
Predicting Weather Using a Genetic Memory 455

Predicting Weather Using a Genetic Memory: a Combi
nation of Kanerva's Sparse Distributed Memory with

Holland's Genetic Algorithms

David Rogers
Research Institute for Advanced Computer Science

MS 230-5, NASA Ames Research Center
Moffett Field, CA 94035

ABSTRACT

Kanerva's sparse distributed memory (SDM) is an associative-memo
ry model based on the mathematical properties of high-dimensional
binary address spaces. Holland's genetic algorithms are a search tech
nique for high-dimensional spaces inspired by evolutionary processes
of DNA. "Genetic Memory" is a hybrid of the above two systems,
in which the memory uses a genetic algorithm to dynamically recon
figure its physical storage locations to reflect correlations between
the stored addresses and data. For example, when presented with
raw weather station data, the Genetic Memory discovers specific fea
tures in the weather data which correlate well with upcoming rain,
and reconfigures the memory to utilize this information effectively.
This architecture is designed to maximize the ability of the system
to scale-up to handle real-world problems.

INTRODUCTION

The future success of neural networks depends on an ability to "scale-up" from
small networks and low-dimensional toy problems to networks of thousands or mil
lions of nodes and high-dimensional real-world problems. (The dimensionality of a
problem refers to the number of variables needed to describe the problem domain.)
Unless neural networks are shown to be scalable to real-world problems, they will
likely remain restricted to a few specialized applications.

Scaling-up adds two types of computational demands to a system. First, there is a
linear increase in computational demand proportional to the increased number of vari
ables. Second, there is a greater, nonlinear increase in computational demand due to

456 Rogers

the number of interactions that can occur between the variables. This latter effect is
primarily responsible for the difficulties encountered in scaling-up many systems.
In general, it is difficult to scale-up a system unless it is specifically designed to
function well in high-dimensional domains.

Two systems designed to function well in high-dimensional domains are Kanerva' s
sparse distributed memory (Kanerva, 1988) and Holland's genetic algorithms
(Holland, 1986). I hypothesized that a hybrid of these two systems would preserve
this ability to operate well in high-dimensional environments, and offer grater func
tionality than either individually. I call this hybrid Genetic Memory. To test its
capabilities, I applied it to the problem of forecasting rain from local weather data.

Kanerva's sparse distributed memory (SDM) is an associative-memory model based
on the mathematical properties of high-dimensional binary address spaces. It can be
represented as a three-layer neural-network with an extremely large nwnber of
nodes (I ,000,000+) in the middle layer. In its standard formulation, the connec

tions between the input layer and the hidden layer (the input representation used by
the system) are flXed, and learning is done by changing the values of the connections

between the hidden layer and the output layer.

Holland's genetic algorithms are a search technique for high-dimensional spaces in
spired by evolutionary processes of DNA. Members of a set of binary strings com
petes for the opportunity to recombine. Recombination is done by selecting two
"successful" members of the population to be the parents. A new string is created
by splicing together pieces of each parent. Finally, the new string is placed into the
set, and some "unsuccessful" older string removed.

"Genetic Memory" is a hybrid of the above two systems. In this hybrid, a genetic al
gorithm is used to reconfigure the connections between the input layer and the hid
den layer. The connections between the hidden layer and the output layer are
changed using the standard method for a sparse distributed memory. The "success"
of an input representation is determined by how well it reflects correlations be
tween addresses and data, using my previously presented work on statistical predic
tion (Rogers, 1988). Thus, we have two separate learning algorithms in the two lev
els. The memory uses the genetic algorithm to dynamically reconfigure its input
representation to better reflect correlations between collections of input variables
and the stored data.

I applied this Genetic Memory architecture to the problem of predicting rain given
only local weather features such as the air pressure, the cloud cover, the month, the
temperature, etc. The weather data contained 15 features, sampled every 4-hours
over a 2O-year period on the Australian coast. I coded each state into a 256-bit ad

dress, and stored at that address a single bit which denoted whether it rained in the 4
hours following that weather state. I allowed the genetic algorithm to reconfigure

the memory while it scanned the file of weather states.

The success of this procedure was measured in two ways. First, once the training
was completed, the Genetic Memory was better at predicting rain than was the stan
dard sparse distributed memory. Second, I had access to the input representations
discovered by the Genetic Memory and could view the specific combinations of fea
tures that predicted rain. Thus, unlike many neural networks, the Genetic Memory
allows the user to inspect the internal representations it discovers during training.

