
Predicting Web Actions from HTML Content

Brian D. Davison
∗

Computer Science & Engineering Dept.
Lehigh University, Packard Lab

19 Memorial Drive West
Bethlehem, PA 18015 USA

davison@cse.lehigh.edu

ABSTRACT
Most proposed Web prefetching techniques make predictions
based on the historical references to requested objects. In
contrast, this paper examines the accuracy of predicting a
user’s next action based on analysis of the content of the
pages requested recently by the user. Predictions are made
using the similarity of a model of the user’s interest to the
text in and around the hypertext anchors of recently re-
quested Web pages. This approach can make predictions of
actions that have never been taken by the user and poten-
tially make predictions that reflect current user interests.
We evaluate this technique using data from a full-content
log of Web activity and find that textual similarity-based
predictions outperform simpler approaches.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Com-
munications Applications—Information browsers; H.3.5
[Information Storage and Retrieval]: Online Infor-
mation Services—Web-based services; H.3.1 [Information
Storage and Retrieval]: Content Analysis and Indexing;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Evaluation/methodology, User-centered design

General Terms
Algorithms, Measurement, Performance, Design, Experi-
mentation, Human Factors

Keywords
WWW, prefetching, prediction, user modeling, textual sim-
ilarity, information retrieval

1. INTRODUCTION
The World Wide Web has become the ultimate hypertext

interface to billions of individually accessible documents.

∗Work was performed while a graduate student in the De-
partment of Computer Science at Rutgers University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HT’02, June 11-15, 2002, College Park, Maryland, USA.
Copyright 2002 ACM 1-58113-477-0/02/0006 ...$5.00.

Unfortunately, for most people, retrieval times for many of
those documents are well above the threshold for percep-
tion, leading to impressions of the “World Wide Wait.” Web
caching [22] is one approach that can effectively eliminate
the retrieval time for many recently accessed documents, but
it cannot help with documents that have never been visited
in the past.

If future requests can be correctly predicted, those doc-
uments could potentially be pre-loaded into a local cache
to provide fast access when requested by a user, even when
they have not been accessed recently. This paper proposes
and evaluates such a predictive approach. While conven-
tional predictive techniques look at past actions as a basis
to predict the future, we consider an approach based on the
hypertext characteristics of the Web.

Recently we showed that Web pages are typically linked
to pages with related textual content, and more specifically,
that the anchor text was a reasonable descriptor for the
page to which it pointed [20]. Many applications already
take advantage of this Web characteristic (e.g., for indexing
terms not on a target page [33, 8] or to extract high-quality
descriptions of a page [2, 3]). In this work we will examine
in detail another application of this result.

Our motivating goal is to accurately predict the next
request that an individual user is likely to make on the
WWW. Therefore, this paper examines the value of using
Web page content to make predictions for what will be re-
quested next. Many researchers have considered complex
models for history-based predictions for pre-loading (e.g.,
[47, 55]), but relatively few have considered using anything
other than simplistic approaches to the use of Web page con-
tent. Unlike many techniques that do examine content, our
approach does not noticeably interfere with the user expe-
rience at all — it does not ask for a statement of interest,
nor does it modify the pages presented to the user. Instead,
it can be used to invisibly improve user-perceived perfor-
mance.

One naive content-based approach is to pre-load all links
on a page. A slightly more intelligent approach is to pre-load
as time permits the links of a page, in HTML source order
from first to last (corresponding generally to links visible
from top to bottom). In this work we compare those ap-
proaches with an information retrieval-based one that ranks
the list of links using a measure of textual similarity to the
set of pages recently accessed by the user. In summary, we
find that textual similarity-based predictions outperform the
simpler approaches.

00 11 2− 3 4− 7 8− 15 16− 31 32− 63 64− 127 128−
255

256−
511

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Number of hyperlinks

F
ra

ct
io

n
of

 p
ag

es

Figure 1: The distribution of the number of hyper-
text (non-embedded resource) links per retrieved
HTML page.

2. BACKGROUND
By transparently reducing network latencies and band-

width demands, Web resource caching [22] has become a
significant part of the infrastructure of the Web. Unfortu-
nately, caching can only help when the objects requested
are already present in the cache. Typically, caches contain
objects that have been accessed in the past. Prefetching
[47, 44], however, can be used to speculatively put content
into the cache in advance of an actual request. One dif-
ficulty, however, is in knowing what to prefetch. Typical
approaches have used Markovian techniques (e.g., [28, 55])
on the history of Web page references to recognize patterns
of activity. Others prefetch bookmarked pages and often-
requested objects (e.g., [50]). Still others prefetch links from
the currently requested page [46, 13, 10, 57, 38, 42, 37, 51,
26, 34].

However, prefetching all of the links of the current page is
not a viable option, given that the number of links per page
can be quite large, and that a prefetching system typically
has only a limited amount of time to prefetch before the
user makes a new selection. While likely heavy-tailed [11,
16], this “thinking-time” is typically less than one minute
[43]). Likewise, prefetching content that is never used ex-
acts other costs as additional resources such as bandwidth
are consumed. We do not consider the thinking time or
prefetching costs further here (see [6, 39, 1, 60] for various
utility theoretic approaches to balancing cost and benefits).

The difficulty of selecting a choice in content-based analy-
sis is illustrated in Figure 1. It shows the distribution of the
number of unique hypertext (non-embedded resource) links
per retrieved HTML page (with a mean of 26 links and a
median of 11) for the dataset used in this paper (described
further in Section 5.1). Note that this histogram reflects the
distribution of pages requested by users (which includes re-
peated retrievals), versus the more or less static distribution
of pages on the Web (such as described by Bray [7]).

