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II. ABSTRACT 11 

Despite recent innovations in exoskeleton design and control, predicting subject-specific impacts of 12 

exoskeletons on gait remains challenging. We evaluated the ability of three classes of subject-specific phase-13 

varying models to predict kinematic and myoelectric responses to ankle exoskeletons during walking, without 14 

requiring prior knowledge of specific user characteristics. Each model – phase-varying (PV), linear phase-15 

varying (LPV), and nonlinear phase-varying (NPV) – leveraged Floquet Theory to predict deviations from a 16 

nominal gait cycle due to exoskeleton torque, though the models differed in complexity and expected 17 

prediction accuracy. For twelve unimpaired adults walking with bilateral passive ankle exoskeletons, we 18 

predicted kinematics and muscle activity in response to three exoskeleton torque conditions. The LPV 19 

model’s predictions were more accurate than the PV model when predicting less than 12.5% of a stride in 20 

the future and explained 49–70% of the variance in hip, knee, and ankle kinematic responses to torque. The 21 

LPV model also predicted kinematic responses with similar accuracy to the more-complex NPV model. 22 

Myoelectric responses were challenging to predict with all models, explaining at most 10% of the variance 23 

in responses. This work highlights the potential of data-driven phase-varying models to predict complex 24 

subject-specific responses to ankle exoskeletons and inform device design and control.  25 
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III. INTRODUCTION 26 

Ankle exoskeletons are used to improve kinematics and reduce the energetic demands of locomotion in 27 

unimpaired adults and individuals with neurologic injuries [1-5]. Customizing exoskeleton properties to 28 

improve an individual’s gait is challenging and accelerating the iterative experimental process of device 29 

optimization is an active area of research [6, 7]. Studies examining the effects of exoskeleton properties – 30 

sagittal-plane ankle stiffness or equilibrium ankle angle for passive exoskeletons and torque control laws for 31 

powered exoskeletons – on kinematics, motor control, and energetics have developed design and control 32 

principles to reduce the energetic demand of walking and improve the quality of gait [1, 6, 8, 9]. Predicting 33 

how an individual’s gait pattern responds to ankle exoskeletons across stance may inform exoskeleton design 34 

by enabling rapid evaluation of exoskeleton properties not tested experimentally. Additionally for powered 35 

exoskeletons, which prescribe torque profiles using feedforward or feedback (e.g. kinematic or myoelectric) 36 

control laws, predicting responses over even 10–20% of a stride may improve tracking performance or 37 

transitions between control modes [4, 10-12]. However, predicting subject-specific responses to exoskeletons 38 

remains challenging for unimpaired individuals and those with motor impairments [2, 12, 13].  39 

 40 

Common physics-based models, including simple mechanical models and more physiologically-detailed 41 

musculoskeletal models, use principles from physics and biology to analyze and predict exoskeleton impacts 42 

on gait. For example, one lower-limb mechanical walking model predicted that an intermediate stiffness in a 43 

passive exoskeleton would minimize the energy required to walk, a finding that was later observed 44 

experimentally in unimpaired adults [1, 14]. More physiologically-detailed musculoskeletal models have 45 

been used to predict the impacts of exoskeleton design on muscle activity during walking in children with 46 

cerebral palsy and running in unimpaired adults [15, 16]. While these studies identified hypothetical 47 

relationships between kinematics and the myoelectric impacts of exoskeleton design parameters, their 48 

predictions were not evaluated against experimental data.  49 

 50 
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Challenges to accurately predicting responses to ankle exoskeletons with physics-based models largely stem 51 

from uncertainty in adaptation, musculoskeletal physiology, and motor control, which vary between 52 

individuals and influence response to exoskeletons. While individuals explore different gait patterns to 53 

identify an energetically-optimal gait, exploration does not always occur spontaneously, resulting in sub-54 

optimal gait patterns for some users [17]. Popular physiologically-detailed models of human gait typically 55 

assume instantaneous and optimal adaptation, which do not reflect how experience and exploration may 56 

influence responses to exoskeletons, possibly reducing the accuracy of predicted responses [18, 19]. 57 

Additionally, when specific measurement sets are unavailable for model parameter tuning, population-58 

average based assumptions about musculoskeletal properties and motor control are required [17, 20-22]. 59 

However, musculoskeletal properties and motor control are highly uncertain for individuals with motor 60 

impairments, today’s most ubiquitous ankle exoskeleton users [19, 20, 22, 23]. Musculotendon dynamics and 61 

motor complexity are known to explain unintuitive exoskeleton impacts on gait energetics, suggesting that 62 

uncertain musculotendon parameters and motor control may limit the accuracy of predicted changes in gait 63 

with ankle exoskeletons [19, 21, 24]. Predictions of exoskeleton impacts on gait using physiological models, 64 

therefore, require accurate estimates of adaptation, musculotendon parameters, and motor control.  65 

 66 

Conversely, data-driven approaches address uncertainty in user-exoskeleton dynamics by representing the 67 

system entirely from experimental data. For instance, human-in-the-loop optimization provides a model-free 68 

alternative to physics-based prediction of exoskeleton responses by automatically exploring different 69 

exoskeleton torque control strategies for an individual [6, 7]. This experimental approach requires no prior 70 

knowledge about the individual: optimization frameworks identify torque control laws that decrease 71 

metabolic rate relative to baseline for an individual using only respiratory data and exoskeleton torque 72 

measurements. However, experimental approaches to exoskeleton optimization require the optimal design to 73 

be tested, potentially making the search for optimal device parameters time-intensive. Alternatively, machine 74 

learning algorithms, such as the Random Forest Algorithm, have used retrospective gait analysis and clinical 75 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.06.18.105163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.105163


