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�is paper proposes a procedure of predicting channel characteristics based on awell-knownmachine learning (ML) algorithm and
convolutional neural network (CNN), for three-dimensional (3D) millimetre wave (mmWave) massive multiple-input multiple-
output (MIMO) indoor channels.�e channel parameters, such as amplitude, delay, azimuth angle of departure (AAoD), elevation
angle of departure (EAoD), azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA), are generated by a ray tracing
so	ware. A	er the data preprocessing, we can obtain the channel statistical characteristics (including expectations and spreads of
the above-mentioned parameters) to train the CNN.�e channel statistical characteristics of any subchannels in a speci
ed indoor
scenario can be predicted when the location information of the transmitter (Tx) antenna and receiver (Rx) antenna is input into the
CNN trained by limited data.�e predicted channel statistical characteristics can well 
t the real channel statistical characteristics.
�e probability density functions (PDFs) of error square and root mean square errors (RMSEs) of channel statistical characteristics
are also analyzed.

1. Introduction

�e 
	h generation (5G) wireless communication networks
have lots of novel requirements, such as the 1000 times
the system capacity with respect to the fourth generation
(4G) networks, wide frequency range (covering millimetre
wave (mmWave) bands, e.g., 450MHz–100GHz), increased
data rate, reduced latency, energy, and cost [1–6]. To sat-
isfy the above-mentioned requirements, several advanced
technologies, such as mmWave and massive multiple-input
multiple-output (MIMO), have been proposed and brought
new challenges on channel modeling. Since the perfor-
mance bound of wireless communication systems is deter-
mined by channel characteristics [7], an accurate channel
model plays an important role in designing, evaluating,
and developing wireless communication systems. �e 5G
wireless communication channel models, such as mobile and

wireless communications Enablers for the Twenty-twenty
Information Society (METIS) channelmodel [8],Millimetre-
Wave Evolution for Backhaul and Access (MiWEBA) channel
model [9], ITU-R IMT-2020 channel model [10], COST
2100 channel model [11, 12], IEEE 802.11 ay channel models
[13], millimetre-wave based mobile radio access network for

	h generation integrated communications (mmMAGIC)
channel model [14], quasi deterministic radio channel gen-
erator user manual and documentation (QuaDRiGa) chan-
nel model [15, 16], and a general three-dimensional (3D)
nonstationary 5G channel model [17], can be classi
ed as
deterministic and stochastic channel models. As the most
important technologies of 5G wireless communication net-
works,massiveMIMOandmmWave have also attracted great
attentions. According to the massive MIMO and mmWave
indoor channel measurement in [18], authors in [19] did the
massive MIMO andmmWave channel parameter estimation.
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Authors in [20] summarized recent massive MIMO channel
measurements andmodels.�e above-mentionedmodels are
complex and hard to use. So a revolutionary channel model
is necessary.

�e explosive increase of frequencies/bandwidths, anten-
nas, and new services/scenarios will generate massive data
and bring the research of 5G wireless communications to the
era of arti
cial intelligence (AI) [21, 22]. Machine learning
(ML), as an important branch of AI, has received extensive
attentions due to its capability of digging the valuable and
hidden rules from enormous unknown channel information.
It can take advantages of both the low complexity of stochastic
channel models and the accuracy of deterministic channel
models. As a conventional ML algorithm, convolutional
neural network (CNN) exhibits excellent performance on
compressing and processing redundant channel information
[23].

