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An optimal control model is used to predict pilot performance in a series of longitudinal 
hovering tasks. Configurational changes are considered that alter significantly the system 
response to both control and disturbance inputs. Model predictions of mean-squared perfor- 
mance are compared with measurements obtained in an independent experimental study of the 
task. In  addition, the optimal control model is used to predict describing functions that corre- 
spond to the “loop closing” pilot transfer functions frequently employed in classical multiloop 
manual control analyses. 
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INTRODUCTION 

Modern control theory with its emphasis on 
state-space techniques and digital computation 
has provided the basis for systematic analysis 
and synthesis of multi-input, multi-output sys- 
tems. In  recent years this theory has been 
blended with results from human response theory 
to  develop a computerized procedure for analyz- 
ing manned-vehicle systems (refs. 1 and 2 ) .  
Central to this approach is an “optimal-control” 
or “state-variable” model of the human operator. 
This model has proven to be very successful in 
predicting human cont,rol characteristics and 
system performance in a variety of single-axis 
tracking tasks. It has also been used to  analyze 
longitudinal hover control of an XV-5A (ref. 3).  
In that study, semi-empirical techniques, involv- 
ing a fairly extensive preliminary experimental 
program, were used to  determine the parameters 
of the optimal-control model. Using these parame- 
ters, human performance in the hover task was 
predicted and compared with data from simula- 
tion experiments. The results showed that the 
model was capable of reproducing both the corre- 
lated and uncorrelated portions of the pilot’s 
control spectra as well ;ts closed-loop system 

* This work was performed for NASA-Electronics 
Research Center under contract NAS12-104, and is de- 
scribed in greater detail in reference l. 

performance. The effects of visual scanning and a 
change in displayed information were also 
predicted. 

In this paper, we also analyze longitudinal 
hover control. However, our emphasis is on the 
ability of the model to predict the effects on 
performance of a variety of configurational 
changes (;.e., changes in aircraft stability deriva- 
tives). In  addition, we shall use the optimal- 
control model to  predict describing functions 
that correspond to  “loop-closing” pilot transfer 
functions that are frequently employed in classi- 
cal multiloop manual control analyses. 

MODEL FOR THE HUMAX OPERATOR 

The optimal-control model of the human 
operator is predicated on the assumption that he 
behaves optimally subject to  liia inhcrent !irr?itn- 
tions and his understanding of the requirements 
of the task. This implies a normative approach to 
developing the model, Le., we seek to  determine 
what the human should do given his limitations 
and the task. This leads to  a model for the pilot 
that has as its key elements representations of 
his limitations and of his compensating “pro- 
cesses.” The resulting model has been described 
in detail in references 1 through 3, so we will 
only review briefly its basic features. 

The structure of the model for the human 
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DISTURBANCES together account for human randomness; for 
situations in which quasilinear, frequency domain 
representations of the human are appropriate, 
these noises constitute a model for controller 
remnant. 

DYNAMICS 

_ _ _ _ _  - - _ -  - _ _ _ - -  ---- --- -- -- --___ 

Given the above (‘human” limitations, and our 
basic assumption, the model of the human opera- 
tor then includes for “equalization”: a Kalman 
estimator to  compensate for the observation 
noises; a least mean-squared predictor to  com- 
pensate for the time-delay; and, a set of feedh ck 

gainstTiiit are optimal in terms of minimizinJ a 

’ 
HUMAN OPERATOR MOOEL 

of optimal human behavior. 

operator is shown in figure 1. Also shown is the 
model of t,he veSc!e-dispkq- system. Vehicle 
dynamics are assumed to  be linear and time- 
invariant,.* The state of the vehicle is given by 
the vector z and the displayed variables, y, are 
assumed to  be linear combinations of the states. 
Input disturbances are modelled as zero-mean, 
gaussian, white noises passed through appro- 
priate linear filters. t 

