ,125 Mb on chromosome

2 and ,30 Mb on chromosome 17 (Figure 4A, C and E). Some of

these estimated positions agree with putative QTL region

previously reported by [26] (also see http://gscan.well.ox.ac.uk/)

(diamonds in Figure 5). The LR pattern from the single SNP

method is similar to that from the multiple SNP method

(Figure 5B, D and F), but again the mapping resolution is lower.

For MCH, high posterior densities are observed for the region

near ,155 Mb on chromosome 1, ,82 Mb on chromosome 8

and ,65 Mb on chromosome 14 (Figure 6A, C and E). Estimated

positions agree well with putative QTL region previously reported

[26] (diamonds in Figure 6). As with the other traits, the single

SNP method has lower map resolution.

Convergence of Parameter Estimates
Convergence of the parameter estimates was diagnosed from

the pattern of the accuracy values after 100, 1000, 10000 and

100000 iterations when using intra-family prediction for a single

replicate. The burn-in period was 10% of the total number of

iterations. Figure 7 shows that the accuracy rapidly increases in

early iteration rounds, and generally becomes a stable value after

10,000 iterations. A similar pattern was observed in the inter-

family prediction, i.e. the accuracy reached a stable value after

,10,000 iterations (result not shown), indicating that only a

moderate number of iterations are required to achieve the

accuracies of predicted phenotype shown in the results. The

pattern of convergence of the estimated parameters (e.g.

variances) was similar to that of the accuracy (result not shown),

which was expected because accuracy was closely related to the

estimated parameters. In this study, we used only a single

starting value in order to save computing time due to many

different situations to be tested with many analyses. However, for

a single intensive analysis, it is always desirable to use multiple

starting values to make sure that estimates reach apparent

convergence.

Discussion

We have proposed a method to simultaneously analyse whole

genome SNP data for association with phenotypes, applied this

method to three traits measured in a heterogeneous mouse stock

and successfully predicted unobserved phenotypes. The precision

of the prediction of unobserved phenotypes depends on the actual

genetic architecture of the traits (heritability, number of genes,

distribution of effect sizes and mode of gene action), the marker

density and experimental sample size. For the qualitative trait

(coat colour) and the highly heritable quantitative trait (%CD8),

the accuracies of predicting phenotypes were high, even when

Figure 6. Posterior density of association of SNPs for MCH using the whole genome approach (A, C, E) or Likelihood Ratio of single
SNP regression (B, D, F). For comparison, the positions of known genes for MCH are shown (diamonds).
doi:10.1371/journal.pgen.1000231.g006

Prediction of Phenotypes from Genetic Data
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using genomic information from unrelated families in the same

population. This is a valuable result with important applications in

medicine, agriculture and forensics.

Reversible jump theory is well established for solving model

selection problem [20,25,32–34]. We found that RJMCMC in

genomic selection was computationally efficient and gave reliable

estimates. For the data set on mice (,2200 individuals and

,10,000 SNP), it took ,15 minutes with a single CPU (,2 GHz),

which compares favourably to a number of other computing

strategies on the same data set [35]. Assuming that computing

time increases linearly with the number of individuals and

markers, the method would run within one week even if the data

set was large (e.g. 10,000 individuals with 1,000,000 SNPs). More

time may be required to adequately monitor convergence,

however parallel computing strategies would be useful here, e.g.

[36]. Therefore, the methods described in this study can scale up

to much larger data sets.

There are several approaches for whole genome association

studies such as Bayesian random effect approaches [37], ridge

regression or shrinkage estimators [38,39]. However, most of these

approaches are computationally intensive (as reported by [37–39],

and some statistical properties are ill-defined (as discussed in [38]).

Data sets used in those studies [37–39] were much smaller than

what we have used here. Nevertheless, we recognize that

improvements to our model are possible, for example using

random QTL effects, and that these may lead to even better

results. Very recently, a fast analysis of all SNPs in a genome-wide

association study was described using a method akin to a penalised

likelihood approach [24]. This method was implemented to find a

subset of SNPs that best explains case-control status in a disease

study subject to a specified type-I error rate, but can also be used

to select a subset for the prediction of phenotypes.