 4 

exam data to predict changes in joint kinematics in response to different ankle-foot orthosis designs in 76 

children with cerebral palsy [8]. This study reported good classification accuracy, though predictions may 77 

not generalize to new orthosis designs. Unlike physiologically-detailed or physics-based models, human-in-78 

the-loop optimization and many machine learning models are challenging to interpret, limiting insight into 79 

how a specific individual’s physiology influences response to exoskeleton torque. A balance between 80 

physiologically-detailed and model-free or black-box data-driven approaches may facilitate the prediction 81 

and analysis of responses to ankle exoskeletons without requiring extensive knowledge of an individual’s 82 

physiology.  83 

 84 

In this work, we investigated a subject-specific data-driven modeling framework – phase-varying models – 85 

that may fill the gap between physiologically-detailed model-based and model-free experimental approaches 86 

for predicting gait with exoskeletons. Phase-varying models typically have linear structure whose parameters 87 

are estimated from data, enabling both prediction and analysis of gait with exoskeletons [25, 26]. Unlike 88 

physiologically-detailed models, phase-varying models do not require knowledge of the physics or control 89 

of the underlying system. Unlike experimental approaches, the model-based framework enables prediction 90 

of responses to untested exoskeleton designs or control laws.  91 

 92 

Phase-varying models leverage dynamical properties of stable gaits derived from Floquet Theory, which 93 

ensures that the convergence of a perturbed trajectory to a stable limit cycle may be locally approximated 94 

using time-varying linear maps [27]. Similar principles have been shown to generalize to limit cycles in non-95 

smooth or hybrid systems, such as human walking [28]. Moreover, phase-varying modeling principles have 96 

been applied to biological systems, identifying linear phase-varying dynamics to investigate gait stability and 97 

predict changes in kinematics in response to perturbations [25, 26, 29-31]. Responses to ankle exoskeleton 98 

torques may be similarly defined as perturbations off an unperturbed (i.e. zero torque) gait cycle, suggesting 99 

that the principles of phase-varying models will generalize to walking with exoskeletons. To the best of our 100 
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knowledge, phase-varying models have never been used to study walking with exoskeletons and the extent 101 

to which the principles underlying phase-varying models of locomotion generalize to walking with 102 

exoskeletons is unknown.  103 

 104 

To determine if phase-varying models represent useful predictive tools for locomotion with exoskeletons, the 105 

purpose of this research was to evaluate the ability of subject-specific phase-varying models to predict 106 

kinematic and myoelectric responses to ankle exoskeleton torque during walking. We predicted responses to 107 

exoskeletons in unimpaired adults walking with passive ankle exoskeletons under multiple dorsiflexion 108 

stiffness conditions. We focused on three related classes of phase-varying models with different structures, 109 

complexity, and expected prediction accuracies: a phase-varying (PV), a linear phase-varying (LPV), and a 110 

nonlinear phase-varying (NPV) model. Since passive exoskeletons typically elicit small changes in joint 111 

kinematics and muscle activity, we expected the validity of Floquet Theory for human gait to extend to gait 112 

with exoskeletons, indicating that the LPV model should accurately predict responses to passive exoskeleton 113 

torque [1, 25-27, 29]. We, therefore, hypothesized that the LPV models would predict kinematic and 114 

myoelectric responses to torque more accurately than the PV model and as accurately as the NPV model. To 115 

exemplify the potential utility of subject-specific phase-varying models in gait analysis with ankle 116 

exoskeletons, we show how varying the length of model prediction time horizon may inform measurement 117 

selection for exoskeleton design and control. To assess the viability of data-driven phase-varying models in 118 

gait analysis settings, we evaluated the effect of limiting the size of the training dataset on prediction 119 

accuracy.  120 

 121 

IV. METHODS 122 

A. Experimental protocol 123 

We collected kinematic and electromyographic (EMG) data from 12 unimpaired adults (6 female / 6 male; 124 

age = 23.9 ± 1.8 years; height = 1.69 ± 0.10 m; mass = 66.5 ± 11.7 kg) during treadmill walking with bilateral 125 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 21, 2020. ; https://doi.org/10.1101/2020.06.18.105163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.18.105163


 6 

passive ankle exoskeletons at a self-selected speed. Each participant performed two sessions on separate days 126 

within a one week span. In the first session, we modified the exoskeletons for fit and comfort and performed 127 

a 20-minute practice session. Additional detail regarding experimental setup, input variable calculations, 128 

modeling algorithms, and statistical analyses can be found in Supplemental – S1.  129 

 130 

Data were collected during the second session. We monitored changes in kinematics using a modified Helen-131 

Hayes marker set [32] and a 10-camera motion capture system (Qualisys AB, Gothenburg, SE), and measured 132 

muscle activity using 14 wireless EMG sensors (Delsys Inc., Natick, USA). The EMG sensors were placed 133 

bilaterally on the soleus, medial gastrocnemius, tibialis anterior, vastus medialis, rectus femoris, lateral 134 

hamstrings, and gluteus medius following SENIAM guidelines [33]. Participants performed four randomized 135 

trials on a split-belt instrumented treadmill (Bertec Corp., Columbus, USA) under different exoskeleton 136 

conditions (Fig. 1). Unlike many clinical exoskeletons (ankle-foot orthoses), whose torque profiles are 137 

smooth functions of ankle angle, the passive exoskeletons used in this study generated ankle plantarflexion 138 

torques as a piecewise-linear function of the user’s ankle angle, and the exoskeleton’s neutral angle and 139 

rotational stiffness. The exoskeletons did not resist plantarflexion, similar to other experimental devices [1, 140 