Predicting Weather Using a Genetic Memory 457

Reference Address

01010101101

~ ~
1101100111

1010101010

0000011110

0011011001

1011101100

0010101111

1101101101

0100000110

0110101001

1011010110

1100010111

1 1 1 1 1 100 1 1

Location
Addresses

Radius

o
Dist

Input Data

I 0 I 01 0111 11 11 0 I tI 0 11 I
Select "" + + + + + ,

·_;1 II
• -1 -1 -1 1 1 1 -1 1 -1 1

•
• O·

• 0 • •
• 0 • --1 -1 -1 1 1 1 -1 1 -1 1
• 1· ... _--

o -2 0 2 2 0 0 0 0 0

-1 -1 -1 1 1 1 -1 1 -1 1

, , , , + + + + + 'L
Sums 1-31 -s 1-31 sis 13 I -31 31 -31 3 I

Threshold at 0 + + + + + + + + + +

Output Data I 0 I 0 I 0 I tI tI tI 0 I 1 I 0 11 I
Figure 1: Structure of a Sparse Distributed Memory

SPARSE DISTRmUTED MEMORY

Data
Counters

Sparse distributed memory can be best illustrated as a variant of random-access mem
ory (RAM). The structure of a twelve-location SDM with ten-bit addresses and
ten-bit data is shown in figure 1.

A memory location is a row in this figure. The location addresses are set to random
addresses. The data counters are initialized to zero. All operations begin with ad
dressing the memory; this entails fmding the Hamming distance between the refer

ence address and each of the location addresses. If this distance is less than or equal
to the Hamming radius. the select-vector entry is set to 1. and that location is
termed selected. The ensemble of such selected locations is called the selected set.
Selection is noted in the figure as non-gray rows. A radius is chosen so that only a
small percentage of the memory locations are selected for a given reference address.

When writing to the memory. all selected counters beneath elements of the input da

ta equal to 1 are incremented. and all selected counters beneath elements of the input
data equal to 0 are decremented. This completes a write operation. When reading
from the memory. the selected data counters are summed columnwise into the regis
ter swns. If the value of a sum is greater than or equal to zero. we set the corre
sponding bit in the output data to 1; otherwise. we set the bit in the output data to

O. (When reading. the contents of the input data are ignored.)

458 Rogers

This example makes clear that a datum is distributed over the data counters of the se
lected locations when writing. and that the datum is reconstructed during reading by
averaging the sums of these counters. However, depending on what additional data
were written into some of the selected locations, and depending on how these data
correlate with the original data. the reconstruction may contain noise.

The SDM model can also be described as a fully-connected three-layer feed-forward
neural network. In this model. the location addresses are the weights between the
input layer and the hidden units. and the data counters are the weights between the
hidden units and the output layer. Note that the number of hidden-layer nodes (at
least 1,000 and possibly up to 1,000,(00) is much larger than is commonly used for
artificial neural networks. It is unclear how well standard algorithms. such as back
propagation, would perform with such a large number of units in the hidden layer.

HOLLAND'S GENETIC ALGORITHMS

Genetic Algorithms are a search technique for high-dimensional spaces inspired by
the evolutionary processes of DNA. The domain of a genetic algorithm is a popula
tion of rued-length binary strings and a fitness function, which is a method for evalu
ating the fitness of each of the members. We use this fitness function to select two
highly-ranked members for recombination. and one lowly-ranked member for re
placement (The selection may be done either absolutely. with the best and worst
members always being selected. or probabilisticly. with the members being chosen
proportional to their fitness scores.)

The member selected as bad is removed from the population. The two members se
lected as good are then recombined to create a new member to take its place in the
population. In effect, the genetic algorithm is a search over a high-dimensional
space for strings which are highly-rated by the fitness function.

The process used to create new members of the population is called crossover. In a
crossover. we align the two good candidates end-to-end and segment them at one or
more crossover-points. We then create a new string by starting the transcription of
bits at one of the parent strings, and switching the transcription to the other parent
at the crossover-points. This new string is placed into the population. taking the
place of the poorly-rated member.