When comparing results between different prediction strate-

gies, the accuracies of the intra-family prediction were generally

higher than those for inter-family prediction (Table 2). There

are three possible explanations for this observation. Firstly, the

prediction of phenotype within families can use both linkage

(family) and linkage disequilibrium (population) information for

detected gene effects, whereas the prediction across families can

exploit only LD in the population. Secondly, there may be

polygenic effects which were not captured by the SNPs but these

can be captured when using the phenotypes of close relatives.

Thirdly, in the data set that we used, effects due to the common

environment shared by littermates are confounded with genetic

effects. Therefore, if there are such non-genetic effects that

cause resemblance between relatives (in particular fullsibs), then

these could be partially captured by the polygenic terms and

even by SNP genotype effects. Importantly, such non-genetic

common family effects do not affect the inter-family prediction.

It was shown that the difference of the accuracy of prediction

with and without polygenic terms based on pedigree informa-

tion was large for the intra-family prediction whereas it was

much smaller for the inter-family prediction for %CD8 and

MCH (Table 2). This observation makes sense in that polygenic

or common environmental effects can be informative for the

prediction within families, but are not relevant for prediction

across families. For coat colour, this pattern was not evident,

presumably because the phenotypes are not affected by non-

genetic family effects.

Given phenotype and pedigree data, narrow- or broad-sense

heritability (h2) for the quantitative traits can be estimated in the

classical genetic model [40]. However, since the data set used in

this study consisted of full sib families with no replicates for

maternal performance of dam, maternal environmental effects or

family non-genetic effects may not be well-separated from genetic

effects estimated in the classical model using pedigree information.

Therefore, our estimate of heritability from the polygenic additive

model may be biased upwards. We also tried to fit epistatic effects

for pairs of SNP in addition to additive and dominance effects (see

[23] for more detail on the method used). However, the model

including epistasis did not improve the accuracy of prediction for

any trait (results not shown). This was probably because the

sample size was not sufficient to capture epistatic effects or,

alternatively, because epistatic interactions do not contribute

much to genetic variance in our data set [41].

We showed the strength of the multiple SNP method used in this

study, compared to a set of SNPs obtained from the single SNP

regression method, which is currently widely used in standard

genome scans (Figures 4, 5 and 6). Compared to the multiple SNP

method, the single SNP analyses generate more apparently

significant SNPs but our results suggest that it would be much more

difficult to determine the number and location of causal variants.

Both methods can provide SNP sets to predict unobserved

Figure 7. Convergence diagnostics for the values of the
accuracy of predicting unobserved phenotypes.
doi:10.1371/journal.pgen.1000231.g007
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phenotypes. The accuracies of prediction using SNPs obtained from

single SNP regression were generally lower than those with the

multiple SNP method (Table 4). This was probably due to the fact

that the choice of SNPs was not optimum. For example, selecting

only one significant SNP in a region might ignore the possibility of

having two QTL in a region, or alternately that multiple SNPs are

required to explain the variance due to a single QTL. In contrast, the

multiple SNP method used Bayesian model selection which tested all

possible models with a proper acceptance ratio according to the

appropriate posterior distribution.

We used a prior of Poisson distribution with mean mn = 1 for

the number of QTL (nq) in the RJMCMC. This might be a

conservative way of detecting QTL, avoiding false positives and

reducing random noise if there was no apparent prior

information about the number of QTL. We also tested the

performance of the RJMCMC with a different prior which was

Poisson distribution with mean mn = 14. Note that the estimated

number of QTL was ,15, ,13 and ,14 for coat colour,

%CD8 and MCH, respectively (Table 4). Table 5 shows that the

average number of SNP fitted simultaneously in each RJMCMC

Table 4. Correlation (SDa) and MSEb (SD) between actual and predicted phenotypes for the single SNP method when varying
threshold to select significant SNPs.