3]. The four exoskeleton conditions were set to sagittal-plane stiffness values: K0 (0 Nm/deg), K1 (1.17 141 

Nm/deg), K2 (3.26 Nm/deg), and K3 (5.08 Nm/deg), a range known to alter kinematics and myoelectric 142 

signals during gait (Fig. 1) [1]. Participants walked for six minutes per trial, the last four of which were 143 

recorded, and could rest between trials.  144 

 145 

 146 
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Fig. 1.  Left box: Data were collected during treadmill walking with bilateral ankle exoskeletons that used linear springs to 

resist dorsiflexion. Increasing exoskeleton stiffness (K0–K3) increased exoskeleton torque (𝝉𝒆𝒙𝒐, yellow). Right box: (1) 

Purple dashed arrows represent responses to exoskeleton torque, which were defined as deviations from the average zero-

torque gait cycle (K0). (2) Response data from the training set were used to fit each model. Input variables included joint 

kinematics, muscle activity, their time derivatives, and exoskeleton torque. (3): Models were validated by predicting 

responses from the held-out torque condition using the models fit in (2). Right box (bottom): The three phase-varying 

models were fit and evaluated on the same training and validation sets.  𝑴𝚫,𝝓 = generic model function of prediction horizon and phase; X = experimental inputs; Y = experimental outputs; �̂� = 

predicted outputs; 𝝓 = phase; 𝚫 = prediction horizon; A = linear function; f, g = nonlinear functions; 𝜽 = joint kinematics; 𝜶 = muscle activation; 𝝉𝒆𝒙𝒐 = exoskeleton torque. 

 147 

The marker trajectories were low-pass filtered at 6 Hz using a zero-lag fourth-order Butterworth filter [5]. 148 

We computed joint kinematics by scaling a generic 29 degree-of-freedom skeletal model to each participant’s 149 

skeletal geometry and body mass using the inverse kinematics algorithm in OpenSim 3.3 to convert marker 150 

trajectories into joint kinematics [18, 34]. To compute linear EMG envelopes, we high-pass filtered the EMG 151 

data at 40 Hz, rectified the data, and low-pass filtered at 10 Hz [9]. Kinematic and EMG data were pre-152 

processed using custom scripts in MATLAB (MathWorks, Natick, USA).  153 

 154 

B. Gait phase and phase-varying models 155 

Unlike the typical gait cycle definition – the percentage of time between successive foot contact events – we 156 

used a gait phase based on kinematic posture, which we expected to improve predictions of a system’s 157 

response to perturbations from the exoskeletons [35]. Using a posture-based gait phase groups kinematically-158 
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similar measurements at a specific phase, reducing variance in the data at any point in the cycle, and ensuring 159 

that similar postures across exoskeleton conditions were used during model fitting and prediction. Moreover, 160 

Floquet Theory ensures that phase is well-defined using any periodically-varying measurements [27]. We 161 

used the Phaser algorithm, which estimates a system’s phase using arbitrary input signals considered to be 162 

phase-locked, to generate gait phase estimates as a function of left and right leg hip flexion angles, similar to 163 

a phase variable proposed to control robotic prostheses [30, 35]. Following gait phase estimation, we modeled 164 

gait using three subject-specific models of response to exoskeletons: 165 

 166 

1) Phase-varying model 167 

The phase-varying (PV) model was our simplest model and predicts outputs purely as a function of gait 168 

phase. Rather than taking exoskeleton torque as an input, PV model predictions are similar to guessing the 169 

average of the training data at a certain gait phase (Table I) [30, 36].  The PV model takes a phase estimate 170 

as an input and returns a prediction of the system’s outputs, �̂�𝜙 ∈ ℝ𝑀, where M is the number of outputs. The 171 

PV model was parameterized using a seventh-order Fourier Series as a function of phase and served as a 172 

lower bound on prediction accuracy. 173 

 174 

2) Linear phase-varying model 175 

The linear phase-varying (LPV) model is a discrete-time model that predicts system outputs at a future phase 176 

based on measurements at an initial phase (Table I). For any phase, 𝜙, from 0-100% of a stride and a 177 

prediction horizon, 𝛥, the LPV model estimates a map 𝐴𝜙,𝛥 ∈ ℝ𝑀×𝑁+1, from the initial phase to the final 178 

phase, where 𝑁 + 1 denotes the number of input variables (𝑁) plus a constant term. At 64 initial phases 179 

spaced equally over the gait cycle, we fit discrete maps between initial and final phases using weighted least-180 

squares regression [25, 26, 29]. We weighted each observation based on the proximity of its phase estimate 181 

to the prescribed initial phase using a Gaussian weighting scheme. For each prediction horizon, the LPV 182 
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model was represented as a continuously phase-varying function, 𝐹𝐿𝑃𝑉,𝛥(𝜙) ≈ 𝐴𝜙,𝛥, parametrized by a 183 

Fourier Series. We expected the LPV model’s prediction accuracy to exceed that of the PV model [27].  184 

 185 

3) Nonlinear phase-varying model 186 

While the LPV model should approximate nonlinearities in the dynamics of response to torque, we selected 187 

a nonlinear phase-varying (NPV) model that serves as an upper bound on prediction accuracy. Specifically, 188 

we used a three-layer feedforward neural network – a universal function approximator (Table I) [37]. Neural 189 

networks are considered state-of-the-art predictors and are used in numerous domains, including image 190 

recognition and robotics [38]. The NPV model’s parameters were tuned for each prediction horizon and 191 

included phase as an input. We expected the NPV model’s prediction accuracy to meet or exceed that of the 192 