11 •• I'~IOllllll •••• First parent

1101101101: 111:11".110 ... Second parent

~ ~ ~
New member

Figure 2: Crossover of two binary strings

By running the genetic algorithm over the population many times, the population
"evolves" towards members which are rated more fit by our fitness function.

Weights changed using
perceptron rule

-..
Weights changed using
Genetic Algorithm

Predicting Weather Using a Genetic Memory 459

Output Layer

Hidden Unit Layer

Input Layer

Figure 3: Structure of a Genetic Memory

Holland has a lIIaUIt~lIIaUl:at pruuI Uta&. g~l1~Ul: atgunuul1s uastAI UI1 Ule crossover
procedure are an extremely efficient method for searching a high-dimensional space.

GENETIC MEMORY

Genetic Memory is a hybrid of Kanerva's Sparse Distributed Memory and Holland's
Genetic Algorithms. In this hybrid, the location addresses of the SDM are not held
constant; rather, a Genetic Algorithm is used to move them to more advantageous
positions in the address space. If we view SDM as a neural net, this hybrid uses a ge
netic algorithm to change the weights in the connections between the input layer and
the hidden unit layer, while the connections between the hidden unit layer and the
output layer at changed using the standard method for a SDM.

Most other work which combined neural networks and genetic algorithms kept mul
tiple networks; the Genetic Algorithm was used to recombine the more successful
of these networks to create new entire networks.

In a Genetic Memory there is a single network with different algorithms changing
the weights in different layers. Thus, a Genetic Memory incorporates the Genetic
Algorithm directly into the operation of a single network.

AUSTRALIAN WEATHER DATA

The weather data was collected at a single site on the Australian coast. A sample
was taken every 4 hours for 25 years; the me contains over 58,000 weather samples

The file contained 15 distinct features, including year, month, day of the month,
time of day, pressure, dry bulb temperature, wet bulb temperature, dew point, wind
speed, wind direction, cloud cover, and whether it rained in the past four hours.

For this work, I coded each weather sample into a 256-bit word. Each weather sam

ple was coded into a 256-bit binary address, giving each feature a 16-bit field in that

address. The feature values were coarse-coded into a simple thennometer-style

code. For example, figure 4 shows the code used for month.

PROCEDURE FOR WEATHER PREDICTION

In the standard SDM model, the locations addresses are held constant. In a Genetic
Memory, the location addresses are reconfigured using a Genetic Algorithm.

460 Rogers

JAN: 1111111100000000 JUL: 1000000001111111

FEB: 0111111111000000 AUG: 1100000000111111

MAR: 0011111111100000 SEP: 1111000000011111

APR: 0000111111110000 OCT: 1111100000001111

MAY: 0000011111111000 NOV: 1111110000000011

JUN: 0000001111111110 DEC: 1111111000000001

Figure 4: 16-bit code used for month

The fitness function used is based on my work on statistical prediction and presented
at NIPS-88 [Rogers 1988]. This work assigns a number to each physical storage loca
tion (a row in the figure) which is a measure of the predictive ness of that location.
Highly-predictive locations are recombined using crossover; the newly-created loca
tion address is given to a location which is relatively unpredictive. The data
counter is a measure of the co"elation between the selection of a location and the
occurrence of a given bit value. Thus, we can use the data counters to judge the fit
ness, i.e., the predictiveness, of each memory location.

To train the memory, we present the memory with each weather state in turn. The
memory is not shown the data a multiple number of times. For each state, the mem

ory is addressed with the 256-bit address which represents it. non is written to the

memory if it does not rain in the next four hours, and "1" if it does. After the mem
ory has seen a given number of weather samples, the Genetic Algorithm is per
formed to replace a poorly-predictive location with a new address created from two
predictive addresses.

The procedure is continued until the memory has seen 50,000 weather samples, and
has performed -5,000 genetic recombinations.

ANAL YSIS OF RESULTS

The initial results from the Genetic Memory procedure was conducted on a memory
with 1,000 storage locations. The weather sample set consisted of a sequence of
weather samples taken every 4 hours over a period of 20 years. In the sample set, it
rained in the next 4 hours for -10% of the samples, and was dry in the next four
hours in -90% of the samples.