The prefetching of content may cause problems, as not
all content is cacheable (so prefetching it only wastes re-
sources), and prefetching even cacheable content can abuse
server and network resources, worsening the situation [21,
15]. An alternative is to do everything but prefetch [14] —
that is, to resolve the DNS in advance, connect in advance
to the Web server, and even warm up the Web server with
a dummy request.

Unknown 11 2− 3 4− 7 8− 15 16− 31 32− 63 64− 127 128− 255 256− 511 512− 1023
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Distance to most recent reference to current page

F
ra

ct
io

n
of

 p
re

fe
tc

ha
bl

e
pa

ge
s

Figure 2: The distribution of the minimum distance,
in terms of the number of requests back that the
current page could have been prefetched.

Prefetching systems are difficult to evaluate, especially
content-based prefetching ones (although see [18] for one ap-
proach) because even state-of-the-art proxy evaluation tech-
niques (e.g., Polygraph [53] as used in caching competitions
[54]) use artificial data sets without actual content. Even
when using captured logs as the workload, real content will
need to be retrieved, and will no longer be the same as the
content seen when the logs were generated.

A more complex analysis is shown in Figure 2. It shows
(by summing the fractions for columns 1 and 2-3) that ap-
proximately 46% of prefetchable pages (those that are con-
sidered likely to be cacheable) can be reached by examining
the links of the current page and its two immediate prede-
cessors in the current user’s request stream.

For comparison, the per-client average recurrence rate
(that is, the rate at which requests are repeated [35]) for
clients making more than 500 prefetchable requests was
49.2%, and for all clients was 22.5% (since some clients made
very few requests). This means that if each client utilized
an infinite cache that that passively recorded cacheable re-
sponses, the per client average hit rate on prefetchable con-
tent would be less than 25% (corresponding to the aver-
age recurrence rate). However, if the clients additionally
prefetched all perceived prefetchable links, the hit rates on
prefetchable content would increase to almost 75%, because
the prefetchable pages that would not be in the cache (i.e.
the misses) correspond at most to the pages represented by
a distance of unknown in Figure 2. Such pages were never
linked from any pages seen during our data collection. Note
that these are the results of per-user analysis on text/html

responses not satisfied by the browser cache. Additionally, a
single shared cache (that stores all user requests) would have
a recurrence rate of 50.9% for cacheable resources (47.3% for
all resources). From this analysis we conclude that there is
significant potential for content-based prediction of future
Web page requests when caching is considered.

3. RELATED WORK
Chan [12] outlines a non-invasive learning approach to

construct Web user profiles, that incorporates content, link-
age, as well as other factors. It uses frequency of visitation,
whether bookmarked, time spent on page, and the percent-
age of child links have been visited to estimate user interest
in a page. Predictions of user interest in a page are made

by building a classifier with word phrases as features and la-
beled with the estimation of page interest. Thus, new pages
can be classified as potentially being of interest from the ex-
amination of their contents. Chan’s goal is similar but not
the same as ours. He is interested in modeling what the user
might like to see, while we are concerned with what the user
will do. (See Haffner et al. [36] for a theoretical discussion of
the similarities of the two goals.) Unlike the approaches con-
sidered here, his method requires that anything that is to be
considered for recommendation must already be prefetched
(for analysis). Additionally, the methods he proposed were
not incremental, nor did they change over time.

Chinen and Yamaguchi [13] describe and evaluate the per-
formance of their Wcol prefetching proxy cache. Their sys-
tem simply prefetches up to the first n embedded images
and m linked documents. In a trace with a large number
of clients, they found that if all targets were prefetched, a
hit rate of 69% was achievable. Prefetching ten targets re-
sulted in approximately 45%, and five targets corresponded
to about 20% hit rate. In this paper we use a variant of
their approach (termed original order) as one of the predic-
tion methods that we will use for evaluation.

More sophisticated link ranking approaches are possible.
Klemm’s WebCompanion [42] is a prefetching agent that
parses pages retrieved, tracks costs to retrieve from each
host, and prefetches the pages with the highest estimated
round trip time. Average access speedups of over 50% with
a network byte overhead (i.e., wasted bandwidth) of 150%
are claimed from tests using an automated browser.

Ibrahim and Xu [37] describe a neural net approach to
prefetching, using clicked links to update weights on anchor
text keywords for future predictions. Thus they rank the
links of a page by a score computed by an artificial neu-
ron. System performance of approximately 60% hit ratio is
claimed based on an artificial news-reading workload.

A number of others have considered the similar problem of
Web page recommendation and Web page similarity. How-
ever, they (e.g., [25]) tend to use information that can only
be acquired by the retrieval of additional pages, which would
likely overwhelm the link bandwidth and negate the purpose
of intelligent prefetching. Our approach, in contrast, uses
only the content that the client has previously requested to
base decisions on what to prefetch next.

Recently Yang et al. [59] considered various approaches
to hypertext classification. Their results are mixed, finding
that identification of hypertext regularities and appropriate
representations are crucial to categorization performance.
They note, however, that “algorithms focusing on auto-
mated discovery of the relevant parts of the hypertext neigh-
borhood should have an edge over more naive approaches.”
While their study examines a related question, unlike our
work it treats all links (both incoming and outgoing) equally,
and does not consider the use of anchor or surrounding text.

One of the difficulties in comparing work in the area of
content-based prediction and prefetching is the inability to
share data. Some, like Chinen and Yamaguchi, evaluate
their work by using their system on live data. Even if the
trace of resources requested were available, such traces de-
teriorate in value quickly because the references contained
within them change or disappear. Others, such as Klemm
as well as Ibrahim and Xu test their systems with relatively
contrived methods, which make it difficult to ascertain gen-
eral applicability. Our initial approach here has been to

capture a full-content Web trace so that analysis can be
performed offline. However, because of privacy concerns,
we (like other researchers) are unable to provide such data
to others. Elsewhere [18] we have proposed a mechanism
capable of comparing multiple prefetching proxy caches si-
multaneously. Such a system is under development [24], but
is only applicable to fully realized prefetching systems.