Until now, there are two kinds of applications of AI to
5G wireless communication channels. One is measurement
data preprocessing based on statistical learningmethods, e.g.,
clustering algorithms. �e Kernel-Power-Density algorithm
proposed in [24] used the kernel density and only considered
the neighboring points when computing the density. Authors
in [25] proposed a novel clustering framework based on
Kernel-Power-Density algorithm and took elevation angles
into consideration. �e Kuhn–Munkres algorithm was pro-
posed to solve the tracking problem in [26].�eKalman 
lter
in [27] was used to track the clusters and to predict the cluster
positions. Furthermore, several other algorithms were used
for clusters identi
cation in measurement data preprocess-
ing, such as KPowerMeans algorithm [28] and hierarchical
tree [29]. �e above-mentioned clustering algorithms play
a signi
cant role in conventional cluster-based stochastic
channel models, such as COST 2100 channel model and
WINNER channel models, but it cannot predict the channel
characteristics.�eother one is to predict the channel charac-
teristics based on ML algorithms which can dig the mapping
relationship between physical environment information and
the channel characteristics. �e function between frequency,
distance, and path loss (PL) was modeled by two types of
arti
cial neural networks (ANNs), i.e., multilayer perceptron
(MLP) and radial basis function (RBF) [30–34]. In [35], PL
was also modeled as a mapping relationship between delay
and the atmosphere by MLP. Authors in [36] and [37] mod-
eled Doppler frequency shi	 by RBF and MLP, respectively.
�e mapping relationship between channel characteristics
and geographical location was modeled by a feed-forward
network (FFN) in [38] and a DeepFi architecture in [39].
In-vehicle wireless channels at 60GHz were modeled by a
FFN and a RBF network [40, 41]. Author in [42] proposed
a three-layer structure based on ML –“wave, cluster-nuclei,
and channel”. Most of the existing research works can only
obtain the mapping relationship between a single channel
characteristic and physical channel environment information
but cannot predict comprehensive channel characteristics. At
the same time, the channel characteristics of any subchannels
in a speci
ed scenario cannot be predicted until now, while
they play an important role on channel estimation and
communication quality. CNN can compress and process

redundant channel information well, but it has not been
applied to channel characteristics prediction.

In this paper, we propose an AI enabled procedure to
predict channel statistical characteristics based on CNN
to obtain the mapping relationship between the location
information of transmitter (Tx) and receiver (Rx) antennas
and almost all the characteristics of amplitude, delay, and
angles.�emain contributions of this paper are summarized
as follows:

(1) A procedure of predicting channel statistical charac-
teristics based on a speci
ed CNN for 3D mmWave
MIMO indoor channels is proposed in this paper.
With the location information of Tx and Rx antennas,
the CNN can predict eleven comprehensive channel
statistical characteristics, including PL, delay spread
(DS), delay mean (DM), azimuth angle mean of
departure (AAMD), azimuth angle mean of arrival
(AAMA), azimuth angle spread of departure (AASD),
azimuth angle spread of arrival (AASA), elevation
angle mean of departure (EAMD), elevation angle
mean of arrival (EAMA), elevation angle spread of
departure (EASD), and elevation angle spread of
arrival (EASA).

(2) �is is the 
rst time to compare 
ve di�erent wireless
channel characteristic datasets, which are collected by
di�erent ways. By comparing their training results, we
can obtain better rules of data generation and collec-
tion.�erefore, it has a profound guiding signi
cance
for data generation and collection.

We have organized the rest of the paper as follows.
�e AI enabled procedure to predict channel statistical
characteristics is shown in Section 2. In Section 3, we describe
the two indoor scenarios of data collection and the principle
of data preprocessing. �e 
ve datasets are also given in
this section. �e proposed CNN is shown in Section 4. In
Section 5, we discuss and analyze the results. Conclusions and
future work are given in Section 6.

2. System Model

�e �owchart of AI enabled procedure to predict channel
statistical characteristics is shown in Figure 1. Firstly, we
set up the indoor scenario and obtain simulated channel
information. At this time, we construct two 3D indoor
scenarios by setting the sizes and materials of rooms and
objects in a ray tracing so	ware. �en we can obtain the
multipath component parameters (amplitude, delay, azimuth
angle of departure (AAoD), elevation angle of departure
(EAoD), azimuth angle of arrival (AAoA), and elevation
angle of arrival (EAoA)). We do the data preprocessing to
obtain the channel statistical characteristics (PL, DM, DS,
AAMA, AASA, AAMD, AASD, EAMA, EASA, EAMD, and
EASD) to build the dataset. �e dataset of the speci
ed
indoor scenario is built to be separated as two sets by the
proportion of 7:3 randomly. One is the train set, the other
is the validation set. Samples in both the train set and
the validation set have 3D coordinates of Tx and Rx as
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Figure 1: �e �owchart of channel characteristic predicting procedure.

input vectors and channel statistical characteristics as output
vectors. �e train set is used to train the CNN. �e input
vectors of the validation set are put into the CNN to obtain
the predicted output vectors.Whether train theCNNagain or
not is determined by comparing and analyzing the root mean
square errors (RMSEs) and probability density functions
(PDFs) between the predicted output vectors and output
vectors of the validation set. More detailed information will
be shown in the following sections.

