Predicting zero reductions in Gröbner Basis computations

Christian Eder

SNC 2014, Shanghai, China

July 30, 2014

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote DRL. Let

$$
\mathrm{g}_{1}=\mathrm{x} y-\mathrm{z}^{2}, \quad \mathrm{~g}_{2}=\mathrm{y}^{2}-\mathrm{z}^{2}
$$

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote DRL. Let

$$
g_{1}=x y-z^{2}, \quad g_{2}=y^{2}-z^{2}
$$

$$
\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1}=\mathbf{x} y^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}
$$

$$
=-x z^{2}+y z^{2} .
$$

$$
\Longrightarrow \mathbf{g}_{3}=x z^{2}-y^{2} .
$$

How to detect zero reductions in advance?
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote DRL. Let

$$
g_{1}=x y-z^{2}, \quad g_{2}=y^{2}-z^{2}
$$

$$
\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1}=\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}
$$

$$
=-x z^{2}+y z^{2} .
$$

$$
\Longrightarrow \mathbf{g}_{3}=\mathbf{x z ^ { 2 }}-\mathbf{y z} \mathbf{z}^{2} .
$$

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z} z^{2}-y^{2} z^{2}-\mathbf{x y z} z^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

How to detect zero reductions in advance?

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ and let $<$ denote DRL. Let

$$
g_{1}=x y-z^{2}, \quad g_{2}=y^{2}-z^{2}
$$

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2} .
\end{aligned}
$$

$$
\Longrightarrow g_{3}=x z^{2}-y z^{2} .
$$

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z} z^{2}-y^{2} z^{2}-\mathbf{x y z} z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce further using $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0 .
$$

Buchberger's criteria

Product criterion [1, 2]

If $\operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{It}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Buchberger's criteria

Product criterion [1, 2]
 If $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

Buchberger's criteria

Product criterion [1, 2]

If $\operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{lcm}\left(\operatorname{It}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

Buchberger's criteria

Product criterion [1, 2]

$\operatorname{If} \operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(g))=\operatorname{lt}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{lcm}\left(\operatorname{It}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

\Longrightarrow We can rewrite $\operatorname{spol}\left(g_{3}, g_{2}\right)$:

$$
\operatorname{spol}\left(g_{3}, g_{2}\right)=y \underbrace{\operatorname{spol}\left(g_{3}, g_{1}\right)}_{G_{\rightarrow 0}}-z^{2} \underbrace{\substack{\text { a }}}_{G_{\rightarrow-g_{3}}^{\operatorname{spol}\left(g_{2}, g_{1}\right)}}
$$

Buchberger's criteria

Product criterion [1, 2]

If $\operatorname{lcm}(\operatorname{It}(f), \operatorname{It}(g))=\operatorname{It}(f) \operatorname{lt}(g)$ then $\operatorname{spol}(f, g) \xrightarrow{\{f, g\}} 0$.

Couldn't we remove spol $\left(g_{3}, g_{2}\right)$ in a different way?

$$
\operatorname{lt}\left(g_{1}\right)=x y \mid x y^{2} z^{2}=\operatorname{lcm}\left(\operatorname{It}\left(g_{3}\right), \operatorname{lt}\left(g_{2}\right)\right)
$$

\Longrightarrow We can rewrite $\operatorname{spol}\left(g_{3}, g_{2}\right)$:

Standard representations of spol $\left(g_{2}, g_{1}\right)$ and $\operatorname{spol}\left(g_{3}, g_{1}\right)$ \Longrightarrow Standard representation of $\operatorname{spol}\left(g_{3}, g_{2}\right)$.

Buchberger's criteria

Chain criterion [3]

Let $f, g, h \in \mathscr{R}, G \subset \mathscr{R}$ finite. If

1. It $(h) \mid \operatorname{lcm}(\operatorname{lt}(f), \operatorname{It}(g))$, and
2. $\operatorname{spol}(f, h)$ and $\operatorname{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then spol (f, g) has a standard representation w.r.t. G.

Buchberger's criteria

Chain criterion [3]
Let $f, g, h \in \mathscr{R}, G \subset \mathscr{R}$ finite. If

1. It $(h) \mid \operatorname{lcm}(\operatorname{lt}(f), \operatorname{lt}(g))$, and
2. $\operatorname{spol}(f, h)$ and $\operatorname{spol}(h, g)$ have a standard representation w.r.t. G respectively,
then spol (f, g) has a standard representation w.r.t. G.