4. CONTENT-BASED PREDICTION
In many user interfaces, multiple user actions may appear

atomic and thus may be inaccessible for analysis. For those
environments, prediction methods are often limited to those
that can recognize and extrapolate from patterns found in
a history log (e.g., UNIX shell commands [23] or telecom-
munication switch alarms [58]). In contrast, the Web pro-
vides easy access to the content being provided to the user.
Moreover, this content prescribes boundaries within which
the user is likely to act. By modifying the browser, Tauscher
and Greenberg [56] collected data showing that users pre-
dominantly (approximately 80% of the time) choose a link
from the page being shown to them (as opposed to the using
a bookmark or typing a URL by hand). We have seen simi-
lar results from analysis of proxy and server logs (measuring
the presence of referrers for HTML pages [19]). Therefore,
the set of links shown to the user is a significant guide to
what the user is likely to request next.

In addition, the content provides possible next steps that
historically-based prediction approaches cannot. A user
model based on past experience cannot predict an action
previously never taken. Thus, a content-based approach can
be a source of predictions for new situations with which his-
tory cannot help.

While a user does provide some thinking time between
requests in which prefetching may occur, it is limited, and
so there may be insufficient time to prefetch all links. More-
over, even if there were sufficient time, the user and network
provider may find the extra bandwidth usage to be unde-
sirable. Thus, the approach is typically not to predict all
links, but instead to assign some weight to each link and
use only the highest scoring links for prediction (and subse-
quent prefetching).

A prefetching system, whether integrated into a browser,
or operating at a proxy, has access to the content of the pages
served to the user. Given a particular page, the external
links that it contains can be extracted. The anchor and
surrounding text can be used as a description of the page
(as shown in [20] and used in [2, 3]). Given a set of links and
their descriptions, the problem is then how to rank them.

Ideally, we would have a model of a user’s interest and the
current context in which the user is found (e.g., as in [9]).
One approach is to explicitly ask the user about their current
interest, as done in WebWatcher [4, 40] and in AntWorld
[41] or to rate pages (as in Syskill and Webert [48, 49] and
AntWorld). We could also consider modifying the content
seen by the user to give hints or suggestions of recommended
or preloaded content (as in Letizia [45, 46], WebWatcher,
QuIC [29], and common uses of WBI [5]).

However, our preference is to build a user model as unob-
trusively as possible (as in [12]) to perform prefetching be-
hind the scenes. For the purposes of this study, this means
we cannot ask the user explicitly of his or her interest, nor
change the content, but it does enable us to be able to work

offline with logs of standard usage. Therefore, we will not
consider obtrusive approaches further here.

Instead we will use the textual contents of recently re-
quested pages as a guide to the current interests of the user.
This method allows us to model a user’s changing interests
without mind-reading or explicit questions, and is intended
to combine with other sources of predictions to generate an
adaptive Web prefetching approach [17]. How well it per-
forms is the subject of the next section.

5. EXPERIMENTS
As mentioned earlier in Section 2, experimental evaluation

of a content-based prefetching system is difficult. Rather
than deploying and testing a complete prefetching system,
we have elected to test the content-based prediction methods
described above in an offline manner. For comparison, we
will use a baseline of the accuracy of a random ranking.

5.1 Workload
We implemented a custom Java-based non-caching

HTTP/1.0-compliant proxy to monitor and record the full
HTML content and all headers of user requests and re-
sponses. We captured approximately 135,000 requests, of
which just over a third generated HTML responses. (The
rest correspond to embedded resources such as images and
non-data responses such as errors or content moved.) Users
were predominantly computer science students and staff
from Rutgers University. More than fifty distinct clients
used the service from August 1998 to March 1999.

While covering close to seven months, this trace is rather
small, and predominantly reflects the traffic of university
users. However, with concerns over privacy, the choice was
made to recruit explicit volunteers instead of surreptitiously
recording the activity of all users of an existing cache or
packet snooping on a network link (e.g., as in [31, 30]).

This log does not distinguish users — it only distinguishes
clients based on IP address, and so if multiple users of this
proxy operated browsers on the same machine (a possibil-
ity under UNIX) or behind the same proxy, those users’
requests could be interleaved. Likewise, users with dynamic
IP addresses are seen as distinct users on each session and
multiple users (if assigned the same IP address at different
times) may seem like the same user returning over multiple
sessions. We believe the likelihood of multiple users per IP
(whether by proxy, or the re-use of dynamic addresses) hap-
pening is small for this data. More importantly, though, the
log does not reflect the requests made by users that are sat-
isfied by browser caches. Users of this proxy were directed
to use the proxy, and not told to disable browser caching.

5.2 Methodology
The data was recorded in several segments, generally cor-

responding to separate runs of the proxy. The first segment,
representing about 5% of the log, was used for exploratory
analysis and was manually examined. As we describe spe-
cific adaptations made to the data, it is from the measure-
ment and analysis of this initial segment. Overall results
shown in graphs will reflect measurements over the entire
dataset.

5.2.1 Data preparation
Our custom proxy attempted to record all HTTP [32]

headers of requests and responses, and the contents of all

Figure 3: Sequence of HTML documents requested.
The content of recently requested pages are used as
a model of the user’s interest to rank the links of
the current page to determine what to prefetch.