3. Database Generation

�e ray tracing so	ware, Wireless InSite [43], is used to build
the simulation datasets. Ray tracing is a classical deterministic
method used for modeling radio propagations. It is based on
the geometrical optic (GO) and uniform theory of di�raction
(UTD). �e interactions between rays and objects can be
classi
ed as re�ection, transmission, scattering, and di�rac-
tion. By tracing paths in a speci
ed scenario we build in the
simulator, all the possible rays can be obtained and we can get
the parameter vector���,� of the �-th (� = 1, 2, . . . , �, � = 250)
multipath between the �-th Tx antenna and �-th Rx antenna;
i.e.,

���,� = [���,�, 	��,�, 
T��,�, �T��,�, 
R��,�, �R��,�] (1)

where ���,�, 	��,�, 
T��,�, �T��,�, 
R��,�, and �R��,� are the amplitude,

delay, AAoD, EAoD, AAoA, and EAoA of the �-th multipath
between the �-th Tx antenna and �-th Rx antenna, respec-
tively.

3.1.	eDescriptions ofDataGeneration. To verify the general
predicted capability of the CNN, we construct two indoor
scenarios in Wireless InSite to collect multipath component
parameters. One is a virtual classroom scenario shown in
Figure 2; the other is a real lab scenario shown in Figure 3.

3.1.1. 	e Virtual Classroom Scenario. �e virtual classroom
environment is about 8 × 6 × 3 m3 with 12 desks whose size
is about 1.6 × 0.4 × 1.2 m3. �e intervals of desks are 0.6m
along x-axis and 0.8m along y-axis. Desks are made of wood.
�e ceiling ismade of concrete. Both �oor andwalls aremade
of 3-layered dielectric in [44]. �e layout of the classroom is
shown in Figure 2(a). Figure 2(b) shows the 3D ray tracing
scenario of the classroom constructed in Wireless InSite.

In this virtual scenario, at most 3 orders of re�ection and
1 order of di�raction are simulated. �e maximum number
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(a) �e layout of the virtual scenario. (b) �e 3D ray tracing scenario of the virtual scenario.

Figure 2: �e environment information of the virtual scenario.

of paths allowed in simulation is 250. For the complexity
of simulation, we do not take scattering which is caused
by surface roughness into consideration while the power
loss caused by rough surface of objects is calculated by the
re�ection coe�cient multiplied with roughness coe�cient.
�e carrier frequency and bandwidth are set to 60GHz
and 2GHz, respectively. To evaluate the performance of
data collection, two datasets are built. In the 10 × 100
random dataset (10100R, R stands for random) of the virtual
classroom scenario, we set up 10 Tx isotropic antennas with
0 dBi antenna gain in all directions and 100 Rx isotropic
antennas at random location information to obtainmultipath
parameters of 1000 subchannels. 32 Tx isotropic antennas
and 32 Rx isotropic antennas are randomly set up in 32 × 32
random dataset (3232R, R stands for random) of the virtual
classroom scenario to obtain channel parameters of 1024
subchannels. In indoor uplink communication scenarios, the
Txs can be mobile phones, laptops, iPads, etc., while the Rxs
are normally access points (APs) located on the ceilings. In a
virtual classroom environment, we assume that the height of
Txs is 1.5m and the height of Rxs is 3m.

3.1.2. 	e Lab Scenario. �e size of the lab scenario is
approximately 7.2×7.2×2.7m3. Its �oor and ceiling aremade
of concrete but decorated with antistatic-electricity board.
It has four sides of walls. One is a partition wall which is
made of plaster board, and other sides of wall are made of
concrete. Two high built small windows are on the one side
wall while a large window almost cover the other side of wall.
�e lab is furnished withmultiple desks and chairs, and other
o�ce furniture such as computers, bookshelf, and electronic
devices. Desks made of frosted surface chipboard are about
0.75mheight at desktop level but with two or three additional
0.45m clapboards. Chairs are made of fabric cover and
metal and plastic support. �e electromagnetic properties
of above-mentioned building and furniture materials were
characterized by a lot of material measurements [45–47].
�ere is a small storage room in the corner of the lab. �e

photo and layout of the lab are shown in Figures 3(a) and 3(b),
respectively. Figure 3(c) shows the 3D ray tracing scenario of
the lab constructed in Wireless InSite.

