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computations

Christian Eder

SNC 2014, Shanghai, China

July 30, 2014

1 / 15



How to detect zero reductions in advance?

Let I = 〈g1,g2〉 ∈Q[x ,y ,z] and let < denote DRL. Let

g1 = xy− z2, g2 = y2 − z2
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How to detect zero reductions in advance?

Let I = 〈g1,g2〉 ∈Q[x ,y ,z] and let < denote DRL. Let

g1 = xy− z2, g2 = y2 − z2

spol(g2,g1) = xg2 − yg1 = xy2 − xz2 −xy2 + yz2

=−xz2 + yz2
.

=⇒ g3 = xz2 −yz2.

spol(g3,g1) = xyz2 − y2z2 −xyz2 + z4 =−y2z2 + z4
.

We can reduce further using z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.
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Buchberger’s criteria

Product criterion [1, 2]

If lcm(lt(f ) , lt(g)) = lt(f ) lt(g) then spol(f ,g)
{f ,g}
−−−→ 0.
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{f ,g}
−−−→ 0.

Couldn’t we remove spol(g3,g2) in a different way?

lt(g1) = xy |xy2z2 = lcm(lt(g3) , lt(g2))

=⇒ We can rewrite spol(g3,g2):

spol(g3,g2) = y spol(g3,g1)
︸ ︷︷ ︸

G
−→0

−z2 spol(g2,g1)
︸ ︷︷ ︸

G
−→−g3

Standard representations of spol(g2,g1) and spol(g3,g1)
=⇒ Standard representation of spol(g3,g2).

3 / 15



Buchberger’s criteria

Chain criterion [3]

Let f ,g,h ∈ R, G ⊂ R finite. If

1. lt(h) | lcm(lt(f ) , lt(g)), and

2. spol(f ,h) and spol(h,g) have a standard representation w.r.t. G

respectively,

then spol(f ,g) has a standard representation w.r.t. G.
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Chain criterion [3]

Let f ,g,h ∈ R, G ⊂ R finite. If

1. lt(h) | lcm(lt(f ) , lt(g)), and

2. spol(f ,h) and spol(h,g) have a standard representation w.r.t. G

respectively,

then spol(f ,g) has a standard representation w.r.t. G.

Combined implementation of Product and Chain criterion:

Gebauer-Möller Installation [10]
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Signatures

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:
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Idea: Give each f ∈ I a bit more structure:

◮ Let Rm be generated by e1, . . . ,em and let ≺ be a compatible monomial

order on the monomials of Rm.

◮ Let α 7→ α : Rm → R such that ei = fi for all i .

◮ Each f ∈ I can be represented via some α ∈ Rm: f = α

◮ A signature of f is given by s(f ) = lt≺(α) where f = α .

◮ An element α ∈ Rm with α = 0 is called a syzygy.
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Our example again – with signatures and ≺pot

g1 = xy − z2
, s(g1) = e1,

g2 = y2 − z2
, s(g2) = e2.
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Our example again – with signatures and ≺pot

g1 = xy − z2
, s(g1) = e1,

g2 = y2 − z2
, s(g2) = e2.

g3 = spol(g2,g1) = xg2 − yg1

⇒ s(g3) = x s(g2) = xe2.

spol(g3,g1) = yg3 − z2g1

⇒ s(spol(g3,g1)) = y s(g3) = xye2.

Note that s(spol(g3,g1)) = xye2 and lm(g1) = xy .
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Think in the module

α ∈ Rm =⇒ polynomial α with lt(α), signature s(α) = lt(α)
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Think in the module

α ∈ Rm =⇒ polynomial α with lt(α), signature s(α) = lt(α)

S-pairs/S-polynomials:

spol

(

α,β
)

= aα −bβ =⇒ spair(α,β ) = aα −bβ

s-reductions:

γ −dδ =⇒ γ −dδ

Remark

In the following we need one detail from signature-based Gröbner Ba-

sis computations:

We pick from P by increasing signature.
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Signature-based criteria

s(α) = s(β ) =⇒ Compute 1, remove 1.
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Signature-based criteria

s(α) = s(β ) =⇒ Compute 1, remove 1.

Sketch of proof

1. s(α −β )≺ s(α),s(β ).

2. All S-pairs are handled by increasing signature.

⇒ All relatons ≺ s(α) are known:

α = β + elements of smaller signature
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Signature-based criteria

S-pairs in signature T

What are all possible

configurations to reach

signature T?

RT =
{

aα | α handled by the algorithm and s(aα) = T

}

Define an order E on

RT and choose the

maximal element.
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Special cases

RT =
{

aα | α handled by the algorithm and s(aα) = T

}
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Special cases

RT =
{

aα | α handled by the algorithm and s(aα) = T

}

Choose bβ to be an element of RT maximal w.r.t. an order E.

1. If bβ is a syzygy =⇒ Go on to next signature.

2. If bβ is not part of an S-pair =⇒ Go on to next signature.

Revisiting our example with ≺pot

s(spol(g3,g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}

⇒ psyz(g2,g1) = g1e2 −g2e1 = xye2 + . . .
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Buchberger’s criteria?
Buchberger’s Product and Chain criterion can be combined with the Rewrite

criterion [9, 11, 5]:
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Buchberger’s criteria?
Buchberger’s Product and Chain criterion can be combined with the Rewrite

criterion [9, 11, 5]:

Chain criterion is a special case of the Rewrite criterion

⇒ already included.

Product criterion is not always (but mostly) included.

α added to G

H

Generate all possible

principal syzygies with α .

(e.g. GVW)

S-pair fulfilling Product criterion

not detected by Rewrite criterion

H

Add one corresponding syzygy.

(e.g. SBA in Singular)
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Experimental results
Implementation done in Singular [4]

Benchmark
STD SBA ≺pot SBA ≺lt

ZR ZR ZR ZR / PC

cyclic-8 4284 243 771 771 / 0

cyclic-8-h 5843 243 771 771 / 0

eco-11 3476 0 614 614 / 0

eco-11-h 5429 502 629 608 / 0

katsura-11 3933 0 348 304 / 0

katsura-11-h 3933 0 348 304 / 0

noon-9 25508 0 682 646 / 0

noon-9-h 25508 0 682 646 / 0

binomial-6-2 21 6 15 8 / 7

binomial-6-3 20 13 15 9 / 6

binomial-7-3 27 24 21 21 / 0

binomial-7-4 41 16 19 16 / 3

binomial-8-3 53 23 27 27 / 0

binomial-8-4 40 31 26 26 / 0

12 / 15



And what’s about SBA using ≺pot ?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by

the Rewrite criterion in SBA using ≺pot.

13 / 15



And what’s about SBA using ≺pot ?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by

the Rewrite criterion in SBA using ≺pot.

◮ We checked several million examples, all fulfilling the conjecture.

◮ Until now we cannot prove this.

13 / 15



And what’s about SBA using ≺pot ?

Conjecture [5]

Every S-polynomial fulfilling the Product criterion is also detected by

the Rewrite criterion in SBA using ≺pot.

◮ We checked several million examples, all fulfilling the conjecture.

◮ Until now we cannot prove this.

Ongoing work:

1. Describe in detail the connection between our conjecture

and Moreno-Socı́as conjecture [12].

2. Try to exploit even more algebraic structures for predicting

zero reductions.
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