HTML responses. These were written in chronological order,
thus interleaving requests when multiple users were active.
Since we are interested in predictions from sequences of re-
quests for individual users, we extracted the HTML records
and sorted by client and timestamp. From these sorted ac-
cess requests, we built sets of up to five HTML responses.
(While a larger number of responses might have provided
more data, we wanted to model the current user interest
which might be diluted with data from further in the past.)
Thus, for example, responses d1, d2, d3, d4, d5 would be the
first set, from which we would attempt to predict d6. Like-
wise, d2, d3, d4, d5, d6 corresponded to the second set, from
which we would attempt to predict d7. However, occasion-
ally error messages (e.g., HTTP response codes 403, 404),
redirections (e.g., 301, 302), and content unchanged (code
304) ended up being included, as Web servers sometimes
described these as of type text/html as well.

Since we had stored the content, whenever we encountered
a 304 content unchanged response for content that we had
previously recorded, we used our copy of the earlier content.
Requests for URLs generating the remaining 304 responses
could be predicted, but not used as content (since that con-
tent must have been sent before starting our measurements
we couldn’t have it) for use in future predictions.

We discarded those responses with HTTP error codes
(i.e., response codes ≥ 400), but retained redirections
(e.g., response codes 301, 302) since links were made to
one URL, which would then redirect elsewhere. In this
case, the original log might have included retrieval events
d1, d2, d3, d4, d5, r6, d6, d7 (where r6 corresponds to a redi-
rection to d6) but we would instead generate the two cases
d1, d2, d3, d4, d5 predicting r6 and d2, d3, d4, d5, d6 predicting
d7. We use r6 as a target of prediction since any link followed
(if present at all) would have been made to r6, but there is
no usable content in r6 so we don’t use it for text analysis.
Unfortunately, as mentioned earlier, we only wanted HTML
responses, but occasionally we would see redirections for
non-HTML content, such as banner advertising that would
use one or more redirections. We manually filtered URLs
for some of the more popular advertising hosting services to
minimize this effect.

The pages were parsed with the Perl HTML::TreeBuilder
library. Text extraction from the HTML pages was per-
formed using custom code that down-cased all terms and
replaced all punctuation with whitespace so that all terms
are made strictly of alphanumerics. Content text of the page
includes title but not META tags nor alt text for images.

URLs were parsed and extracted using the Perl URI::URL
library plus custom code to standardize the URL format
(down-casing host, dropping #, etc.) to maximize match-
ing of equivalent URLs. The basic representation of each
textual item was bag-of-words with term frequency.

5.2.2 Prediction methods
We present a total of four methods to rank the URLs of

the current page for prediction. Two are simple methods:
the baseline random ordering, and original rank ordering
(i.e., first-occurrence order in page). The second two rank
each link based on the similarity of the link text with the
combined non-HTML text of the preceding pages (as illus-
trated in Figure 3. To measure the similarity between two
text documents (D1, D2), we use a very simple metric1:

TF(w, Di) = number of times term w appears in Di

Text-Sim(D1, D2) =
�

all w

TF(w, D1) ∗ TF(w, D2)

The first method (termed similarity in our tests) uses the
highest similarity score (in the case of multiple instances of
the same link to a URL) of the anchor and surrounding text
to the preceding pages. The second (termed cumulative)
is identical, except that it sums the similarity scores when
there are multiple identical links (giving extra weight to such
a URL).

Links recognized include the typical a href, but also
area href, and frame src. We did not parse embedded
JavaScript to find additional links, although in reviewing
the initial data segment we did find JavaScript with such
links.

Since links are typically presented within some context,
in addition to anchor text we tested the addition of terms
before and after the anchor. For example, if the HTML
content of a page were:

The ACM

Conference will take you beyond cyberspace.

then 0 additional terms would provide just {ACM}. If we
permit 5 additional terms on each side, then we would get
the set {The, ACM, Conference, will, take, you, beyond}
to be used for comparison against the text of the preceding
pages. Note that text around an anchor may be used by
more than one link, in the case that the window around an
anchor overlapped that of another anchor. In experiments
on the first data segment, we tested the use of up to 20,
10, 5, and 0 additional terms and found that in most cases,
when more terms were used, performance was slightly bet-
ter. Thus we use as many as twenty additional terms before
and after the anchor text. However, the text around a URL
was never permitted to extend into another URL’s anchor
text.

Furthermore, we noticed that when exploring pages within
a site, certain elements of that site were often repeated on
every page. Examples would include a copyright notice with
a link to a use license page. In this case, such repeated
elements would get undue weight over non-repeated text.

1Other variations of this similarity metric (e.g., to include
factors for document length) were tested on the first data
segment but they performed similarly or worse. We make
no claims as to the optimality of this similarity metric for
this task.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

potentially predictable

link not present

uncacheable

Figure 4: Fraction of pages that are uncacheable,
found as a link from previously requested page (po-
tentially predictable), or not found as a link from
previous page.

As a result, a link containing the repeated text (the link to
a license, in the case above) would be ranked highly, even if
irrelevant to the true content of the pages. To combat this
effect, we tested a variation that no longer used all text.
Instead we used the first page, plus the difference to the
second page, plus the differences between pages 2 and 3,
etc. In this way we hoped to eliminate significant emphasis
on repeated structure in the pages. This was performed by
a Perl version of htmldiff [27].

We used the well-known Porter [52] stemming (since it
helped slightly), but did not use stop word elimination (ei-
ther slightly worse or no change). The non-HTML text (in-
cluding title, keywords, and meta description) of the pre-
ceding pages was combined to serve as a “document” rep-
resenting the current user interest against which we would
measure similarity. However, since parts of the current page
are also represented in the anchor texts pointing to the tar-
get documents, we tested the use of the current page in the
model for user interest, and found that it also decreased per-
formance on the initial segment slightly, and so we do not
include it. Thus in summary, we use the non-repeating text
of the preceding four pages as our model of current user in-
terest against which we measure similarity, as illustrated in
Figure 3.