�e lab supplies such as books and computer monitors
on the desk are not modeled in the 3D ray tracing scenario,
because their irregular shapes lead to signi
cant increase of
computational complexity and they are shadowed by higher
clapboards on the desktop usually. Similarly, we also neglect
chairs in the scenario modeling because they are about 0.8m
high which is lower than antennas and chairs were positioned
nearby the desks. Since the lab scenario is more complex
than the virtual classroom, at most 5 orders of re�ection,
3 orders of transmission, and 1 order of di�raction are
simulated in the ray tracing setup of this lab scenario. �e
maximum number of propagation paths is 250. �e carrier
frequency and bandwidth are set to 60GHz and 2GHz,
respectively. To evaluate the performance of data collection,
three datasets are built. In the 30×30 random dataset (3030R,
R stands for random) of the lab scenario, we set up 30 Tx
isotropic antennas and 30 Rx isotropic antennas at random
location information to obtain channel parameters of 900
subchannels. 30 Tx isotropic antennas and 30 Rx isotropic
antennas are set up by grid at 1m intervals in 30 × 30 grid
dataset (3030G, G stands for grid) of the lab scenario to
obtain multipath component parameters of 900 subchannels.
Similarly, 211 Tx isotropic antennas and 211 Rx isotropic
antennas are set up by grid at 0.4m intervals in the 211 × 211
grid dataset (211211G, G stands for grid) of the lab scenario
to get channel parameters of 44521 subchannels. In the lab
environment, we assume that the height of Txs is 1.5m and
the height of Rxs is 2.7m.

3.2. Data Processing. For conciseness, we use channel char-
acteristic vector �� instead of the parameter vectors of 250
multipaths; i.e.,��
= [���, ���, �M,��, �T�� , �T�� , �R�� , �R�� , �TM,��, �TM,��, �RM,��, �RM,��] (2)
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Figure 3: �e environment information of the lab scenario.

where ��� is PL of the subchannel from �-th Tx antenna to�-th Rx antenna, ���(�M,��) is DS (DM) of the subchannel

from �-th Tx antenna to �-th Rx antenna, �T
M,��, �RM,��, �T�� , and�R�� are AAMD, AAMA, AASD, and AASA, respectively, and�T

M,��, �RM,��, �T�� , and �R�� are EAMD, EAMA, EASD, and EASA,

respectively. �ey can be further expressed as

��� = 10 × log10 �∑
�=1
�2��,� (3)

��� = √∑��=1 �2��,�	2��,�∑��=1 �2��,� − (∑��=1 �2��,�	��,�∑��=1 �2��,� )
2

(4)

�T�� = √∑��=1 �2��,�
T��,�2∑��=1 �2��,� − (∑��=1 �2��,�
T��,�∑��=1 �2��,� )
2

(5)

�R�� = √∑��=1 �2��,�
R��,�2∑��=1 �2��,� − (∑��=1 �2��,�
R��,�∑��=1 �2��,� )
2

(6)

�T�� = √∑��=1 �2��,��T��,�2∑��=1 �2��,� − (∑��=1 �2��,��T��,�∑��=1 �2��,� )
2

(7)

�R�� = √∑��=1 �2��,��R��,�2∑��=1 �2��,� − (∑��=1 �2��,��R��,�∑��=1 �2��,� )
2

(8)

�M,�� = ∑��=1 	��,�� (9)

�T
M,�� = ∑��=1 
T��,�� (10)

�R
M,�� = ∑��=1 
R��,�� (11)

�T
M,�� = ∑��=1 �T��,�� (12)

�R
M,�� = ∑��=1 �R��,�� . (13)
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A	er data preprocessing, the details of datasets are shown
in Table 1. We separated the total samples into train sets and
validation sets by the proportion of 7:3 randomly.

4. Architecture of the Proposed CNN for
Channel Characteristics Prediction

�e architecture of the CNN is presented in Figure 4. It
includes two main stages: 
rst stage con
guring two con-
volutional layers and second stage con
guring four dense
layers which are also called fully connected layers. It requires
a large number of iterations to obtain the neural network
convergence to 
t the thresholds nodes and the weights of
connections for the least loss. �e input vector ��� is 3D
coordinates of the �-th Tx antenna and the �-th Rx antenna.
�e output vector ��� is the channel characteristic vector of
the subchannel between the �-th Tx and the �-th Rx ��. �ey
can be expressed as

��� = [�T��, �T�� , �T�� , �R��, �R�� , �R��] (14)