LPV model. 193 

 194 

Table I: Summary of model structures and expected prediction accuracies. 195 

Model Functional form Linear terms Nonlinear terms 
Expected 

prediction accuracy 

Phase-varying (PV) �̂�𝜙 = 𝐹𝑃𝑉(𝜙) None Phase Low 

Linear phase-varying (LPV) �̂�𝜙+𝛥 = 𝐹𝐿𝑃𝑉,𝛥(𝜙)𝑋𝜙 Inputs Phase Moderate 

Nonlinear phase-varying (NPV) �̂�𝜙+𝛥 = 𝐺𝑁𝑃𝑉,𝛥(𝜙, 𝑋𝜙) None Phase 
Inputs 

Moderate-High 

F = model functions parameterized by a Fourier Series; G = feedforward neural network model; 𝜙 = phase; 𝛥 = prediction 
horizon; 𝑋 = inputs; �̂� = predicted outputs 

 196 

C. Inputs and output variables  197 

To reflect clinically-relevant measurements and the dynamics of the neuromusculoskeletal system, we 198 

selected input variables expected to encode musculoskeletal dynamics and motor control: 3D pelvis 199 

orientation and lower-limb and lumbar joint angles, processed EMG signals, and their time derivatives at an 200 

initial phase, 𝜙 [1, 2, 39]. We appended ten time-history exoskeleton torque samples per leg – uniformly 201 

distributed between the initial and final phases – to the inputs, resulting in N = 80 inputs [6, 12]. Our decision 202 
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to use exoskeleton torque samples was motivated by Floquet Theory, according to which an individual’s 203 

posture at a future time is a linear function of their initial posture and the exoskeleton torque signal between 204 

initial and final times [27]. Model outputs (M = 20) included right and left leg sagittal-plane hip, knee and 205 

ankle kinematics, and EMG signals from each muscle at a future phase, 𝜙 + 𝛥, offset from the initial phase 206 

by prediction horizon 𝛥. While phase-varying models may also predict joint moments, we omitted prediction 207 

of kinetic outcomes due to the presence of sporadic poor force plate strikes for some gait cycles in our dataset. 208 

We modeled response to exoskeleton torque as the deviation from the unperturbed gait cycle (i.e. the zero-209 

torque, K0 condition) by subtracting the phase-averaged zero-torque gait cycle from each exoskeleton 210 

condition [26, 29]. All data were de-meaned and scaled to unit variance of the training set. Additional detail 211 

regarding the selection of torque as model inputs and experimental ground reaction forces can be found in 212 

Supplemental – S2. 213 

 214 

We first computed each model’s ability to predict responses to torque within the range of exoskeleton 215 

stiffness levels used to train the models (interpolation) by training each model using the K0, K1 and K3 216 

datasets and validating by predicting outputs from the held-out K2 dataset using inputs from the same dataset 217 

at an initial gait phase. While “what-if” predictions – predicting responses to “untested” (held-out) torques 218 

using nominal kinematics and EMG from a “tested” condition (e.g. K0) – are needed to for predictions to 219 

inform passive exoskeleton design, we chose to predict using the held-out inputs to provide unambiguous 220 

interpretation of each model’s prediction accuracy. In “what-if” predictions, errors stem from both poor 221 

model fit and poor matches between the “tested” and “untested” input data at the initial phase. By instead 222 

predicting using “untested” inputs, our predictions errors reflect only the models’ fits to each participant’s 223 

dynamics and provide upper bounds on the potential accuracy of “what-if” predictions. We selected the K2 224 

condition for validation in our experimental design because responses in this intermediate torque condition 225 

should be encoded by the K0, K1, and K3 conditions. During validation, experimental outputs from the K2 226 

condition were compared to the corresponding model predictions.  227 
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 228 

We quantified each model’s prediction accuracy using the relative remaining variance (RRV) of model 229 

predictions compared to the held-out experimental data [25]. The RRV is calculated as the ratio of the 230 

variances of the prediction error and the experimental data. An RRV value of zero implies a perfect 231 

prediction, while unity RRV values can be achieved by predicting the mean of the validation data. Since we 232 

de-meaned the data and predicted deviations from the zero-torque condition, RRV values below unity 233 

indicate that predictions are more accurate than guessing constant (e.g. zero) response to exoskeleton torque. 234 

We computed RRV values for each output using a bootstrapping procedure with 200 iterations [25]. We 235 

computed RRV values for each model over the entire validation time series of approximately 240 strides. 236 

During analysis, the right and left leg RRV values for each output variable were averaged, as we expected 237 

nearly symmetric responses from our unimpaired participants. 238 

 239 

We evaluated the LPV and NPV models’ prediction accuracies for the K2 condition over a range of prediction 240 

horizons, in increments of 6.25% (1/16th of a stride), between 6.25 and 100% of a gait cycle. When optimizing 241 

exoskeleton torque profiles, predicting responses using measurements at an initial phase (e.g. initial contact 242 

of the foot with the ground) to achieve a desired outcome at some final phase may be of interest, such as 243 

improving midstance knee kinematics in children with cerebral palsy [2, 3]. However, as the prediction 244 

horizon increases, coherence between measurements at initial and final phases decreases due to nonlinearities 245 

in musculoskeletal dynamics, resulting in prediction accuracies reducing to those of the average prediction 246 

(i.e. the PV model), rather than a stride-specific prediction [39-41]. Identifying the maximum prediction 247 

horizon at which initial measurements improve predictions at a final phase may inform exoskeleton control 248 

laws or design criteria. Therefore, we identified the largest prediction horizon lengths at which RRV values 249 

were significantly less than those of the PV model, which were constant across prediction horizons. 250 