Method Coat colour %CD8 MCH

correlation MSE
number
of SNPd correlation MSE

number
of SNP correlation MSE

number
of SNP

Multiple SNPsc 0.87 (0.05) 0.02 (0.02) 15.3 (4.3) 0.58 (0.05) 0.03 (0.04) 12.8 (3.2) 0.36 (0.09) 0.09 (0.07) 14.1 (4.4)

Single SNPsc

threshold of LR = 10.83 0.85 (0.03) 0.01 (0.01) 38.7 (6.0) 0.44 (0.06) 0.09 (0.17) 32.4 (4.9) 0.32 (0.07) 0.17 (0.15) 37.9 (5.6)

threshold of LR = 15.14 0.87 (0.02) 0.01 (0.01) 20.0 (2.9) 0.41 (0.06) 0.11 (0.19) 11.9 (3.2) 0.31 (0.10) 0.17 (0.12) 15.4 (4.2)

threshold of LR = 21.14 0.88 (0.02) 0.01 (0.01) 11.8 (2.1) 0.34 (0.08) 0.05 (0.08) 4.0 (1.7) 0.30 (0.08) 0.24 (0.16) 7.1 (2.5)

threshold of LR = 24.24 0.88 (0.02) 0.01 (0.01) 10.1 (2.2) 0.32 (0.08) 0.09 (0.05) 2.7 (1.0) 0.25 (0.11) 0.28 (0.12) 4.4 (1.8)

aStandard deviation over 10 replicates.

bMean of Square Error~ 1
Nreplicates

PNreplicates

i~1

1{
cov predicted value,true valueð Þ

var predicted valueð Þ

h i2

.
cInter-family prediction, using the AD model and fitting the pedigree.
dNumber of SNPs contributing to predicting unobserved phenotypes for single SNP analysis, and averaged number of SNP to predicting unobserved phenotypes in

each MCMC round for multiple SNP analysis.
doi:10.1371/journal.pgen.1000231.t004

Table 5. Correlation (SDa) between actual and predicted phenotypes and the estimated number of contributing SNPs when using
a prior from a Poisson distribution with a mean of 1 or 14.

Prior coat colour %CD8 MCH

correlation number of SNP correlation number of SNP correlation number of SNP

mean = 1 0.87 (0.05) 15.3 (4.3) 0.58 (0.05) 12.8 (3.2) 0.36 (0.09) 14.1 (4.4)

mean = 14 0.88 (0.04) 36.9 (9.8) 0.56 (0.06) 35.7 (10.3) 0.35 (0.11) 35.2 (10.5)

Inter-family prediction, using the AD model and fitting the pedigree.
aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t005

Table 6. Fixed polygenic heritability used in the analyses and resulting correlation (SDa) between actual and predicted
phenotypes.

coat colour %CD8 MCH

h2 correlation h2 correlation h2 correlation

0.72 0.89 (0.03) 0.99 0.73 (0.02) 0.55 0.55 (0.02)

0.36 0.91 (0.004) 0.50 0.70 (0.02) 0.28 0.54 (0.02)

0 0.85 (0.04) 0 0.69 (0.02) 0 0.5 (0.04)

unfixed 0.90 (0.09) unfixed 0.71 (0.03) unfixed 0.52 (0.02)

Intra-family prediction, using the AD model and fitting the pedigree.
aStandard deviation over 10 replicates.
doi:10.1371/journal.pgen.1000231.t006
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round was much larger with a prior mean of 14 than that with a

prior mean of 1. However, the accuracy (correlation) was not

much different whether using a prior mean of 1 or 14. Although

the number of SNP simultaneously fitted in each RJMCMC

round was smaller when using a prior mean of 1, all or most of

the significant SNPs were found and fitted in the model over

many iterations. This is why the accuracy with a prior mean of 1

is very close to that when using a prior mean of 14. This agrees

with conclusions from previous studies [32,34,42] that estima-

tion of QTL positions and effects are robust with respect to

prior values. We also used a flat uniform prior for r (assuming

that there was no prior information for the QTL positions), and

ML estimates for a and d were obtained given nq and r (also see

online Supporting Information text S2). If there is apparent and

useful information about priors, the RJMCMC can implement

the information, which may give better results.