��� = ��
= [���, ���, �M,��, �T�� , �T�� , �R�� , �R�� , �TM,��, �TM,��, �RM,��, �RM,��] . (15)

�e 
rst convolutional layer 
lters the 1 × 6 input vector
with 16 kernels of size 1 × 3. �e second convolutional layer
takes the output of the 
rst convolutional layer as input
and 
lters it with 32 kernels of size 16 × 3. Both of the
two convolutional layers take with a stride of one node. We
zero pad the activation to match the number of features.
A	er each convolutional layer, batch normalization in [48]
and recti
ed linear unit (ReLU) are placed to speed up the
model convergence. �e output of the second convolutional
layer is then fully connected to 16 neurons. �e following
dense layers have 16, 32, 64, and 1 neurons, respectively. In
order to obtain the optimized training result, we train the
11 channel characteristics individually by the CNN. Each
time we input all 6 elements of ��� into CNN and output 1
element of ���. ReLU is placed a	er each dense layer except
the last layer. Unlike in computer vision, we do not place
pooling layer between the convolutional layers, because the
input of our network which is only 6 nodes is relatively
sparser than the image which commonly contains millions
of pixels. Pooling layer will lose useful information and make
the model convergence at a high loss.

As shown in Table 2, this model has 7280 parameters
in total. Most parameters are between the second convolu-
tional layer and the 
rst dense layer. �e number of these
parameters accounts for 42.20% of the total number of model
parameters.

�e CNN of one output node was designed. �e 11
di�erent labels (PL, DM, DS, AAMA, AASA, AAMD, AASD,
EAMA, EASA, EAMD, and EASD) are individually used to
train the CNN to obtain the di�erent weights in terms of
the least loss. Once the label is determined, the loss function
and back propagation are applied end-to-end. �e mean
square error (MSE) function is used as the loss function in all
CNNs of 11 labels. �e learning rate is 
xed throughout once

training.We used an equal learning rate which was initialized
at 0.0001 for all layers. �e root mean square propagation
(RMSProp) in [49] withmomentum of 0.9 and smooth factor
of 10−6 is used to optimize the weights of the model. �e
update rule for weight � is

� [�2]� = 0.9� [�2]�−1 + 0.1�2� (16)

��+1 = �� − �√� [�2]� + #�� (17)

where $ is the iteration index, � is the learning rate, # is
smooth factor, and �� is the gradient of the current iteration$.

Glorot uniform initializer in [50], which is also called
Xavier uniform initializer, was used to initialize theweights in
each layer. �e weight was randomly created from a uniform
distribution within [−%, %] with

% = √ 6'�� + '�	� (18)

where '�� is the number of input units and '�	� is the number
of output units in the weight tensor.We initialized the neuron
biases in both convolutional layers and dense layers with the
constant 0. �is initialization accelerates the early stages of
learning by providing the ReLUs with positive inputs.

5. Results and Analysis

�e target of this section is twofold. �e 
rst intention is to
verify theCNN in two indoor scenarios. Second, wewill carry
out comparisons between 
ve di�erent datasets to analyze the
in�uence of dataset in CNN.

5.1. Fittings between Predicted and Real Channel Character-
istics. In both the virtual classroom scenario and the lab
scenario, all the predicted channel statistical characteristics
generated by the CNN are in fairly good agreements with the
channel statistical characteristics generated by the ray tracing
so	ware. In Figures 5–7, we show the 
ttings of PL, DM,
and AAMA between predicted results and virtual simulation
data in the two scenarios, respectively. As we can see, the
predicted capability of the CNN is very good, and we can use
this method to predict the channel statistical characteristics
with limited simulation data in speci
ed indoor scenarios.
�is shows that AI is meaningful for channel modeling.
�e massive data in wireless communication should be fully
used and explored to make the performance of wireless
communication networks better.

5.2. RMSE. To evaluate and compare the performances of the
CNNwith di�erent datasets, we calculate the RMSE between
predicted channel statistical characteristics and virtual simu-
lation channel statistical characteristics; i.e.,

* (-) = √E [(-
 − -�)2] (19)
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Table 1: �e Details of Databases.

