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Abstract: This study presents a model for the dispersion of radioactive smoke clouds from a nuclear
weapon explosion. A model based on a modified Settlement model is chosen to simulate the
dispersion of radioactive contaminants from a nuclear explosion in the atmosphere. The arrival
time and dose rate of radioactive fallout at various distances in the downwind direction are given
for different equivalents of the surface explosion and typical meteorological conditions. Thus, the
prediction of the dispersion of radioactive contaminants from a nuclear explosion can be achieved
under the conditions of known nuclear explosion equivalence and local meteorological parameters.
This provides a theoretical basis for the estimation of the affected environment and the input of rescue
forces after the explosion.
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1. Introduction

Nuclear weapons are the most powerful type ever manufactured and possessed by
mankind. The world’s current stockpile of nuclear weapons is sufficient to destroy the
entire planet [1,2]. On 22 January 2021, the United Nations Treaty on the Prohibition of
Nuclear Weapons (TPNW) was enforced, making the development, possession, and use of
nuclear weapons illegal [3]. Despite relentless global efforts to prevent the proliferation of
nuclear weapons [4,5], as nuclear technology continues to advance, the trend is becoming
pronounced toward nuclear confrontation and proliferation at the regional level, and the
activation of nuclear terrorism is exposing national security to new threats. If a nuclear war
were to break out, it would cause global climate change [6] and unrecoverable disturbances
to the marine environment [7], thus affecting agriculture, fisheries, and animal husbandry,
and ultimately causing a globalized food problem [8,9] with devastating consequences for
the world. In a future war, if nuclear weapons are used in a military conflict, no human
beings would be spared worldwide.

In addition to the hot fireballs and shockwave damage that results directly from the
detonation of a nuclear weapon, it can also be a serious hazard, i.e., the spread of the ra-
dioactive smoke cloud from a nuclear explosion. The dispersal of radioactive contaminants
from nuclear explosions refers to the transport of radioactive 137Cs, 131I, 90Sr, and other
particles [10–12] over time and space, contaminating the ground, water, air, and various
objects [13]. This process can last for months, years, or even longer, starting at the moment
of the explosion [10,12,14]. Before the first nuclear tests were conducted, scientists had
already predicted that such tests would cause radioactive contamination [15]. Many nuclear
weapons tests throughout history have resulted in severe radioactive contamination of
indigenous peoples in the vicinity of the test sites, and the alarming rates of thyroid and
other cancers have increased the importance of research into radioactive fallout [16–19].

The radioactive smoke cloud produced by a nuclear explosion carries most of the
remaining radioactive products after nuclear fission or nuclear fusion, and its drifting
under the action of the atmosphere causes serious ground-level radioactive contamination.
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This phenomenon is crucial to study the movement and dispersion law of the radioactive
smoke cloud of a nuclear explosion in the atmospheric environment. The atmospheric
transport processes of radionuclides are affected by weather and meteorological conditions,
such that general radiological dispersion models need to consider the driving factors of
the meteorological field [20,21]. Leelössy et al. [22] provided a comprehensive review
of models for radionuclide dispersion with respect to physical mechanisms, numerical
methods, and practical applications. The mainstream atmospheric dispersion algorithms for
radionuclides are often based on Gaussian plume models [23–25]. Liu et al. [26] improved
the Gaussian plume model using ground reflection coefficients and corrected heights to
predict the pollutant leak points and concentrations using an inverse calculation method.

For radioactive dispersion in nuclear explosions, the Gaussian plume model is not
applicable due to the discontinuity of the source phase, and new computational models
have been developed [27]. The earliest WSEG models [28] were based on the “smearing”
of smoke clouds, which is equivalent to a cloud of smoke dragging across the ground,
causing ground subsidence. Because of its simplicity and ease of application, the WSEG
model has been widely used in damage assessment studies for several years. Subsequently,
its prediction accuracy has been improved [29,30]. The DNAF-1 model, based on WSEG,
is suitable for subsidence simulations of small-yield nuclear explosions and has better
accuracy than WSEG [31].

The Defense Land Fallout Interpretative Code (DELFIC) model [32,33] is the standard
type for subsidence forecasting in the USA. It describes the entire particle formation and
subsidence process in terms of physical principles and takes into account the various factors
that influence particle transport. However, this model is very complex because of several
factors. Therefore, simplified models have been developed: the SEER model [34], the SEER
II model [35], the Hotspot model [36], and the SIMFIC model [37]. The characteristics of
these models are that the radioactive smoke cloud of a nuclear explosion is a rising bubble
and the height of the smoke cloud is approximately proportional to the square root of the
rise time, which is crucial to establishing the vertical trajectory of the particles, while its
horizontal movement depends entirely on the wind field.

In order to predict the concentration distribution of radioactive contaminants in the
atmosphere from a nuclear explosion in real time, we improved the Settlement model based
on MATLAB, using time segmentation processing and coordinate conversion methods such
that it can calculate the dispersion of the radioactive contaminants from a nuclear explosion
and the change in wind direction. Thus, the application scenario is in line with the real
situation of the dispersion of radioactive contaminants from a nuclear explosion. The
model can predict changes in the radiation area on the ground from the nuclear explosion
and meteorological parameters, and alert personnel downwind, directing them to evacuate
the danger zone or take appropriate protection and concealment, thereby reducing the
damage caused by the radioactive fallout from the nuclear explosion.