For our main RJMCMC analyses, we fixed the value of the

polygenic heritability for computational reasons. We tested the

sensitivity of this procedure on the accuracy of predicted

phenotypes. For the polygenic heritability, three fixed values were

compared, the previously used fixed value, half that value and a

heritability of 0. In addition, we estimated heritability in every

MCMC round. Table 6 shows that the accuracies are not

dramatically different between estimates although zero heritability,

equivalent to no polygenic effect fitted, results in slightly lower

accuracies. We tested intra-family prediction only as this may be

affected by value of the polygenic heritability.

Our results are based on ,50% cross-validation. If more than 50%

of the data are used for estimation then the accuracy of prediction

may improve because estimates of marker effects will be more precise.

We tested this by using 90% of the data for estimation stage and 10%

for assessing the accuracy of prediction. Because families vary in size,

it is not possible to select exactly 10% of each family. Therefore, we

randomly divided the animals into 10 sets regardless of the family

information. This generates a structure intermediate between inter-

and intra-family prediction. We used 90% for estimation and 10%

for validation and used 10 replicates without overlap in the

validation sets. The correlation between true and predicted

phenotypes and their SD were 0.91 (0.02), 0.73 (0.04) and 0.61

(0.06), for coat colour, %CD8 and MCH, respectively. The

corresponding values for 50% cross-validation were 0.89 (0.03),

0.73 (0.02) and 0.55 (0.02). Hence, the accuracy for coat color

and MCH are higher when using 10% cross-validation than

when using 50% cross-validation, but the accuracy for CD8% is

not much different. Standard deviation over 10 replicates tend to

be larger with 10% cross-validation than that with 50% cross-

validation. This is probably due to the fact that 90% discovery

gives better estimation of marker effects and therefore we pick up

a larger correlation, but that 10% validation gives larger

sampling variance for the correlation.

Our MCMC method used estimated rather than sampled values

for some parameters, which is known as an empirical Bayesian

approach [43]. For a given QTL model, based on sampled values for

the number of QTL, their effects and their positions, we obtained ML

estimates for the remaining model parameters. This differs from the

full Bayesian approach where in the MCMC algorithm all model

parameters are sampled conditional on data and other parameters.

Hence, the posterior distribution for the model parameters could

differ somewhat from those of a full Bayesian approach. The

empirical Bayesian approach has a large computational advantage as

for sampled values for QTL number, effects and positions, no time is

wasted with evaluating all possible values of H but rather evaluation is

at the most likely value. Estimates converge more quickly compared

to the full Bayesian approach. It is unlikely that much information is

lost in this empirical Bayesian approach because parameters in H
have smooth distributions and it is not likely that critical information

exists at values with lower probability density. Casella [43] discussed

the empirical Bayesian procedure for a hierarchical model where in

an iterative procedure ML estimates were obtained for hyper

parameters and other parameters were sampled conditional on these

ML estimates. He justified this procedure statistically by showing that

it implies an Expectation Maximization algorithm. In our approach,

ML estimates for H and the likelihood of the data given the model

parameters are used in RJMCMC to get the posterior density of QTL

parameters across model dimensions. The justification for our

procedure is shown in [20].

The method used here for prediction of phenotypes would be

useful in many situations but the accuracy achieved is expected to

vary. The mouse population was formed from crossbreeding inbred

lines and so LD is expected to exist over considerable distance. In

species with much less LD, for example humans, more markers and

more phenotypic records are needed to achieve the same level of

accuracy.

In conclusion, the prediction of unobserved phenotypes for

complex traits from genome-wide marker data is feasible and can

be accurate. Applications of our method are plentiful: in artificial

selection programs it may lead to faster response to selection, by

increasing the precision with which polygenic values are predicted

[16], in human medicine it can be used to identify individuals that

are most at risk for disease [17], and in forensics it can help to

build a phenotypic profile from DNA evidence.

Supporting Information

Text S1 RJMCMC Procedure.

Found at: doi:10.1371/journal.pgen.1000231.s001 (0.08 MB

DOC)
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