Scenario Dataset Tx Rx No. of sample No. of train set No. of validation set

Virtual scenario
10100R 10 100 1000 700 300

3232R 32 32 1024 717 307

Lab scenario

3030R 30 30 900 630 270

3030G 30 30 900 630 270

211211G 211 211 44521 31165 13356

1x6 32x616x6
1x16

1x32
1x64

�e �rst

dense layer

Kernel1,
1x3

Kernel2,
16x3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
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Input vector

Output
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�e fourth

dense layer

16

Figure 4: Architecture of the proposed CNN for channel statistical characteristics prediction.

Table 2: �e parameter numbers of CNN layers.

Layers No. of parameters

First convolutional layer 48

Second convolutional layer 1536

First dense layer 3072

Second dense layer 512

�ird dense layer 2048

Fourth dense layer 64

Total 7280

where*(-) is the RMSE of the channel characteristic -, such as
PL, DM, DS, AAMA, AASA, AAMD, AASD, EAMA, EASA,
EAMD, and EASD. -
 and -� denote the predicted result
and virtual simulation result of the channel characteristic,
respectively.

�e RMSEs of channel statistical characteristics with two
datasets in the virtual scenario are listed in Table 3. Train
loss (TL) is the RMSE between the channel characteristic
generated by the CNN and the virtual simulation channel
characteristic in train data. Validation loss (VL) is the RMSE
between the channel characteristic predicted by the CNN and
the virtual measurement channel characteristic in the test
data. In Table 3, VL of channel statistical characteristics of the
10100R is always larger than TL. Similar result is shown in the
3232R.�e parameters of the CNN are trained based onMSE
optimizer in the train data, and the test data is di�erent for the

train data absolutely. So the results in the test data cannot be
optimized as good as those in the train data.�e performance
of the CNN in the 10100R is better than in the 3232R, which is
most obvious in the PL. �e TL of the PL in 10100R (0.6408)
is only 14.26% of that in 3232R (4.4932). �e VL of the PL in
10100R (0.9586) is only 20.04% of that in 3232R (4.7832).

�e RMSEs of channel statistical characteristics with two
datasets in the lab scenario are listed in Table 4. As we can see,
the performance of the CNN in the 3030G is better than that
in the 3030R, which is most obvious in the PL. �e TL of the
PL in 3030G (1.0616) is only 34.70% of that in 3030R (3.0590).
�e VL of the PL in 3030G (1.3186) is only 41.27% of that in
3030R (3.1949). �e performance of the CNN in the 211211G
is better than that in the 3030G, which is most obvious in
the AAMD.�e TL of the AAMD in 211211G (6.7187) is only
47.27% of that in 3030G (14.2148). �e VL of the AAMD in
211211G (7.1652) is only 35.24% of that in 3030G (20.3331).

�ere are 1024 samples and 1000 samples in the 3232R
and the 10100R, respectively. �e sample numbers of the
two datasets belong to the same order of magnitudes, and
both of them are generated when Txs and Rxs are randomly
located. According to the speci
ed Tx antenna locations,
there are 100 samples with di�erent Rx antenna locations in
the 10100R, while there are only 32 samples with di�erent Rx
antenna locations in the 3232R. �e former is more various
and more robust, which explains that the performance of
10100R is better than 3232R. �e performance is determined
by the robustness of data even they are in the same order
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Figure 5: �e predicted 
tting of PL in two scenarios.
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Figure 6: �e predicted 
tting of DM in two scenarios.
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Table 3: RMSE Loss with Di�erent Dataset in the Virtual Scenarios.

Dataset 10100R 3232R 10100R and 3232R

RMSE TL VL TL VL
TL in 10100R
TL in 3232R VL in 10100R

VL in 3232R
PL 0.6408 0.9586 4.4932 4.7832 0.1426 0.2004

DM 0.4232 0.4762 1.2986 2.3647 0.3259 0.2014

DS 0.2895 0.3708 1.7822 1.9887 0.1624 0.1865

AAMA 11.0096 13.3897 14.3276 14.4829 0.7684 0.9245

AASA 4.6625 5.6897 17.2259 18.7624 0.2707 0.3033

AAMD 11.8287 13.4187 12.8583 14.6427 0.9199 0.9164

AASD 5.3249 6.3327 21.0490 21.3898 0.2529 0.2961

EAMA 1.3355 1.4970 3.8356 4.8577 0.3482 0.3082

EASA 1.5680 1.8255 3.5929 3.8308 0.4364 0.4765

EAMD 0.8228 0.9298 2.8473 4.3977 0.2890 0.2114

EASD 2.3911 3.0512 2.7861 3.2362 0.8582 0.9428

Table 4: RMSE Loss with Di�erent Dataset in the Lab Scenarios.