 251 
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The amount of data required to accurately predict response to exoskeletons will restrict the settings in which 252 

phase-varying models are practical, such as in clinical gait analysis where datasets typically contain only a 253 

few gait cycles [2, 8]. We quantified the impact of training set size on prediction accuracy by determining 254 

the amount of training data needed for prediction accuracies of the K2 condition to approach to their values 255 

when models were fit using the entire training set (RRVfull). We iteratively reduced the training set size by 256 

10% of the full size (approximately 24 strides per exoskeleton condition), removing data from the end of 257 

each torque condition in the training set, providing a range of 24-240 strides of training data per condition. 258 

For all training set sizes, we evaluated models using the full-length validation set.  259 

 260 

To test each model’s generalizability across a range of exoskeleton torque conditions, we separately predicted 261 

responses to torque in the K1, K2, and K3 datasets, termed held-out conditions, at a 12.5% stride prediction 262 

horizon (1/8th of a stride). Predictions over these conditions evaluated both the models’ ability to interpolate 263 

(K1 and K2) and extrapolate (K3) responses to exoskeleton torques included in the training set. For each held-264 

out condition (K1, K2, or K3), we trained the models using kinematic, EMG, and exoskeleton torque inputs 265 

from the zero-torque (K0) condition and the two non-zero-torque exoskeleton conditions not held out for 266 

validation. We evaluated each model by predicting output variables from the held-out exoskeleton condition 267 

using input data at an initial gait phase in the same condition. We compared prediction accuracies across 268 

held-out conditions.  269 

 270 

To compare differences in performance across the three models, we identified differences in the models’ 271 

prediction accuracies using repeated-measures analysis of variance tests at a significance level of α = 0.05. 272 

When significant differences between models emerged, we identified pair-wise differences between models 273 

using post-hoc paired t-tests (α = 0.05) and a Holm-Sidak step-down correction for multiple comparisons [9, 274 

42]. We report percent reductions in RRV values compared to the PV model and percent differences between 275 

the LPV and NPV models.  276 
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 277 

V. RESULTS  278 

The ankle exoskeletons had the largest impact on ankle kinematics, smaller impacts on knee and hip 279 

kinematics, and variable impacts on muscle activity (Fig. 2). Compared to the K0 condition, the peak ankle 280 

dorsiflexion angle during single-limb support decreased significantly in the K2 (36.7%) and K3 (40.0%) 281 

conditions (p < 0.020). Average integrated EMG increased slightly, but not significantly in the hamstrings 282 

and tibialis anterior (p > 0.066) in the K2 and K3 conditions compared to the K0 condition.  283 

 284 

Fig. 2.  Top:  Average kinematic (left) and EMG (right) data for one participant who exhibited large, repeatable 

responses to exoskeleton torque and high model prediction accuracies (P03). Black lines show the zero-torque condition 

(K0) that was subtracted from all conditions to reflect responses to exoskeleton torque. Bottom: Average (±1SD) 

kinematic and myoelectric responses for all participants in each torque condition. Brackets denote significant differences 

between exoskeleton conditions according to post-hoc paired t-tests (α = 0.05) and a Holm-Sidak step-down correction. 

Thin gray lines represent individual legs. 
 285 

 286 

When validating on the held-out K2 condition, all three models predicted kinematic but not myoelectric 287 

responses to exoskeleton torque (Fig. 3, dashed lines). At a prediction horizon of Δ = 12.5% of a stride, the 288 

LPV model’s prediction accuracy at the ankle – where the largest responses to torque were observed – was 289 

41.6 ± 16.0% more accurate than the PV model (p < 0.001) but not the NPV model (p = 0.130; Fig. 4; 290 
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 291 

Table II). Similarly, the LPV model’s prediction accuracy at the hip was 41.7 ± 12.7% better than the PV 292 

model (p < 0.001). However, as prediction horizon increased, the average LPV and NPV model prediction 293 

accuracies of all outputs except the ankle approached those of the PV model. Changes in knee and hip 294 

kinematics were predicted more accurately than the baseline PV model for prediction horizons shorter than 295 

Δ = 18.75% of a stride (p < 0.001) in the LPV model and Δ = 12.5% of a stride (p < 0.001) in the NPV model 296 

(Fig. 5). At the ankle, the LPV model predicted kinematics 29.1–60.0% more accurately than the PV model 297 

for all prediction horizons (p < 0.001). The NPV model’s predictions were significantly more accurate than 298 

those of the PV model for all prediction horizons except 25.0% and 75.5–81.3% of a stride (p < 0.001).  299 

 300 

 

Fig. 3. Kinematic and myoelectric experimental (black) and predicted (colors) responses to torque for one participant 

who exhibited large responses to the exoskeletons (P03). Predictions are shown for a prediction horizon of 12.5% of a 

stride for the PV (green), LPV (orange), and NPV (purple) models. The three held-out conditions are denoted with 

solid (K1), dashed (K2), and dotted (K3) lines. Lines represent the average (±1SD; shaded region) data and predictions 

over all gait cycles in the corresponding validation dataset. The experimental data show that the K2 and K3 responses 

to torque were more similar to each other than to the K1 response. The PV model predictions were similar across held-

out conditions, while the LPV and NPV models scaled with exoskeleton torque. Full joint trajectories may be 

reproduced by rescaling and adding the average unperturbed gait cycle to the predictions. All comparisons used 

paired t-tests (α = 0.05) with a Holm-Sidak step-down correction for multiple comparisons. 
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 301 

 302 

 

Fig. 4.  Average (±1SD) prediction accuracies for all participants and held-out conditions at a prediction horizon of 