Figure 1 illustrates several types of pilot 
limitations that are represented explicitly in the 
model. The various internal delays associated 
with visual, central processing and neuro-motor 
pathways are modelled, for convenience, by a 
lumped perceptual delay T .  The “equivalent” 
observation noise process indicated in figure 1 
accounts for the effects of sensory and central 
processing sources of human randomness. A 
white, gaussian noise is added to each “observed” 
variable. The power density level of this noise 
is assumed to  scale with the mean-squared value 
of the “signal” being observed. The noise-to- 
signal ratio is a parameter of the model that is 
expected to depend on the nature (quality, type, 
form) of the display. The model also includes a 
“motor-noise’’ to account for the fact that the 
human operator cannot generate intended con- 
trol inputs perfectly. The motor noise is also 
assumed to be a white gaussian noise and its 
power density is scaled with the intended or 
“commanded” control u, indicated in figure 1. 
The motor noise and the observation noises 

* The time-invariance assumption is not eesential for 
using the model to predict performance; certain “mem- 
oryless” nonlinearities can also be considered (ref. 4). 

t Nonrandom inputs can also be considered (ref. 4). 

quadratic cost functional of the form \ 
n {” 
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I This quadratic performance index is a natural 
extension of the mean-squared tracking error i 

-criterion of classical compensatory tracking ex- 
periments. The cost functional weightings, q ; > O  
and g > O ,  may be either objective (specified by 
the experimenter or designer) or subjective 
(adopted by the human in performing and relat- 
ing to  the task). The inclusion in equation (1) of 
a term proportional to mean-squared control rate 
is an important feature of the model. This term 
may be thought of as constituting a subjective 
penalty on too rapid control movements or as an 
indirect method for accountsing for physiological 
limitations on the human’s bandwidth. I t s  inclu- 
sion results in the first order controller lag (time 
constant = r N )  s1~on.n in figure 1. 

To apply the model, we must specify the values 
of its parameters: the time delay r ;  the noise-to- 
signal ratios of the observation noises p, and the 
motor-noise pm; and the cost-functional weight- 
ings q;, g. Our studies of single-axis control tasks 
have revealed a consistency of parameter values 
that is very encouraging. In  particular, we have 
found that for k ,  k / s ,  and k / s 2  tracking, excellent 
agreement between model and measured data is 
obtained with the following parameter values : 
T =0.15 to0.2 sec; p , d . O l ( -  20 dB) ; p , ~ - 0 . 0 0 3  
(-25 dB); rN=0.08  to  0.1 sec. (ref. 2). 

T H E  HOVERING TASK 

The results of an analytic and experimental 
investigation of precision hover control by Vinje 
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and Miller (refs. 5 and 6) will provide the basic 
data for our investigation. They conducted a 
series of simulator experiments in which they 
measured the effects of variations in aircraft sta- 
bility parameters on rms hovering performance. 

Briefly, the pilot’s task was to minimize 
longitudinal position errors while hovering in 
turbulent air. Only longitudinal motions were 
considered and the pilot was not required to 
control the height of the aircraft. The linearized 
equations used to simulate this task were 

] ( 2 )  
Q = Mu(u+u,) + Mqq+Ma6 
zi = xU(u+u , )  +ge 

where u = k  is the perturbation velocity along 
the x-body axis, u, is the longitudinal com- 
ponent of the gust velocity;* 0 and q = d  are 
pitch and pitch-rate, respectively; 6 is the control 
stick input; g is the gravitational constant; and, 
Xu, Mu, M,, Ma are aircraft stability derivatives. 
The stability derivatives were assumed to have 
“nominal” values of Xu= -0.1, M,=0.0207, 
M ,  = -3.0, and Ma =0.431. We will examine the 
effects of the variations in these derivatives 
indicated in table 1 (the case numbers identifying 

TABLE 1.-Variations in VTOL Stability 
Derivatives 

Case xu Mu M ,  Ma 

Nomina 1 
(PH8) - 0 . 1  0.0207 - 3 . 0  0.431 
PH 1 0 0.0207 - 3 . 0  .287 
PH2 - . 0 5  0.0207 -3 .0  ,420 
PH5 - . 3  0.0207 - 3 . 0  .516 
PH6 - . l  0 - 3 . 0  .300 
PH7 - . l  .0104 - 3 . 0  ,360 

.0312 - 3 . 0  .481 
,0207 - i . O  .369 

PH9 
PHlO 
PHI2 i .0207 - 5 . 0  .493 

the various conditions are those assigned in 
reference 6). 