5.3 Evaluation
Given the ranking methods described above, we will eval-

uate their predictive accuracy (the fraction of times that
they include the correct next request in their prediction)
over the entire dataset. In most cases, however, we will
scale the results to show the fraction predicted correctly out
of those possible to get correct (defined below). We will con-
sider variations in the number of predictions by evaluating
algorithms that use their best 1, 3, or 5 predictions. Addi-
tionally, we will consider the case in which the clients have
an infinite cache into which predictions are prefetched. With
such a cache, success is measured not by whether the im-
mediate prediction was correct, but whether the requested
object is present in the cache (a test arguably closer to real
world considerations).

The ultimate goal of this effort is to use the best pre-
diction method to provide suggestions for prefetching. It is
generally not possible to prefetch the results of form entry,
and is potentially undesirable to prefetch dynamically gen-

(a) Top one prediction

(b) Top three predictions

(c) Top five predictions

Figure 5: Overall predictive accuracy (within poten-
tially predictable set) of content prediction methods
when considering links from the most recently re-
quested page.

erated pages, so we would like to not allow predictions for
such pages (i.e., all responses generated by POSTs or with
URLs containing “cgi” or “?”). Those responses represent
28% of all HTML collected. Additionally, we can recognize
those cases where the next cacheable URL requested was not
present in the preceding page, making a correct prediction
an impossibility in another 47%. The remaining 25% have
the potential to be predicted correctly by choosing from the
links of the current page (see Figure 4). Approximately 2.8%

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1k

F
ra

ct
io

n
of

 p
ag

es

Number of links per page.

All links
Maximum predictions possible

Figure 6: Potential for prediction when considering
links from the most recently requested page.

of those pages (.7% of the total) had only one URL, and so
will be predicted correctly under all prediction mechanisms.

Typically a prefetching system has time to prefetch more
than one page, and so we consider the case in which we can
select the top three and five most-likely URLs and mark
the set as “correct” if one of them is the requested page.
Under this arrangement, the set of potentially predictable
pages stays the same (25%), but the number of default or
“free” wins grows since there will be more cases in which
the number of distinct links available is within the size of
the predicted set.

6. EXPERIMENTAL RESULTS

6.1 Overall results
Figure 5 shows the overall accuracy for each of the con-

tent prediction algorithms, as a fraction of predictions that
are possible to get correct from the last page of links. It
depicts performance for the cases in which only the highest-
scoring prediction is evaluated as well as when the top-3-
and top-5-highest-scoring predictions are used. The “free”
cases are also plotted to show a lower bound (recall that the
free cases are pages in which the number of links in the page
is no larger than the number of predictions permitted, thus
automatically correct).

It can be seen that the similarity and cumulative rank-
ing methods outperform the original rank ordering, and all
three outperform the baseline random order. The cumula-
tive approach edges out the similarity approach for top-one,
but similarity is best for top-three and top-five.

6.2 Distributions of performance
This paper examines the predictability of web page re-

quests based on the links of the current page. In this sec-
tion we consider the distribution of successful predictions
with respect to the number of links on the current page.
Figure 6 compares the overall distribution of the number of
links per page with the distribution of cases in which the
predicted page is found in the links of the last page.

Figure 7 shows the distribution of the number of correct
predictions per page size for each method plus the distribu-
tion of cases that can possibly be predicted correctly. Note
that for clarity we have omitted the cumulative approach
from these and further graphs, as its performance is closely
tied with that of the similarity method. For most points of

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1k

F
ra

ct
io

n
of

 p
os

si
bl

e
pa

ge
s

Number of links per page.

Similarity Order
Original Order

Random Order
Maximum predictions possible

(a) Top one prediction

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1k

F
ra

ct
io

n
of

 p
os

si
bl

e
pa

ge
s

Number of links per page.

Similarity Order
Original Order

Random Order
Maximum predictions possible

(b) Top three predictions

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2-3 4-7 8-15 16-31 32-63 64-127 128-255 256-511 512-1k

F
ra

ct
io

n
of

 p
os

si
bl

e
pa

ge
s

Number of links per page.

Similarity Order
Original Order

Random Order
Maximum predictions possible

(c) Top five predictions

Figure 7: Performance distribution for content pre-
diction algorithms when allowing guesses from the
most recently requested page.

Figure 7(a), in which a single prediction is permitted, the
performance of the various approaches are almost indistin-
guishable, but with more allowed predictions, more variation
becomes visible.

6.3 Results with infinite cache
Since the system prefetching Web pages would be putting

them into a cache, we consider briefly here the performance
of prediction approaches in such a context. Figure 8 shows a

Predict− 1 Predict− 3 Predict− 5
00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Similarity Original Ord. Cache only

Figure 8: Predictive accuracy (as a fraction of all
pages) of content prediction methods with an infi-
nite cache compared to no prediction.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2-3 4-7 8-15 16-31 32-63 64-127 128-255256-511 512-1k

F
ra

ct
io

n
of

 a
ll

pa
ge

s

Number of links per page.

Total Pages
InfCache+Predict-5
InfCache+Predict-3
InfCache+Predict-1

Infinite cache only
Predict-5
Predict-3
Predict-1

Figure 9: Performance distribution for original or-
der with and without an infinite cache.

summary of the predictive accuracy of two ranking methods
assuming the use of an infinite cache, and compares them
to an infinite cache without prefetching. Figures 9 and 10
provide performance distributions of the original rank or-
derings and similarity orderings respectively. In these fig-
ures, note that the top curve represents the total page dis-
tribution, since we are no longer limited to the pages po-
tentially reached from the last ones retrieved. The orig-
inal (non-cached) performance is shown (at the bottom),
while the performance using an infinite cache is much higher.
However, the cache does not do all the work, as the per-
formance of an infinite cache alone is visibly below the
cache+prefetching lines.