The Genetic Memory was testing by storing -50,000 weather samples. The samples
were given to the memory in chronological order. During the course of storage, the

memory reconfigured itself with -5,000 genetic recombinations. A Genetic Memo
ry and a standard Sparse Distributed Memory were tested against 1,000 previously
unseen weather samples. In initial experiments, the Genetic Memory had 50% fewer
errors than the Sparse Distributed Memory.

However, the Genetic Memory does not only show an improvement in performance,
it allows the user to analyze the genetically-determined memory locations to discov
er how the memory improved its performance.

By studying highly-rated memory locations in the Genetic Memory, we can open the
black box: that is, access the parameters the memory has decided are the most effec
tive in associating the sample addresses with the sample data. This ability to access
the parameters the system found effective has two important implications. First,

Predicting Weather Using a Genetic Memory 461

the parameters may offer insights into the underlying physical processes in the sys
tem under study. Second. knowledge of how the system predicts may be vital for de
termining the robustness and the envelope of applicability of the memory prior to
embedding into a real-world system.

Simply scoring the performance of a system is not enough. We must be able to
"open the black box" to study why the system performs as it does.

OPENING THE BLACK BOX

When the training is completed. we can analyze the structure of memory locations
which performed well to discover which features they found most discriminatory
and which values of those features were preferred. For example. here is a memory
location which was rated highly-fit for predicting rain after training:

1101001100000011 1111011110101011 0111111100010000 1100000011011010
0100110011111011 1111110000000011 0111111011()()()()()() 001110110110()l10
000000101111011001100000010000100001001110110100 0100000111111111
0000000111111110 0000000011111111 0011011111111111 0100110000001000

By measuring the distance between a given 16-bit field and all possible values for
that field. we can discover which values of the feature are most desired. (Closer in
hamming distance is better.) The absolute range of values is the sensitivity of the lo
cation to changes along that feature dimension. Figure 5 shows an analysis of the 16-
bit field for month in the given memory location:

Location's 16-bit field

for month:0111111100010000

values for months Distance

JAN: 1111111100000000 2
FEB: 0111111110000000 2

MAR: 0011111111000000 4
APR: 0000111111110000 6

. .. etc ...

Feature (sensitivity

Month (12) t IS f- I I -

Less desirable f\
Value desirability IOV -

More desirable S f- \-

~ ° 11

JFMAMJJASOND

Values

Figure 5: Analyzing a location field

In this case. the location finds January and February the most desirable months for
rain. and July and August the least desirable months.

The relative sensitivity towards different features measures which features are most
important in making the prediction of rain. In this case. we have a change of dis
tance of 12 bits. which makes this location very sensitive to the value of the month.

We can estimate which features are the most important in predicting rain by looking
at the relative sensitivity of the different fields in the location to changes in their
feature. The following graphs show the most sensitive features of the previously
shown memory location towards predicting rain; that is. the location is very sensi
tive to the combination of all these fields with the proper values.

462 Rogers

Cloud cover (13) Dry bulb temp (12)
Iii Iii

10

ou.........&.J...u...o....o.J....&............"Ju.........~ oL........L.~...L..L..J..........L -"--'-J

None Low High 210 240 270

Pressure (12) Month (12)
Iii IIi

10

10100 JFMAMJJASOND

Figure 6: The four most sensitive features

The "most preferred values" of these fields are the minima of these graphs. For exam
ple, this location greatly prefers January and February over June and JUly. The pref
erences of this location are for the month to be January or February, for low pres

sure. high cloud cover, and low temperature. Surprisingly. whether it rained in the
last four hours is not one of the most important features for this location.

We can also look some of the least sensitive features. The following graphs show
the least sensitive features of the memory location towards predicting rain; that is,
the location is relatively insensitive to the values of these features.

Year (5) Wet bulb temp (5) Wind direction (4)

Iii

10

61 73 80 210 240 270 N E S W

Figure 7: The three least sensitive features

This set contains some fields that one would expect to be relatively unimportant,

such as year. Fields such as wind direction is unimportant to this location, but inter

estingly other highly-rated locations fmd it to be very useful in other regions of the

weather space.

Predicting Weather Using a Genetic Memory 463

COMPARISON WITH DAVIS' METHOD

Davis' Algorithm has been shown to be a powerful new method for augmenting the
power of a backpropagation-based system. The following is an attempt to contrast
our approaches, without denigrating the importance his groundbreaking work. The
reader is referred to his book for detailed information about his approach.