The pilot was provided with a Norden contact 
analog display on which both aircraft attitude 0 
and position x were indicated explicitly. (The 
display is described in ref. 5 . )  We assume, on 

* The simulated gust u, was equivalent to firsborder 
filtered white noise with a bandwidth of 0.314 rad/sec 
and an rms value of 5.14 ft/sec. 

the basis of much evidence, t.hat the pilot is 
able t o  infer d = q and x = u from the display, so 
that the “displayed output” is y = col {u,z,q,e). 

MULTILOOP-MODEL ANALYSIS 

A closed-loop pilot-vehicle analysis of the 
above hover task, using fixed-form, multiloop 
pilot models was performed by Vinje and Miller. 
We present the highlights of their approach in an  
attempt to  provide further context for the results 
we have obtained with our model.* 

In  applying the multiloop-model approach, 
one must assume an a priori closed-loop system 
structure. In  other words, an assumption must 
be made concerning those loops “closed” by the 
pilot. Vinje and Miller assumed the “series loop” 
model illustrated in figure 2.  (A parallel loop 
model for this task is also a possibility.) Once 
the loop topology has been decided upon, i t  is 
then necessary to assume specific forms for the 
individual transfers comprising the pilot model. 
For the structure of figure 2 this means choosing 
fixed forms for Y ,  and Ypo. The forms chosen by 
Vinje and Miller were 

Yp= = K,(TLZs+ l)e-’=” (3) 

Y p e =  K,,(TL,s+l)e-Tea/(TNs+l). (4)  

In equations (3  and 4) ,  and the ‘‘neuromuscular 
lag” T N ,  the e-loop transport lag 7 8 ,  and the 
x-loop transport lag rz were considered to be fixed 
parameters with values of 0.35 sec, 0.09 sec and 
0.08 sec, respectively; the gains K,,, K ,  and the 
lead time constants TL,, TL, were assumed to 
be “adaptable” parameters, chosen by the 
pilot to achieve certain desired closed-loop 
characteristics. 

* Details may be found in reference 6. 

YPI 

r INNER LOOP 

OUTER LOOP 

FIGURE 2.--Series loop model for pilot 
longitudinal control in hover. 
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Inasmuch as YPz and Y,, cannot be measured 
directly in this task, Vinje and Miller devised a 
technique for “identifying” the adaptable pa- 
rameters. In  particular, they iterated on KPe,  
K,=, TLe and TL,  until the rms values uU, uz, no, 

and uq computed by using the closed-loop model 
of figure 2 [‘matched” the corresponding rms 
hover performance (as measured in the simulator 
experiments) to within 0.5 percent. Vinje and 
Miller did not use rms control activity ( re in their 
matching procedure in an attempt to minimize 
the effects of ignoring pilot remnant in the com- 
putation of the pilot-model adapted parameters. 
However, they compared measured values of ug 
with those obtained from calculations based on 
the computed pilot-nede! pariiiiieters and tound 
that these values of ug differed, on the average, 
by about 17 percent. 

Once values for the parameters of Ypz  and 
Y,, are given, it, is possible to compute various 
loop closure characteristics, e.g., inner- and 
outer-loop crossover frequencies and phase mar- 
gins. The inner-loop characteristics are obtained 
from Yge.[O/6]. The outer-loop characteristics are 
calculated by assuming the inner (pitch) loop is 
closed. 

Before leaving this discussion of the mult iloop 
analysis, it is worth repeating arid re-emphasizing 
that the pilot-model adapted parameters and the 
computed loop closure charac.teristic-s are derived 
measures of human performarice that are de- 
signed to provide additional understanding of 
the pilot’s behavior. The only direct measures 
made by Virije and lZliller in their experimental 
study were the measures of closed-loop rrns 
hovering performance uzl uu, u,, uq uh.* 

PREI>ICTIONS WITH T H E  OPTIMAL 
CONTROL MODEL 

In  this section we present the results of apply- 
ing the optimal control model of the human 
operator to the analysis of the hover task 
described earlier. We begin with a brief discus- 
sion of the choice of parameters for the opt,imal 
control model. Then we present and discuss 

* Another (subjcctive) measure, namely, pilot opinion 
rating was also taken but we will not discuss this measure 
at length here. 

model predictions for the various configurations 
listed in table 1. 