Combined implementation of Product and Chain criterion: Gebauer-Möller Installation [10]

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

- Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

- Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
- Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

- Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
- Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
- Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

- Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
- Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
- Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$
- A signature of f is given by $\mathfrak{s}(f)=\mathrm{It}_{\prec}(\alpha)$ where $f=\bar{\alpha}$.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

- Let \mathscr{R}^{m} be generated by $\epsilon_{1}, \ldots, \epsilon_{m}$ and let \prec be a compatible monomial order on the monomials of \mathscr{R}^{m}.
- Let $\alpha \mapsto \bar{\alpha}: \mathscr{R}^{m} \rightarrow \mathscr{R}$ such that $\bar{e}_{i}=f_{i}$ for all i.
- Each $f \in I$ can be represented via some $\alpha \in \mathscr{R}^{m}: f=\bar{\alpha}$
- A signature of f is given by $\mathfrak{s}(f)=\mathrm{It}_{\prec}(\alpha)$ where $f=\bar{\alpha}$.
- An element $\alpha \in \mathscr{R}^{m}$ with $\bar{\alpha}=0$ is called a syzygy.

Our example again - with signatures and \prec pot

$$
\begin{aligned}
& g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
& g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} .
\end{aligned}
$$

Our example again - with signatures and \prec pot

$$
\begin{aligned}
& g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
& g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} .
\end{aligned}
$$

$$
\begin{aligned}
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
& \Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2}
\end{aligned}
$$

Our example again - with signatures and \prec pot

$$
\begin{gathered}
g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1} \\
g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} \\
g_{3}=\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2} . \\
\\
\Rightarrow \mathfrak{s p o l}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1} \\
\left.\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
\end{gathered}
$$

Our example again - with signatures and \prec pot

$$
\begin{gathered}
g_{1}=x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1} \\
g_{2}=y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2} \\
g_{3}=\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right)=x \mathfrak{s}\left(g_{2}\right)=x e_{2} . \\
\\
\Rightarrow \mathfrak{s p o l}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1} \\
\left.\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
\end{gathered}
$$

Note that $\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y \epsilon_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

S-pairs/S-polynomials:

$$
\operatorname{spol}(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \operatorname{spair}(\alpha, \beta)=a \alpha-b \beta
$$

Think in the module

$\alpha \in \mathscr{R}^{m} \Longrightarrow$ polynomial $\bar{\alpha}$ with $\operatorname{It}(\bar{\alpha})$, signature $\mathfrak{s}(\alpha)=\operatorname{It}(\alpha)$

S-pairs/S-polynomials:

$$
\text { spol }(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \operatorname{spair}(\alpha, \beta)=a \alpha-b \beta
$$

s-reductions:

$$
\bar{\gamma}-d \bar{\delta} \Longrightarrow \gamma-d \delta
$$

Think in the module

$$
\alpha \in \mathscr{R}^{m} \Longrightarrow \text { polynomial } \bar{\alpha} \text { with } \operatorname{lt}(\bar{\alpha}), \text { signature } \mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)
$$

S-pairs/S-polynomials:

$$
\text { spol }(\bar{\alpha}, \bar{\beta})=a \bar{\alpha}-b \bar{\beta} \Longrightarrow \operatorname{spair}(\alpha, \beta)=a \alpha-b \beta
$$

\mathfrak{s}-reductions:

$$
\bar{\gamma}-d \bar{\delta} \Longrightarrow \gamma-d \delta
$$

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

We pick from P by increasing signature.

Signature-based criteria

$$
\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) \Longrightarrow \text { Compute 1, remove } 1 .
$$

Signature-based criteria

$$
\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) \Longrightarrow \text { Compute 1, remove } 1 .
$$

Sketch of proof

1. $\mathfrak{s}(\alpha-\beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta)$.
2. All S-pairs are handled by increasing signature.
\Rightarrow All relatons $\prec \mathfrak{s}(\alpha)$ are known:

$$
\alpha=\beta+\text { elements of smaller signature }
$$

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \Re_{T} maximal w.r.t. an order \unlhd.

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \Re_{T} maximal w.r.t. an order \unlhd.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow$ Go on to next signature.

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \mathfrak{R}_{T} maximal w.r.t. an order \unlhd.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow$ Go on to next signature.
2. If $b \beta$ is not part of an S-pair $\Longrightarrow G$ Go on to next signature.

Special cases

$$
\mathfrak{R}_{T}=\{a \alpha \mid \alpha \text { handled by the algorithm and } \mathfrak{s}(a \alpha)=T\}
$$

Choose $b \beta$ to be an element of \Re_{T} maximal w.r.t. an order \unlhd.