It is difficult to directly compare the performance of these techniques given the pre
liminary nature of the experiments done with Genetic Memory. However, it is pos
sible to compare architectural features of the systems, and estimate the relative
strengths a weaknesses.

• 8ackpropagation vs. Associative Memories: Davis' approach relies on the per
formance of the backpropagation algorithm for the central learning cycle of the sys
tem. Associative memories have a far quicker learning cycle than backpropagation
networks, and have been shown to have preferential characteristics after training in
some domains. A system based on an associative memory may share these advantages
over a system based on backpropagation.

• Scalability: Many issues concerning the scalability of backpropagation networks
remain unresolved. It is not simple to build backpropagation networks of thousands
or hundreds of thousands of units. In contrast, Kanerva's Sparse Distributed Memo
ry is specifically designed for such massive construction; one implementation on the
Connection Machine can contain l,O(XM)()() hidden units. The Genetic Memory shares
this property.

• Unity: Davis' algorithm has two levels of processing. The first level consists of
standard backpropagation networks, and the second is a meta-level which manipu
lates these networks. The Genetic Memory has incorporated both algorithms into a

single network; both algorithms are operating simultaneously.

My intuition is that different algorithms may be best suited for the different layers
of a neural network. Layers with a large fan-out (such as the input layer to the lay
er of hidden units) may be best driven by an algorithm suited to high-dimensional
searching, such as Genetic Algorithms or a Kohonen-style self-organizing system.
Layers with a large fan-in (such as the hidden-unit layer to the output layer) may be
best driven by a hill-climbing algorithms such a backpropagation.

CONCLUSIONS

• Real-world problems are often "high-dimensional", that is, are described by large
numbers of dependent variables. Algorithms must be specifically designed to func
tion well in such high-dimensional spaces. Genetic Memory is such an algorithm .

• Genetic Memory, while sharing some features with Davis' approach, has fundamen
tal differences that may make it more appropriate to some problems and easier to
scale to extremely-large (> 100,000 node) systems.

• The incorporation of the Genetic Algorithm improves the recall performance of a
standard associative memory.

• The structure of the Genetic Memory allows the user to access the parameters dis
covered by the Genetic Algorithm and used to assist in making the associations
stored in the memory.

464 Rogers

Acknowledgments

This work was supported in part by Cooperative Agreements NCC 2-408 and NCC
2-387 from the National Aeronautics and Space Administration (NASA) to the Uni
versities Space Research Association (USRA). Funding related to the Connection
Machine was jointly provided by NASA and the Defense Advanced Research Projects
Agency (DARPA). All agencies involved were very helpful in promoting this
work, for which I am grateful.

The entire RIACS staff and the SDM group has been supportive of my work. Bruno
Olshausen was a vital sounding-board. Pentti Kanerva trusted my intuitions even
when the payoff wasn't yet clear. And finally, thanks to Doug Brockman, who de
cided to wait for me.

References

Davis, L., Genetic algoritluns and simulated annealing. London, England: Pitman

Publishing (1987).

Holland, J. H., Adaptation in natural and artificial systems. Ann Arbor: Universi

ty of Michigan Press (1975).

Holland, J. H., "Escaping brittleness: the possibilities of general-purpose learning

algorithms applied to parallel rule-based systems," in Machine learning. an

artificial intelligence approach. Volume II, R. J. Michalski, J. G. Carbonell,

and T. M. Mitchell, eds. Los Altos, California: Morgan Kaufmann (1986).

Kanerva, Pentti., "Self-propagating Search: A Unified Theory of Memory," Center

for the Study of Language and Infonnation Report No. CSLI-84-7 (1984).

Kanerva, Pentti., Sparse distributed memory. Cambridge. Mass: MIT Press, 1988.

Rogers. David, "Using data-tagging to improve the perfonnance of Kanerva's sparse

distributed memory," Research Institute for Advanced Computer Science

Technical Report 88.1, NASA Ames Research Center (l988a).

Rogers, David, "Kanerva's Sparse Distributed Memory: an Associative Memory Al

gorithm Well-Suited to the Connection Machine," Int. J. High-Speed Com

put., 2, pp. 349-365 (1989).

Rogers, David, "Statistical Prediction with Kanerva's Sparse Distributed Memory,"

Advances in Neural Information Processing Systems I, San Mateo: Morgan

Kaufman (1989).