Model Parameters 

Values for TN, 7, the ps,  and pm as well as cost 
functional weighting3 had to  be chosen for this 
task. We felt that, with respect to  those param- 
eters related primarily to  i n t r in s i c  human lim- 
itations, values representative of those used in 
the single-axis studies constituted a good a priori 
choice. Thus, we let ~ # = 0 . 1  sec, 7-0.15 sec, 
p 1 = p 2 = p 3 = p 4 =  -20 dB and pm= -25 dB.* It is 
significant that we were able to keep this (initial) 
set of model input parameters fixed thrc?cghs.;t 
t h e  entire subsequent study. 

The choice of a cost functional is a bit more 
subtle. Recall that the pilots were instructed to  
minimize position error 0,. However, in order 
to  accomplish this the pilot must suppress pitch 
errors inasmuch as such errors introduce disturb- 
ing longitudinal forces. 111 addition, one may 
expect that pilots try to avoid excessive attitude 
changes during the process of minimizing hover- 
ing errors. Accordingly, it seems reasonable to 
include a pitch or pitch-rate term in the vast 
functional; we chose to add a term proportional 
to mean-squared pitch rate, uq2. We piclccd the 
pitch-rate weightirig on the bmi4 of the mea- 
sured svores for the “nomiti:d” configuration. t 
In  that case, value3 of u,2 and uq2 of approxi- 
mately 1.2 f t 2  and 0.0024 rnd2/sec2 were found. 
On this basis, we selected a pit (811-rate weighting 
of 400 and we used this value in d l  subsequent 
calculations. Thus, the cost functional for this 
analysis was 

J = ~ , ~ + 4 0 0 a ~ ~ + y u ~ ~  (5) 

where 9 was chosen so that 7 ~ ~ 0 . 1  sec. 

Nonimal Case 

We now compare model predictions with mea- 
sured and derived data for the nominal case 
(PH8 in table 1).  Measured and predicted scores 
are compared below in table 2. The measured 

* Noise ratios were chosen within rt 0.5 dB and T N  was 

t Other, a priori, techniques for choosing the weighting 
within 10 percent of 0.1 sec for all caws. 

are possible. 
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TABLE 2.-Comparison of Measured and Predicted Scores for Nominal Configuration 
(Xu= -0.1, MUg=0 .667 ,  M,= -3, Ma=O.QSl) 

Measured 0.79(0.09)  1.16(0.10) 0.050(0.003) 0.032(0.002) 0.59(0.03) 
Predicted .82 1.08 ,055 ,036 .63 

values are averages of ten runs and the quantities 
in parenthesis indicate the corresponding stan- 
dard deviations. It can be seen that the agree- 
ment between predicted and measured scores is 
excellent. * 

It would be desirable to  obtain comparisons 
of measured and predicted frequency domain 
data for this study that might provide a more 
complete validation of the model. Unfortunately, 
the data of reference 6 does not include frequency 
domain measurements. Instead, the fixed-form 
expressions for Ypz  and Y,,  were assumed and the 
parameter values (K,,, KPr,  TL,, TLz) were 
adjusted to match scores. 

In  an attempt to  correlate the multi-loop 
structure of our optimal-control-model with that 
of Vinje and hliller’s model, we simply computed 
the equivalent transfers, Y,, and Y ,  in the 
following manner. From figure 2, we see that the 
control input 

6 = - Y,~Y, ,x  - ypge. (6) 

On the other hand, for this situation, we may 
write the output of the optimal control model 
of the human operator as (see ref. 1 and Fig. 1) 

6(s) = k ’ y = h i ( s ) ~ ( ~ ) + h z ( s ) z ( s ) + h ~ ( ~ ) ~ ( ~ )  + h 4 ( ~ )  
= ( shi+hz)x(s )+(&)  +h4)e(s)  (7) 

Sh3+h4 = - Y,, (8) 

Comparison of equations (6) and (7) yields 

(9) 

Consequently, with these expressions for Y,, and 
Y,, it is possible to use the optimal control model 
t o  compute equivalent “inner” and “outer” loop 

* It should be emphasized the only “parameter” used 
to “match” this data was the pitch-rate weighting. 

characteristics, just as is done in the fixed-form 
multiloop analysis. 