Dataset 3030R 3030G 211211G 3030G and 3030R 211211G and 3030G

RMSE TL VL TL VL TL VL
TL in 3030G
TL in 3030R VL in 3030G

VL in 3030R TL in 211211G
TL in 3030G VL in 211211G

VL in 3030G
PL 3.0596 3.1949 1.0616 1.3186 1.0439 1.1459 0.3470 0.4127 0.9833 0.8690

DM 1.8142 2.0642 1.4970 1.8566 1.0196 1.0645 0.8252 0.8994 0.6811 0.5734

DS 0.4866 0.5037 0.2698 0.3528 0.2168 0.3038 0.5545 0.7004 0.8036 0.8611

AAMA 19.1869 19.8408 8.9489 9.0166 7.0688 7.5453 0.4664 0.4544 0.7899 0.8368

AASA 12.6992 12.2539 8.0887 8.4545 5.1746 5.8588 0.6369 0.6899 0.6397 0.6930

AAMD 17.7100 20.5364 14.2148 20.3331 6.7187 7.1652 0.8026 0.9901 0.4727 0.3524

AASD 15.1566 14.7420 8.3635 12.6681 6.2428 6.5880 0.5518 0.8593 0.7464 0.5200

EAMA 3.3544 3.4216 1.4747 1.7197 1.2807 1.4928 0.4396 0.5026 0.8684 0.8681

EASA 1.5093 1.8472 0.8160 0.6658 0.8084 0.4824 0.5356 0.3604 0.9907 0.7245

EAMD 2.2215 2.4836 1.9990 1.9906 1.6045 1.7258 0.8998 0.8015 0.8027 0.8670

EASD 0.3008 0.3739 0.2989 0.3697 0.2287 0.2360 0.9937 0.9888 0.7603 0.6384

of magnitudes. It is determined by the robustness of data.
�e comparison between the performance of 3030G and
3030R shows that the data collection in grid is better than
that in random.�e comparison between the performance of
211211G and 3030G shows that more robust data generated by
the speci
ed collection way results in a better predicted per-
formance.�e above-mentioned conclusions have signi
cant
meaning on data collection.

5.3. PDF of Channel Characteristics Error Square. For the
further analysis of the performance of 
ve di�erent datasets,
the PDF of channel statistical characteristics error square
which can show the distribution of the channel statistical
characteristics error square are given in Figure 8. �e PDFs
of error square of DM and AAMA are shown in Figures
8(a) and 8(b), respectively. In view of that the train loss
and validation loss in the 211211G of lab scenario are only
slightly lower than those of the 3030G in lab scenario in
Table 4, and the advantage of large dataset is not obvious if
we take the time and energy consuming of data collection
into account. However, Figures 8(a) and 8(b) show that the
core superiority of the 211211G in lab scenario is the PDFs of

error square in which the proportion of accurate predicted
channel characteristic (error square = 0) is very large. It
is better that the lower channel characteristic error square
has higher probability and vice versa. In Figure 8(b), the
proportion of accurate predicted AAMA of the 3232R in the
virtual scenario (error square = 0) is larger than that of the
10100R in the virtual scenario, but the proportion of predicted
AAMA with a high error square in the 3232R in the virtual
scenario is also larger than that of the 10100R in the virtual
classroom scenario. �e �eet decline tendency of PDF of
channel characteristic error square is what we expected.

6. Conclusions and Future Work

�e AI enabled procedure to predict channel statistical
characteristics has been proposed in this paper. �e channel
parameters of massive MIMO and mmWave indoor channel
have been generated by a ray tracing so	wareWireless InSite.
�e channel statistical characteristics a	er data preprocess-
ing, such as PL, DM, DS, AAMA, AASA, AAMD, AASD,
EAMA, EASA, EAMD, and EASD, can be predicted by
CNN. A virtual classroom scenario and a real lab scenario
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Figure 8: �e PDF of channel statistical characteristics error square with di�erent datasets.

have been set up to verify this algorithm. �e good 
ttings
between the predicted channel statistical characteristics and
the real channel statistical characteristics have been shown
in this paper. By comparing between the performance of
di�erent datasets, the better data collection rule has also
been proposed.�e generalization ofAI enabled procedure to
predict channel statistical characteristics formore scenarios is
an important task to be solved in the future.
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