Figure 11 compares the cached performance of both the
original rank ordering and similarity based ordering (we
omit the top-three curves for clarity). The performance of
cached original ranking and similarity ranking are nearly
identical in some points, but similarity eventually rises above
the original ordering (when five predictions are allowed).

7. DISCUSSION
Recall that the non-cached results presented are in terms

of potentially predictable pages. This is, in fact, a rela-
tively small fraction of all requests generated. For example,
the best predictive method was shown to be the similarity
ranking when predictions of the top 5 links are permitted,
achieving an accuracy of approximately 55% (a relative im-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2-3 4-7 8-15 16-31 32-63 64-127 128-255256-511 512-1k

F
ra

ct
io

n
of

 a
ll

pa
ge

s

Number of links per page.

Total Pages
InfCache+Predict-5
InfCache+Predict-3
InfCache+Predict-1

Infinite cache only
Predict-5
Predict-3
Predict-1

Figure 10: Performance distribution for similarity
ranking with and without an infinite cache.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 1 2-3 4-7 8-15 16-31 32-63 64-127 128-255256-511 512-1k

F
ra

ct
io

n
of

 a
ll

pa
ge

s

Number of links per page.

Total Pages
InfCache+Order-5

InfCache+Sim-5
InfCache+Order-1

InfCache+Sim-1
Infinite cache only

Figure 11: Comparison of performance distributions
for original order and similarity with an infinite
cache.

provement of close to 30% over random link selection). How-
ever, this represents success in only 14% of all cases, since
only a quarter of all pages are possible to predict in this
manner. In the case of an infinite cache we are able to pro-
vide hits for 64% of all requests (a 40% improvement over
a system without prefetching). Actual performance is likely
to lie in between, as caches are finite and prefetched content
can expire before it is needed.

Perhaps more importantly, this analysis is of a relatively
small trace, and may not be representative of users in non-
academic environments. However, more extensive analysis
would require capturing content from a larger, more general
population (such as that of an ISP), and is likely to raise
significant privacy concerns.

The prefetching examined here is only for HTML re-
sources. However, HTML resources represent only a fraction
of all requests made by users. Most are embedded resources
(such as images, sounds, or Java applets or the result of
JavaScript that are automatically retrieved by the browser).
We made the choice to ignore such resources as most of them
are easy to predict by examining the HTML of the page
in which they are embedded. This choice has a drawback,
though, as users do indeed make requests for non-HTML
resources, such as PDF and PostScript files, plain text re-
sources, and the downloading of programs, albeit much less
frequently.

In practice, a prefetching system will have time to fetch a
variable number of resources. We have examined only three
points on the range — allowing one, three, and five predic-
tions. We believe that the typical number will fall within
this range, however, as it will likely be useful to prefetch the
embedded resources of prefetched pages, and some resources
and pages will be cached from previous retrievals.

While extensive, these tests are not comprehensive — we
have not attempted to disprove the possibility of other algo-
rithms (text-based or otherwise) outperforming those pre-
sented here. In particular, we believe that systems with
a stronger model of the user’s interest (e.g., AntWorld or
WebWatcher) could provide for better prediction, but alter-
nately may lose when the user’s interest shifts (as is often
the case when surfing the Web). For comparison, recall that
WebWatcher [4, 40] compares the user’s stated goal, the
given page, and each link within it to other pages requested
by previous users, their stated goals, and the links they se-
lected. Using assessed similarity on this information in a
restricted domain, it picked three most likely links, from
which the selected link was present 48.9% of the time. In
a second, smaller trial, WebWatcher scored just 42.9% (as
compared to humans at 47.5% on the same task). Our most
comparable experiments have shown a lower accuracy (ap-
proximately 40%), but additionally they have been used on
a general task in an unlimited domain, with no user goals
nor past users for guidance. Thus, these experiments pro-
vide evidence of the applicability of content-based methods
for predicting future Web pages access.

8. CONCLUSION
This paper has examined the performance of Web re-

quest prediction on the basis of the content of the recently
requested Web pages. We have compared text-similarity-
based ranking methods to simple original link ordering and
a baseline random ordering and found that similarity-based
rankings performed 29% better than random link selection
for prediction, and 40% better than no prefetching in a sys-
tem with an infinite cache. In general, textual similarity-
based rankings outperformed the simpler methods examined
in terms of accuracy, but in the context of an infinite cache,
the predictive performance of similarity and original rank-
ings are fairly similar.

Most proposed Web prefetching techniques make predic-
tions based on historical data. History-based prefetching
systems can do well, when they have a model for the pages
that a user is visiting. However, since users often request
unseen (e.g., new) resources (perhaps 40% of the time [56]),
history may not always be able to provide suggestions, or
may have insufficient evidence for a strong prediction. In
such cases, content-based approaches, such as those pre-
sented here, are ideal alternatives, since they can make pre-
dictions of actions that have never been taken by the user
and potentially make predictions that are more likely to re-
flect current user interests.

Acknowledgments
Thanks are due to Haym Hirsh and William Pottenger for
comments on an earlier version of this paper. This work
has been supported in part by NSF grant ANI 9903052, and
by DARPA under Order Number F425 (via ONR contract
N6600197C8534).

9. REFERENCES
[1] D. W. Albrecht, I. Zukerman, and A. E. Nicholson.

Pre-sending documents on the WWW: a comparative
study. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99),
volume 2, pages 1274–1279, Stockholm, Sweden, 1999.
Morgan Kaufmann.

[2] E. Amitay. Using common hypertext links to identify
the best phrasal description of target web documents.
In Proceedings of the SIGIR’98 Post-Conference
Workshop on Hypertext Information Retrieval for the
Web, Melbourne, Australia, 1998.