Figures 3 through 5 show the results of per- 
forming some of the frequency domain calcula- 
tions for the “nominal” configuration. Bode plots 

0 

FIGURE 3.-Pitch-loop pilot describing functions 
Y,, for nominal configuration. 
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FIGURE 4.-Position-loop pilot describing 
functions for nominal configuration. 
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FIGURE 5.-Open loop describing function 
for pitch loop, ( Y , 4 / & ) .  

of Y,, and Y,, as computed from equations (8) 
and (9), are presented in figures 3 and 4. Also 
shown in these figures are the fixed-form Ypo and 
Yp= corresponding to the parameter values (K,,, 
TL,, K,, etc.) determined by Vinje and Miller. 
As can be seen, the corresponding Y,,-transfers 
are in excellent agreement up to about 4 rad/sec; 
correspondingly good agreement between the 
Y,=-transfers is evident up to aboutj 1.5 rad/sec. 

In  figure 5, the Bode plots for the transfer 
( Ypo.e/8 ] , necessary to determine “inner”-loop 
closure characteristics, is presented. * We find 
that the optimal control model yields, for the 
pitch loop, “crossover” frequency and phase 
margin of approximately 3.2 rad/sec and 30”, 
respectively. Vinje and Miller obtain a pitch loop 
crossover frequency and phase margin of 3.1 rad/ 
sec and 8”. Similar computations for the “outer” 
or position loop result in model crossover and 
phase margin of 1.1 rad/sec and 21” as compared 

* The dashed portions of these curves correspond to 
what we believe are reasonable trends in the data. Un- 
fortunately, our programs were designed to compute 
quantities at discrete frequencies (corresponding to 
values at which we normally measure). Time did not 
permit the recomputations necessary to define these fre- 
quency plots in more detail. 

to  values of 1.0 rad/sec and 15” derived by Vinje 
and Miller. Thus, the agreement in these char- 
acteristics is good, with the optimal control model 
providing slightly greater stability margins. 

The loop closure characteristics reveal that the 
Y,, and Ypz predicted by the optimal control 
model agree closely with the derived values of 
Vinje and Miller up to  frequencies slightly greater 
than the respective loop crossovers. The dis- 
agreements a t  higher frequencies cannot be re- 
solved on the bais of the available data and they 
do not appear to  be significant from the stand- 
point of system performance. However, from our 
studies of single-axis tasks, we can be reasonably 
certain that the high frequency deviations of the 
Yp resuit from the longer time delay and the 
inclusion of the predictor in the optimal-control 
model. 

Effects of Pitch Rate Damping, M ,  

Predicted and measured rms-scores as a func- 
tion of changes in pitch rate damping (with other 
derivatives held at “nominal” values) are plotted 
in figure 6. It should be re-emphasized that no 
changes in the parameters of the pilot model are 
made in computing the effects of changing air- 
craft parameters. Again, agreement is quite good, 
especially for the cases with higher damping. For 
M,= -5.0, all the predicted scores are within 
the standard deviations of the data and we have 
already seen similar agreement for the M ,  = -3.0 
case. Model predictions are poorest for the con- 
figuration with the least damping ( M ,  = - 1.0), 
although the maximum deviation between pre- 
dicted and measured scores does not exceed 25 
percent. Unfortunately, i t  is difficult to  assess 
the true mismatch between model scores and data 
for this case because standard deviations of the 
measured averages were not available. (Standard 
deviations were published for the results of a 
second, different, subject; as might be ex- 
pected, standard deviations increased as damping 
decreased.) 

What is perhaps most surprising about the 
score data for the low damping case is that  all the 
scores predicted by the optimal-control model of 
the human operator exceed those achieved by the 
pilot. This suggests that the observation noise- 
ratios in the model may have been too high. We 
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FIGURE 6.-Effect of pitch-rate damping on hovering 
performance (Mug =0.667, Xu = -0.1). 

decreased these noise-ratios to  approximately 
-23 dB and found that all predicted scores were 
then within 10 percent of measured values. This 
is an interesting result because it implies that the 
pilots became less "random," in an attempt to  
maintain the lower scores. Or, in Levison's 
(ref. 7) terms, the pilots worked harder to achieve 
a criterion level. This correlates with the fact 
that the M ,  = - 1.0 case was rated unsatisfactory 
by the pilots (ref. 6) whereas the cases with 
higher damping were rated satisfactory. 