1. If $b \beta$ is a syzygy $\quad \Longrightarrow G o$ on to next signature.
2. If $b \beta$ is not part of an S-pair $\Longrightarrow G$ Go on to next signature.

Revisiting our example with \prec pot

$$
\left.\begin{array}{l}
\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2} \\
g_{1}=x y-z^{2} \\
g_{2}=y^{2}-z^{2}
\end{array}\right\} \Rightarrow \operatorname{psyz}\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots
$$

Buchberger's criteria?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [9, 11, 5]:

Buchberger's criteria?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [9, 11, 5]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Buchberger's criteria?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [9, 11, 5]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.

Buchberger's criteria?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [9, 11, 5]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.
α added to \mathscr{G}
∇
Generate all possible principal syzygies with α.
(e.g. GVW)

Buchberger's criteria?

Buchberger's Product and Chain criterion can be combined with the Rewrite criterion [9, 11, 5]:

Chain criterion is a special case of the Rewrite criterion \Rightarrow already included.

Product criterion is not always (but mostly) included.

Experimental results

Implementation done in Singular [4]

		SBA $\prec_{\text {lt }}$		
Benchmark	STD	SBA $\prec_{\text {pot }}$	SBA	
	ZR	ZR	ZR	ZR / PC
cyclic-8	4284	243	771	$771 / 0$
cyclic-8-h	5843	243	771	$771 / 0$
eco-11	3476	0	614	$614 / 0$
eco-11-h	5429	502	629	$608 / 0$
katsura-11	3933	0	348	$304 / 0$
katsura-11-h	3933	0	348	$304 / 0$
noon-9	25508	0	682	$646 / 0$
noon-9-h	25508	0	682	$646 / 0$
binomial-6-2	21	6	15	$8 / 7$
binomial-6-3	20	13	15	$9 / 6$
binomial-7-3	27	24	21	$21 / 0$
binomial-7-4	41	16	19	$16 / 3$
binomial-8-3	53	23	27	$27 / 0$
binomial-8-4	40	31	26	$26 / 0$

And what's about SBA using \prec pot ?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using \prec pot .

And what's about SBA using $\prec_{\text {pot }}$?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using $\prec_{\text {pot }}$.

- We checked several million examples, all fulfilling the conjecture.
- Until now we cannot prove this.

And what's about SBA using $\prec_{\text {pot }}$?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by the Rewrite criterion in SBA using $\prec_{\text {pot }}$.

- We checked several million examples, all fulfilling the conjecture.
- Until now we cannot prove this.

Ongoing work:

1. Describe in detail the connection between our conjecture and Moreno-Socías conjecture [12].
2. Try to exploit even more algebraic structures for predicting zero reductions.

References I

[1] Buchberger, B. Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems. Aequ. Math., 4(3):374-383, 1970.
[2] Buchberger, B. A criterion for detecting unnecessary reductions in the construction of Gröbner bases. In EUROSAM '79, An International Symposium on Symbolic and Algebraic Manipulation, volume 72 of Lecture Notes in Computer Science, pages 3-21. Springer, 1979.
[3] Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. pages 184-232, 1985.
[4] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 4-0-0 - A computer algebra system for polynomial computations, 2014.
http://www.singular.uni-kl.de.
[5] Eder, C. Predicting zero reductions in Gröbner basis computations. submitted to Journal of Symbolc Computation, preprint at http://arxiv.org/abs/1404.0161, 2014.
[6] Eder, C. and Faugère, J.-C. A survey on signature-based Groebner basis algorithms. http://arxiv.org/abs/1404.1774, 2014.
[7] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra, 139(1-3):61-88, June 1999.
http://www-salsa.lip6.fr/~jcf/Papers/F99a.pdf.

References II

[8] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without reduction to zero F5. In ISSAC'02, Villeneuve d'Ascq, France, pages 75-82, July 2002. Revised version from http://fgbrs.lip6.fr/jcf/Publications/index.html.
[9] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner bases (rev. 2013).

```
http://www.math.clemson.edu/~sgao/papers/gvw_R130704.pdf,
``` 2013.
[10] Gebauer, R. and Möller, H. M. On an installation of Buchberger's algorithm. Journal of Symbolic Computation, 6(2-3):275-286, October/December 1988.
[11] Gerdt, V. P. and Hashemi, A. On the use of Buchberger criteria in G2V algorithm for calculating Gröbner bases. Program. Comput. Softw., 39(2):81-90, March 2013.
[12] Moreno-Socías, G. Degrevlex Gröbner bases of generic complete intersections. Journal of Pure and Applied Algebra, 180(3):263 - 283, 2003.```