[3] E. Amitay and C. Paris. Automatically Summarising
Web Sites - Is There A Way Around It?. In
Proceedings of the Ninth ACM International
Conference on Information and Knowledge
Management (CIKM 2000), Washington, DC, Nov.
2000.

[4] R. Armstrong, D. Freitag, T. Joachims, and
T. Mitchell. WebWatcher: A Learning Apprentice for
the World Wide Web. In Proceedings of the AAAI
Spring Symposium on Information Gathering from
Distributed, Heterogeneous Environments, Stanford
University, Mar. 1995. AAAI Press.

[5] R. Barrett, P. P. Maglio, and D. C. Kellem. How to
personalize the Web. In Proceedings of the ACM
SIGCHI’97 Conference on Human Factors in
Computing Systems, pages 75–82, Atlanta, GA, Mar.
1997. ACM Press.

[6] A. Bestavros. Speculative Data Dissemination and
Service to Reduce Server Load, Network Traffic and
Service Time for Distributed Information Systems. In
Proceedings of the International Conference on Data
Engineering (ICDE’96), New Orleans, LA, Mar. 1996.

[7] T. Bray. Measuring the Web. In Proceedings of the
Fifth International World Wide Web Conference,
Paris, France, May 1996.

[8] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine. In Proceedings of the
Seventh International World Wide Web Conference,
Brisbane, Australia, Apr. 1998.

[9] P. J. Brown and G. J. F. Jones. Context-aware
retrieval: exploring a new environment for information
retrieval and information filtering. Personal and
Ubiquitous Computing, 5(4):253–263, 2001.

[10] CacheFlow Inc. Active caching technology.
http://www.cacheflow.com/technology/

whitepapers/active.cfm, 2002.

[11] L. D. Catledge and J. E. Pitkow. Characterizing
Browsing Strategies in the World Wide Web.
Computer Networks and ISDN Systems,
26(6):1065–1073, 1995.

[12] P. K. Chan. A non-invasive learning approach to
building Web user profiles. In Proceedings of
WebKDD’99, pages 7–12, San Diego, Aug. 1999.
Revised version in Springer LNCS Vol. 1836.

[13] K.-i. Chinen and S. Yamaguchi. An interactive
prefetching proxy server for improvement of WWW
latency. In Proceedings of the Seventh Annual
Conference of the Internet Society (INET’97), Kuala
Lumpur, June 1997.

[14] E. Cohen and H. Kaplan. Prefetching the means for

document transfer: A new approach for reducing Web
latency. In Proceedings of IEEE INFOCOM, Tel Aviv,
Israel, Mar. 2000.

[15] M. Crovella and P. Barford. The network effects of
prefetching. In Proceedings of IEEE INFOCOM, 1998.

[16] C. R. Cunha, A. Bestavros, and M. E. Crovella.
Characteristics of WWW Client-based Traces.
Technical Report TR-95-010, Computer Science
Department, Boston University, July 1995.

[17] B. D. Davison. Adaptive Web Prefetching. In
Proceedings of the 2nd Workshop on Adaptive Systems
and User Modeling on the WWW, pages 105–106,
Toronto, May 1999. Position paper. Proceedings
published as Computing Science Report 99-07, Dept.
of Mathematics and Computing Science, Eindhoven
University of Technology.

[18] B. D. Davison. Simultaneous Proxy Evaluation. In
Proceedings of the Fourth International Web Caching
Workshop (WCW99), pages 170–178, San Diego, CA,
Mar. 1999.

[19] B. D. Davison. Web traffic logs: An imperfect resource
for evaluation. In Proceedings of the Ninth Annual
Conference of the Internet Society (INET’99), June
1999.

[20] B. D. Davison. Topical Locality in the Web. In
Proceedings of the 23rd Annual International
Conference on Research and Development in
Information Retrieval (SIGIR 2000), Athens, Greece,
July 2000.

[21] B. D. Davison. Assertion: Prefetching with GET is
not good. In Proceedings of the Sixth International
Workshop on Web Caching and Content Distribution
(WCW’01), Boston, MA, June 2001.

[22] B. D. Davison. A Web caching primer. IEEE Internet
Computing, 5(4):38–45, July/August 2001.

[23] B. D. Davison and H. Hirsh. Predicting sequences of
user actions. In Predicting the Future: AI Approaches
to Time-Series Problems, pages 5–12, Madison, WI,
July 1998. AAAI Press. Proceedings of
AAAI-98/ICML-98 Workshop, published as Technical
Report WS-98-07.

[24] B. D. Davison and C. Krishnan. ROPE: The Rutgers
Online Proxy Evaluator. Technical Report
DCS-TR-445, Department of Computer Science,
Rutgers University, 2001.

[25] J. Dean and M. R. Henzinger. Finding related pages
in the World Wide Web. In Proceedings of the Eighth
International World Wide Web Conference, pages
389–401, Toronto, Canada, May 1999.

[26] Deerfield Corporation. InterQuick for WinGate.
http://interquick.deerfield.com/, 2002.

[27] F. Douglis and T. Ball. Tracking and viewing changes
on the Web. In Proceedings of the USENIX Technical
Conference, pages 165–176, San Diego, Jan. 1996.

[28] D. Duchamp. Prefetching hyperlinks. In Proceedings of
the Second USENIX Symposium on Internet
Technologies and Systems (USITS ’99), Boulder, CO,
Oct. 1999.

[29] S. R. El-Beltagy, W. Hall, D. De Roure, and L. Carr.
Linking in context. In Proceedings of the Twelfth ACM
Conference on Hypertext and Hypermedia (HT’01),
Aarhus, Denmark, Aug. 2001.

[30] A. Feldmann. Continuous online extraction of HTTP
traces from packet traces. In World Wide Web
Consortium Workshop on Web Characterization,
Cambridge, MA, Nov. 1998. Position paper.