The equivalent Y p g  and Ypz  obtniced from the 
optimal control model are plotted in figures 7 
and 8. Nat,urally, the simplified fixed-form ex- 
pressions of reference 6 will not duplicate the 
low-frequency variations seen in the Y,, transfer 
with AT9= - 1.0. Nor will the high frequency 
behavior of corresponding transfers be duplicated 
for the reason mentioned earlier. However, it can 
be verified that  in the neighborhood of crossover, 
both models yield pitch and position loop gains 
that  agree quite well. Thus, we found inner and 
outer loop crossover frequencies that agreed with 
those of reference 21 to  within plotting accuracies. 

a 
FREOUENCY (rad/s*cl 

FIGURE 7.-Effect of pitch rate damping on predicted 
pilot describing function for pitch loop (Mug =0.667, 
xu= -0.1). 
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FIQURE 8.-Effect of pitch rate damping on predicted 
pilot describing function for position loop (Mug =0.667, 
xu= -0.1). 

Effects of Speed Stability Parameter, M u  

The effects on predicted and measured scores 
of changing the speed stability parameter Mu are 
shown in figure 9. The agreement is again very 
good except for the smallest value of M u  =O. The 
less precise agreement for the M,=O case is 
probably attributable to a value of motor noise 
that is too small. I n  this case there is no gust 
component entering in parallel with the stick so 
the Kalman filter can obtain very good estimates 
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FIQURE S.--Effect of speed stability parameter on 
hovering performance (Mq = -3.0, X u =  -0.1). 

of q and 0. We have found in a previous study 
(ref. 3), that such a situation may require values 
of motor noise somewhat greater than -25 d B  
to model the human operator accurately.* 

Equivalent Y,, and Ypz  transfers for the cases 
Mug=0.33 and M,,g= 1.0 are shown in figures 
10 and 11.  Variations in Y,, with Mug take place 
almost entirely below 1 rad/sec. (The nominal 
Ypo  for M u g  =0.667 falls within those sliown.) In  
the neighborhood of pitch loop crossover (-3 
rad/sec), pitch loop gain decreases very slightly 
with increasing Mug. This wts d s o  true for the 
fixed-form model of reference 6. The variations 
in YPz (fig. 11) with Mug are not very dramatic, 
with relatively small changes in gain appearing 
to be the principal effect. It should be rioted that 
the position gain of the optimal control model 
decreases with increasing Mug, whereas the Kp= of 
the fixed-form model shows the opposite trend. 
However, the total variation in position loop gain 
for the fixed-form model is less than 2 dB and the 
observed trend may not be significant. 

* Note that moderately higher values of motor noise 
would not increase the scores significantly in the remain- 
ing cases examined in this paper because of the relatively 
large nominal value for Mug. 

I 
0 

FIGURE 10.-Effect of speed stability parameter on 
predicted pilot describing function for pitch loop 
( M q  = -3.0, Xu = -0.1). 

0 

-40 
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FIGURE 11.-Effect of speed stability parameter on 
predicted pilot describing function for position loop 
( M q =  -3.0, X u =  -0.1). 

Effects of Variations in 1,ongitudinal 
Drag Parameter, Xu 

Predicted scores were computed for various 
values of Xu (with M ,  and Mug kept a t  their 
nominal values) and are presented along with 
measured data in figure 12.* Again, the data 

* Frequency domain data were also computed but they 
evidenced similar phenomena as in the other cases and 
are therefore not presented. 
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- 
0 
m . 

turbulence (Xu multiplies the input) * and in- 
creased his pitch-rate weighting accordingly. It 
is interesting to  note that this configuration had 
the poorest pilot rating of all the cases that we 
investigated. 