12.5% of a stride. Gray dots represent individual legs. Colored brackets denote statistically significant differences 

between held-out conditions for each model. Black horizontal bars denote significant differences between models 

across all three (solid) or two (dashed) held-out conditions. The large variance in the LPV model’s predictions of rectus 
femoris and gastrocnemius responses in the held-out K3 condition were due to bad predictions (RRV > 2) in a small 

number of legs. All comparisons used paired t-tests (α = 0.05) with a Holm-Sidak step-down correction for multiple 

comparisons. 
 303 

Predictions of myoelectric responses were poor (RRV ≈ 1.00) across all muscles and models, except at the 304 

shortest prediction horizon (Δ = 6.25%). At the shortest prediction horizon, both the LPV and NPV models’ 305 

predictions for the hamstrings, rectus femoris, and gastrocnemius were 10.7–15.0% more accurate than 306 

those of the PV model (p < 0.001; Fig. 5). 307 

 308 
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Table II: Average (± 1SD) RRV values for kinematic and myoelectric predictions at a 12.5% prediction 309 

horizon. 310 

 311 

 312 

  
Fig. 5.  Prediction accuracy decreased with increasing prediction horizon. The PV model’s predictions (green) were 
constant across prediction horizons. Horizontal bars denote predictions that were significantly more accurate than the 

PV model. The LPV (top; orange) and NPV (bottom; purple) models’ prediction accuracies approached nearly constant 

values for prediction horizons beyond 25.0% of a stride for kinematic responses and 6.25% of a stride for myoelectric 

responses. The LPV and NPV models’ predictions of ankle kinematics remained more accurate than PV model 

predictions across almost all prediction horizons, while knee and hip kinematic predictions were similar to those of the 

PV model beyond 25.0% of a stride.  
 313 

 

Output PV LPV NPV 
Ankle angle†‡ 0.50 ± 0.14 0.30 ± 0.14 0.33 ± 0.14 
Knee angle†‡ 0.62 ± 0.24 0.45 ± 0.20 0.41 ± 0.19 
Hip angle†‡ 0.77 ± 0.15 0.44 ± 0.13 0.51 ± 0.12 

Tibialis anterior 0.90 ± 0.08 0.97 ± 0.28 0.95 ± 0.15 
Soleus 0.86 ± 0.21 1.02 ± 0.66 1.04 ± 0.64 

Gastrocnemius 0.89 ± 0.12 0.91 ± 0.16 0.93 ± 0.19 
Vastus medialis 0.92 ± 0.12 0.93 ± 0.15 0.98 ± 0.20 
Rectus femoris 0.87 ± 0.21 0.91 ± 0.38 0.94 ± 0.42 

Lateral hamstrings 0.93 ± 0.08 0.91 ± 0.13 0.93 ± 0.12 
Gluteus medius 0.95 ± 0.08 0.96 ± 0.10 0.98 ± 0.10 

LPV = Linear phase-varying model; NPV = Nonlinear phase-varying model; PV = Phase-varying 
model 
† Significant difference in prediction accuracy between the PV and LPV models 
‡ Significant difference in prediction accuracy between the PV and NPV models 
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The LPV and NPV models’ prediction accuracies improved with increasing training set size. As expected, 314 

the PV model’s prediction accuracy was nearly constant across training set sizes (p > 0.005; Fig. 6). For a 315 

prediction horizon of Δ = 12.5% of a stride, the LPV model’s hip (RRV = 0.81) and knee (RRV = 0.78) 316 

prediction accuracies were significantly worse than RRVfull when using less than 50 strides of training data 317 

per exoskeleton condition (p < 0.001). Similarly, the NPV model’s hip and knee prediction accuracies 318 

approached RRVfull with approximately 50 strides of training data per condition (p < 0.001).The LPV model 319 

required more data – up to 150 strides per condition – for prediction accuracies to approach RRVfull at the 320 

ankle, gastrocnemius, and tibialis anterior (p < 0.001), though predictions were only 0.02–0.05 RRV points 321 

greater than RRVfull with 75 strides of training data per condition. The NPV model’s myoelectric prediction 322 

accuracies approached RRVfull, in 25–75 strides of training data per condition (p < 0.001; Fig. 6).  323 

 324 

 325 
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Fig. 6. Average (±1SD; shaded region) prediction accuracy of kinematic (left) and myoelectric (right) outputs for the PV 

(green), LPV (orange), and NPV (purple) models over training set sizes ranging from 24 to 240 cycles (RRVfull). Prediction 

accuracies were reported at a 12.5% stride prediction horizon. Orange (LPV) and purple (NPV) horizontal bars denote 

the training set sizes that yielded significantly worse predictions than those of the full training set. The PV model’s 
prediction accuracies were not significantly different from RRVfull at any training set size. 

 326 

When validating on the held-out K1, K2, and K3 conditions, the LPV and NPV model predictions reflected 327 

experimental changes in response between conditions (Fig. 3). For all models at a 12.5% stride prediction 328 

horizon, predictions of responses in the held-out K1 condition (interpolation) were 0.10–0.28 RRV points at 329 

the ankle and 0.04–0.09 points in the hamstrings less accurate than predictions of the K2 or K3 datasets (p < 330 

0.001). Conversely, no statistical differences in prediction accuracies of the held-out K2 (interpolation) and 331 

K3 (extrapolation) conditions were identified (Fig. 4). Improvements in kinematic prediction accuracy of the 332 

LPV model compared to the PV model were identified across the held-out K1, K2, and K3 conditions (p < 333 

0.001). Differences between the NPV and PV models’ kinematic prediction accuracies in the held-out K1 334 

condition did not reach significance at the knee or ankle. 335 
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VI. DISCUSSION 336 