[31] A. Feldmann, R. Cáceres, F. Douglis, G. Glass, and
M. Rabinovich. Performance of Web Proxy Caching in
Heterogeneous Bandwidth Environments. In
Proceedings of IEEE INFOCOM, pages 106–116, New
York, Mar. 1999.

[32] R. T. Fielding, J. Gettys, J. C. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol — HTTP/1.1. RFC 2616,
http://ftp.isi.edu/in-notes/rfc2616.txt, June
1999.

[33] Google Inc. Google home page.
http://www.google.com/, 2002.

[34] Goto Software Corporation. WebEarly3 product page.
http://www.goto-software.com/WE3/WEstart.htm,
2002.

[35] S. Greenberg. The Computer User as Toolsmith: The
Use, Reuse, and Organization of Computer-based
Tools. Cambridge University Press, New York, NY,
1993.

[36] E. G. Haffner, U. Roth, A. H. II, T. Engel, and
C. Meinel. What do hyperlink-proposals and
request-prediction have in common? In Proceedings of
the International Conference on Advances in
Information Systems (ADVIS), pages 275–282, 2000.
Springer LNCS 1909.

[37] T. I. Ibrahim and C.-Z. Xu. Neural Net Based
Pre-fetching to Tolerate WWW latency. In Proceedings
of the 20th International Conference on Distributed
Computing Systems (ICDCS2000), Apr. 2000.

[38] Imsisoft. Imsisoft home page.
http://www.imsisoft.com/, 2002.

[39] Z. Jiang and L. Kleinrock. An adaptive network
prefetch scheme. IEEE Journal on Selected Areas in
Communications, 16(3):358–368, Apr. 1998.

[40] T. Joachims, D. Freitag, and T. Mitchell.
WebWatcher: A Tour Guide for the World Wide Web.
In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, pages 770–775.
Morgan Kaufmann, Aug. 1997.

[41] P. B. Kantor, E. Boros, B. Melamed, V. Menkov,
B. Shapira, and D. J. Neu. Capturing human
intelligence in the net. Communications of the ACM,
43(8):112–115, Aug. 2000.

[42] R. P. Klemm. WebCompanion: A friendly client-side
Web prefetching agent. IEEE Transactions on
Knowledge and Data Engineering, 11(4):577–594,
July/August 1999.

[43] B. Krishnamurthy and J. Rexford. Web Protocols and
Practice : HTTP 1.1, Networking Protocols, Caching,
and Traffic Measurement. Addison-Wesley, 2001.

[44] T. M. Kroeger, D. D. E. Long, and J. C. Mogul.
Exploring the Bounds of Web Latency Reduction from
Caching and Prefetching. In Proceedings of the
USENIX Symposium on Internet Technologies and
Systems (USITS ’97), Dec. 1997.

[45] H. Lieberman. Letizia: An Agent That Assists Web
Browsing. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI’95),

pages 924–929, Montreal, Aug. 1995.

[46] H. Lieberman. Autonomous Interface Agents. In
Proceedings of the ACM SIGCHI’97 Conference on
Human Factors in Computing Systems, Atlanta, GA,
Mar. 1997.

[47] V. N. Padmanabhan and J. C. Mogul. Using predictive
prefetching to improve World Wide Web latency.
Computer Communication Review, 26(3):22–36, July
1996. Proceedings of SIGCOMM ’96.

[48] M. Pazzani, J. Muramatsu, and D. Billsus. Syskill &
Webert: Identifying Interesting Web Sites. In
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, Portland, OR, 1996.

[49] M. J. Pazzani and D. Billsus. Learning and Revising
User Profiles: The identification of interesting web
sites. Machine Learning, 27:313–331, 1997.

[50] PeakSoft Corporation. PeakJet 2000 web page.
http://www.peaksoft.com/peakjet2.html, 2002.

[51] J. E. Pitkow and P. L. Pirolli. Life, Death, and
Lawfulness on the Electronic Frontier. In ACM
Conference on Human Factors in Computing Systems,
Atlanta, GA, Mar. 1997.

[52] M. F. Porter. An algorithm for suffix stripping. In
K. Sparck Jones and P. Willet, editors, Readings in
Information Retrieval. Morgan Kaufmann, San
Francisco, 1997. Originally published in Program,
14(3):130-137 (1980).

[53] A. Rousskov. Web Polygraph: Proxy performance
benchmark. Available at
http://www.web-polygraph.org/, 2002.

[54] A. Rousskov, M. Weaver, and D. Wessels. The fourth
cache-off. Raw data and independent analysis at
http://www.measurement-factory.com/results/,
Dec. 2001.

[55] R. R. Sarukkai. Link prediction and path analysis
using Markov chains. In Proceedings of the Ninth
International World Wide Web Conference,
Amsterdam, May 2000.

[56] L. Tauscher and S. Greenberg. How People Revisit
Web Pages: Empirical Findings and Implications for
the Design of History Systems. International Journal
of Human Computer Studies, 47(1):97–138, 1997.

[57] Web 3000 Inc. NetSonic Internet Accelerator web
page. http://www.web3000.com/, 2002.

[58] G. M. Weiss. Predicting telecommunication equipment
failures from sequences of network alarms. In
W. Kloesgen and J. Zytkow, editors, Handbook of
Data Mining and Knowledge Discovery. Oxford
University Press, 2001.

[59] Y. Yang, S. Slattery, and R. Ghani. A study of
approaches to hypertext categorization. Journal of
Intelligent Information Systems, 18(2/3):219–241,
2002.

[60] I. Zukerman, D. W. Albrecht, and A. E. Nicholson.
Predicting users’ requests on the WWW. In
Proceedings of the Seventh International Conference
on User Modeling (UM-99), pages 275–284, Banff,
Canada, June 1999.