2 0  

< 
0 5  

l o  

0 5  

O -I -3 1 

Mq ( I/secl Mq ( l/sec I 
0 8  SUMMARY AND CONCLUDING 

REMARKS 

, We have applied the optimal control model 

in a series of longitudinal hovering tasks. The 
configurational changes that  were considered sig- 
nificantly altered the system response to  both 
control and disturbance inputs, yet the model 
was able to predict performance with exceptional 

0 MEASURED accuracy in almost all cases. Moreover, this was 
accomplished with a fixed set of model input 

= I -1 -3 - 5  parameters, whose values were virtually identical 
to  those used in single-axis studies. Also needed 

L of the human operator to predict performance 

-1 -3 - 5  -1  -3 -5  
Mq ( I/sec) ~ ~ ( ~ / s e c l  

MODEL - 

u) 

Mq(l/sec I 
- 

in the analysis was a subjective” weighting on 
rms pitch-rate error (i.e., a measure of perfor- 
mance in the “additional loop”). Results for all 

FIGURE 12.-Effect of longitudinal drag parameter on 
hovering performance (M,g =0.667, M q  = -3.0). 

agree almost everywhere; major trends are repro- 
duced and actual values are in close agreement. 
The only exception is the X u =  -0.3 case where 
the model predicts lower position, and higher 
pitch scores than were actually measured. 

Predicted and measured scores could be 
brought in closer agreement for X u =  -0.3 by 
increasing the pitch rate weighting. We therefore 
obtained model predictions for a weighting of 
q4 = 1000, a two and one-half-fold increase. The 
results, along with the measured values and those 
obtained with the lower weighting, are presented 
in table 3. (Numbers in parentheses are standard 
deviations.) Thus, i t  would appear from these 
results that  the pilot was unwilling to  accept tlie 
higher pitch-rate scores associated with the larger 

~ 

but one case were quite good keeping this 
parameter invariant and reasonable met hods for 
selecting its value appear t o  be generally 
available. 

Inasmuch as no frequency domain measure- 
ments were available for comparison, the optimal 
control model was used to predict describing 
functions that corresponded to the “loop closing’’ 
pilot transfer functions that are frequently em- 
ployed in “classical” multiloop manual control 
analyses. These “equivalent-optimal” describing 
functions were compared with fixed-form trans- 
fer functions that had been derived in the original 
analyses of the data. The fixed-form transfer 

* Vinje atid ?*li!!cr a!sc? dmw the same inference from 
their data. 

TABLE 3.--Score Comparison for Diflerent Pitch-Rate Weightings in High Drag 
Configuration 

Measured 1.67(0.20) 2.88(0.45) 0.069(0.005) 0.064(0.005) 0.76(0.07) 
94 = 400 1.58 2.10 ,095 ,074 .82 
q4 = 1000 1.66 2.52 ,079 ,070 .68 
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functions were of the “crossover-model” genre, 
and had some preselected parameters (time 
delays and neuromotor time constant) and some 
parameters (gain and lead time constants) that 
were adjusted to  match measured score data. 

Invariably, the optimal control and fixed-form 
describing functions agreed quite well in the 
neighborhood of loop “crossovers.” This is not 
surprising because the optimal control model pre- 
dicts the measured scores and the fixed-form 
model, which is designed primarily for the cross- 
over region, is adjusted to  match the “same” 
measured scores. For frequencies outside the 
crossover range, agreement between the differ- 
ently obtained describing functions is generally 
not good. This is particularly ~v iden t  fer p i t h -  
h o p  pilot describing functions. Those describing 
functions obtained from the optimal control 
model exhibit much more complex behavior than 
do the simpler fixed-form transfers. Many of 
these complex response characteristics are quite 
similar to those predicted by the model, and also 
observed experimentally, in single-axis tasks. On 
this basis we believe that measured describing 
functions would bear a closer resemblance to 
those predicted by the optimal control model 
than to  those obtained from the fixed-form model 
with “measured” parameters. 

There were three cases for which the optimal 
control model did not yield very accurate score 
predictions. For one of these cases (M,g=O)  the 
discrepancies could be largely attributed to  our 
treatment of motor noise. In  the other two cases, 
more accurate predictions were achieved by 
changing model input parameters. In  one case 
(lowest pitch rate damping), the observation 
noise ratio was decreased, and in the other case 
(highest drag) the pitch-rate weighting was in- 

creased. It is interesting and important t o  note 
that both of these cases were ones in which 
significant,ly poorer pilot ratings were obtained. 
It would appear to  be more than coincidental 
that a change in the basic model parameters 
correlated with a substantial degradation in 
pilot rating. Although, much work remains to  be 
done, we are reasonably convinced that  t,he 
optimal control model will ultimately provide 
a versatile and fairly general approach to  
predicting aircraft flying qualities. 
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