We evaluated the ability of subject-specific phase-varying models to predict kinematic and myoelectric 337 

responses to ankle exoskeleton torques during treadmill walking. When predicting across three exoskeleton 338 

torque conditions, both linear and nonlinear models predicted kinematic responses to exoskeletons without 339 

knowledge of the specific user’s physiological characteristics, supporting their potential utility as predictive 340 

tools for exoskeleton design and control. To our knowledge, this is the first study to predict kinematic and 341 

myoelectric responses to ankle exoskeletons using phase-varying models. Consistent with Floquet Theory 342 

and prior models of human locomotion, LPV models appear appropriate for predicting responses to 343 

exoskeleton torque over short prediction horizons, evidenced by its similar prediction accuracy to the more 344 

complex NPV model and improved prediction accuracy over the less complex PV model [25-27, 29].  345 

 346 

The small and variable responses to exoskeleton torque exhibited by the unimpaired adults in this work 347 

highlight the challenge of altering kinematics with passive ankle exoskeletons. We found that even stiff 348 

exoskeletons (K3 = 5.08 Nm/deg) only altered ankle kinematics on average by six degrees and integrated 349 

muscle activity by 14%. These small changes may correspond to larger changes in joint powers or metabolic 350 

demands and indicate that the present study is a rigorous test case [1, 2, 5, 24]. Despite small changes in gait, 351 

the LPV model’s predictions explained more of the variance in kinematic responses to exoskeletons than the 352 

PV model, regardless of whether predictions interpolated (K1 and K2) or extrapolated (K3) relative to the 353 

training set. The LPV model’s ability to predict kinematics within and slightly beyond the available training 354 

data supports its potential utility for predicting responses to untested exoskeleton designs or control laws. 355 

However, predictions of the held-out K1 condition highlight the importance of selecting experimental 356 

conditions that encode complex responses to torque.  357 

 358 

Our hypothesis that the LPV model would predict kinematic and myoelectric responses more accurately than 359 

the PV model and as accurately as the NPV model was partially supported. The LPV model’s kinematic and 360 
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myoelectric predictions were more accurate than those of the PV model only for prediction horizons less than 361 

18.75% and 6.25% of a stride, respectively, but the LPV and NPV models exhibited similar prediction 362 

accuracies across prediction horizons. The LPV and NPV models’ similar predictions support research 363 

demonstrating that nonlinear spring-loaded inverted pendula (SLIPs) have similar predictive accuracy to 364 

linear models of human movement [25]. Compared to a nonlinear SLIP, the NPV model’s feedforward neural 365 

network imposed fewer restrictions on model structure and enabling greater differences in prediction 366 

accuracy compared to a linear model. Therefore, the similarity of LPV and NPV model predictions supports 367 

the extension of Floquet Theory to gait with exoskeletons and indicates that, for rhythmic locomotion at a 368 

constant speed over level ground, linear phase-varying models have sufficiently complex structure to predict 369 

kinematic responses to exoskeletons [25-27, 29]. 370 

 371 

We observed comparable kinematic prediction accuracy to studies using physics-based and data-driven 372 

models of locomotion. Maus et al. evaluated multiple models’ abilities to predict center-of-mass height 373 

during running and reported accuracies ranging from RRV ≈ 0.15 at a 15% prediction horizon to RRV ≈ 0.85 374 

beyond an 80% stride prediction horizon, for an exemplary participant [25]. Within a similar range of 375 

prediction horizons, the LPV model predicted kinematics across participants with average accuracies ranging 376 

from (0.30 < RRV < 0.45) at a 12.5% prediction horizon and (0.34 < RRV < 0.77) at an 81.3% prediction 377 

horizon. Similarly, Drnach et al. [43] used a hybrid linear model to predict response to functional electrical 378 

stimulation, reporting median RRV values (transformed from a fitness score) ranging from approximately 379 

0.11-1.04. However, the average unperturbed gait cycle was not subtracted from the data before computing 380 

the fitness score in [43]. The average unperturbed cycle accounts for a substantial portion of the variance in 381 

the perturbed signals, providing a less conservative prediction accuracy statistic than the RRV presented here. 382 

For example, if the unperturbed cycle had not been subtracted from the data in the present study, the LPV 383 

model’s ankle predictions for one participant who exhibited large responses to torque would be RRV = 0.08 384 

rather than the more conservative 0.21 reported. Comparable prediction accuracies to prior work indicate that 385 
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phase-varying models are potentially useful predictive tools for locomotion with ankle exoskeletons and may 386 

have similar predictive power to physics-based models of locomotion.  387 

 388 

The convergence of LPV and NPV models’ prediction accuracies to an approximately constant value at large 389 

prediction horizons (e.g. RRVLPV ≈ 0.70 for knee kinematics at Δ > 25.0% of a stride) may be useful when 390 

selecting measurements for device design or control. The LPV and NPV models’ kinematic prediction 391 

accuracies decreased rapidly from 6.25% to 18.75% stride prediction horizons, before reaching an 392 

approximately constant value. Ankle predictions remained better than those of the PV model across 393 

prediction horizons. Higher prediction accuracy at the ankle was unsurprising due to large responses to 394 

exoskeletons and the ankle’s direct piecewise-linear relationship to passive exoskeleton torque. Since we 395 

trained on multiple exoskeleton conditions, the dynamics predicting future ankle kinematics are higher-396 

dimensional than the simple exoskeleton torque-ankle angle relationship, suggesting that accurate predictions 397 

of ankle kinematics over large prediction horizons are likely for powered exoskeletons as well.  Unlike the 398 

ankle, hip and knee kinematics were indirectly impacted by exoskeleton torque and their RRV values 399 

approached those of the PV model for prediction horizons above 18.75% of a stride. This result indicates that 400 

stride-specific initial posture and exoskeleton torque were predictive of indirect exoskeleton impacts on 401 

kinematics only for short prediction horizons. At large prediction horizons, measurements at an initial phase 402 

did not, on average, improve predictions of future posture. However, some participants’ hip and knee 403 

kinematics were predicted up to 0.30 RRV points more accurately by the LPV and NPV models than the PV 404 

model across prediction horizons, suggesting that the prediction horizon at which stride-specific 405 

measurements no longer improve predicted responses to exoskeletons depends on the magnitude of the 406 

individual’s response.  The LPV and NPV models’ accurate predictions over short prediction horizons make 407 

them primarily useful for exoskeleton control [10, 11]. For individuals that exhibit large responses to 408 

exoskeletons, however, LPV model-based predictions over stance may inform passive exoskeleton parameter 409 

selection. Guided adaptation and extended practice sessions [1, 17] or powered ankle exoskeletons [5, 6] may 410 
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elicit larger responses than those observed in this study and increase the maximum prediction horizons at 411 

which measurements at an initial posture improve predicted responses to torque, potentially expanding the 412 

settings in which model predictions are useful. 413 

 414 

A major limitation of all three models was their inability to predict myoelectric responses. The LPV and NPV 415 

models predicted myoelectric signals more accurately than the PV model only for the shortest prediction 416 

horizon (Δ = 6.25%). While exoskeleton torque and stiffness are known to impact average plantarflexor 417 

activity, we found that the average unperturbed gait cycle accounted for only 30-60% of the variance in the 418 

K2 data, compared to 60-95% in kinematic signals [1, 9, 12]. Consequently, poor prediction accuracy may 419 

be partially attributed to small changes in muscle activity between the exoskeleton conditions. Alternatively, 420 

kinematic and myoelectric input variables may fail to encode nonlinear musculotendon dynamics, which are 421 

impacted by ankle exoskeletons, between the initial and final phases [21, 40]. Studies predicting muscle 422 

activity using physiologically-detailed models accounted for 60-99% of the variance in myoelectric signals, 423 

though they evaluated predictions on unperturbed walking conditions only [44, 45]. Still, the difference in 424 

prediction accuracy between the phase-varying models and physiologically-detailed models indicates that 425 

encoding musculotendon dynamics in the input variables is likely needed to improve myoelectric predictions 426 

for data-driven phase-varying models and represents an interesting area of future research. 427 

 428 

Another limitation of subject-specific data-driven models, compared to physiologically-detailed models, is 429 

the amount of training data required to predict changes in gait with exoskeletons, which impacts models’ 430 

utility in settings where minimizing data collection duration is critical to mitigating physical and logistical 431 

burdens on participants and families, such as in clinical gait laboratories. Improvements in prediction 432 

accuracy of the LPV and NPV models were small beyond 75–100 strides of training data per exoskeleton 433 

condition. The LPV model required more training data at the ankle, but a similar amount at the hip and knee 434 

to that used by Drnach et al., who trained a hybrid linear model using 45 seconds of data across two 435 
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experimental conditions [43]. For unimpaired, steady-state locomotion, data-driven linear models appear to 436 

require 75–125 strides of training data per condition, which supports their feasibility only in gait analysis 437 

settings with treadmills or long walkways [6, 7]. Additional dimensionality reduction, such as via sparse 438 

regression, may reduce the LPV model’s complexity and demand for training data [25, 31, 46]. However, 439 

when only one training condition or a few strides are collected, as is standard in clinical gait analysis, phase-440 

varying model predictions will be poor and physiologically-detailed or population-specific models may 441 

generate more accurate predictions [8, 19, 44, 45].  442 

 443 

Subject-specific data-driven phase-varying models of gait with exoskeletons have benefits and limitations 444 

compared to predictive musculoskeletal models. While we investigated only a specific subset of phase-445 

varying models, we showed that this class of model can predict kinematic responses to exoskeletons without 446 

detailed knowledge of the physiological and neuromuscular factors influencing responses to exoskeletons. 447 

Conversely, uncertainty in the mechanisms driving complex responses to exoskeletons may limit 448 

physiologically-detailed models’ accuracy [13, 24]. While predictive musculoskeletal models may generate 449 

“what-if” predictions without experimental data, data may be needed to specify initial postures and tune 450 

subject-specific parameters. Phase-varying models can similarly perform subject-specific “what-if” 451 

predictions when application-specific training data are available. Unlike physiologically-detail models, this 452 

and prior work exemplify phase-varying models’ ability to take arbitrary measurements as inputs, enabling 453 

their application using a range of experimental resources [25, 26, 31]. Extending data-driven predictions to 454 

“what-if” scenarios and improving predicted myoelectric responses to exoskeletons, combined with 455 

analytical tools for phase-varying systems(e.g. [31]), may facilitate prediction and analysis of individualized 456 

exoskeleton impacts on gait mechanics and motor control.  457 

 458 
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VII. CONCLUSION 459 

To our knowledge, this is the first study to predict subject-specific responses to ankle exoskeletons using 460 

phase-varying models. Without making assumptions about individual physiology or motor control, an LPV 461 

model predicted short-time kinematic responses to bilateral passive ankle exoskeletons, though predicting 462 

myoelectric responses remains challenging. Results support the utility of LPV models for studying and 463 

predicting response to exoskeleton torque. Improving data-driven models and experimental protocols to study 464 

and predict myoelectric responses to exoskeletons represents an important direction for future research. 465 

Modeling responses to exoskeletons or other assistive devices using a phase-varying perspective has the 466 

potential to inform exoskeleton design for a range of user groups.  467 

  468 
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