2. Mathematical Principles of Diffusion Models

In order to obtain accurate and rapid simulation calculation results, different math-
ematical models should be established for different cases of pollutant dispersion in the
atmosphere [22]. After a nuclear explosion occurs, a large number of radionuclides are
released. The common diffusion models for the diffusion of hazardous, radioactive sub-
stances are the Lagrange model, Gaussian model, and Settlement model. The Lagrange
model is a set of first-order stochastic modes describing the motion of many particles. It
is a widely used and mature model for radionuclide dispersion simulation, especially in
the Fukushima nuclear accident in Japan [38–41]. The model focuses on the simulation
of radionuclide dispersion trajectories. The Gaussian model is based on a non-random
variation of the plume with wind speed in the x-direction, a Gaussian distribution in the
y-direction, and vertical z-direction at a steady state [42–45]. The Settlement model is
theoretically simple and fast and can provide rapid simulation results in nuclear emergency
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situations, but it is based on the simplification of the ideal situation, such that the accuracy
of the calculation results is slightly inferior compared to other models [44].

2.1. Basic Parameters of the Diffusion Model
2.1.1. Stable Cloud Geometry Data

After detonation, the body of the nuclear bomb releases enormous energy due to
atomic fission or fusion reactions, the temperature in the nuclear reaction area rises to tens
of thousands of degrees Celsius, and the pressure rises to tens of billions of atmospheres.
Under such high temperatures and pressure, the projectile instantly vaporizes into a plasma
gas cloud [46], heating and pressurizing the surrounding cold air. In addition, the high
temperature and pressure of the gas mass with rapid outward expansion will form a
huge fireball that exists for a short period. When the nuclear explosion produced by the
fireball is extinguished, it rises and expands rapidly, forms a “mushroom” smoke cloud
(Figure 1), and an intense vortex motion is generated inside the smoke cloud [47–49]. The
strong suction and coiling effect trap the ground dust and other materials in the smoke
cloud [50,51]. When the smoke cloud reaches its maximum height, the temperature and
pressure inside the cloud are similar to those of the surrounding atmosphere, the vortex
motion has disappeared, and the upward motion of the cloud has stopped, thus entering
the turbulent separation phase [52], which is called “Stable Cloud”.
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Figure 1. Geometry of the stable smoke cloud of a nuclear explosion.

The height of the cloud cap HB and the height of the top Hτ in the geometry of the
stable radioactive smoke cloud can be expressed as follows:

HB = aWb

Hτ = cWd (1)

Among them, W represents the nuclear explosion energy equivalent (kt), the unit of
HB and Hτ is meters, and the parameters are as follows:

a = 2228, b = 0.3463; W ≤ 4.07
a = 2661, b = 0.2198; W > 4.07
c = 3597, d = 0.2553; W < 2.29
c = 3170, d = 0.4077; 2.29 ≤W < 19
c = 6474, d = 0.1650; W ≥ 19

The radius fitting formula of the stable cloud cap is:

RC = exp
[
6.7553 + 0.32055lg(W) + 0.01137478(lg(W))2

]
(2)
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where W denotes the nuclear explosion energy equivalent (kt).

2.1.2. Scale Distribution and Activity Distribution of Radioactive Particles

The size distribution of radioactive particles produced during a nuclear explosion
is very large, ranging from sub-micron to millimeter scale, and their settling velocity
varies considerably, necessitating scale gradation calculations. Typically, the particle scale
distribution is log-normal. As different radioactive particles are produced at various time
points, the activity varies at different particle scales, according to Bridgman’s method,
i.e., the particle activity scale distribution is a weighted average of the activity surface
distribution and the bulk distribution. The log-normal distribution function has many
advantages and is chosen as the scale distribution function in the model.

N(D)dD =
1√

2πDlnS
exp[−

(
lnD− lnD

)2

2lnS
] (3)

where: D is the particle diameter; N(D)dD indicates the number of particles scaled between
D and D + dD as a percentage of the total; D is the geometric mean particle diameter; S is
the geometric standard deviation.

The different sizes of radioactive particles in nuclear smoke have varied activity levels,
which could be attributed to the different processes and ways in which radioactive particles
are formed in the smoke cloud. In the early stages of the nuclear explosion, the high
temperatures generated by the bomb cause the bomb body and its surrounding material
to vaporize completely and then condense into radioactive particles. This particulate
radioactivity is uniformly distributed in a bulk distribution, which has a low particle scale,
in addition to a large amount of environmental material, such as soil, which is trapped in
it as the nuclear smoke cloud rises [46]. The melted and vaporized radioactive material
condenses as it cools and adheres to the surface of these environmental materials, resulting
in a surface distribution of these particles, which has a large particle scale.

Due to the different conditions of the explosion, the impact of particle activity distribu-
tion is related to factors such as the equivalent burst height and burst area soil composition.
Typically, the higher the burst formation of particles, the smaller the geometric mean di-
ameter, the greater the possibility of a radioactive body distribution, and the greater the
possibility of forming a radioactive surface distribution. Therefore, due to the air explosion,
most of the radioactive material is in the air for a prolonged period, while in the ground
explosion, most of the radioactive material quickly settles to the ground.

In this study, Bridgman’s methods are used [30], i.e., the activity-scaled distribution of
a particle is a weighted average of the activity surface and body distributions, such that the
number-scaled distribution of a particle is log-normal. Thus, it can be seen that the surface
and body distributions of the particle activity are log-normal, except that the corresponding
geometric mean diameters become

(
lnD + 2ln2S

)
and

(
lnD + 3ln2S

)
, respectively, and the

geometric standard deviation is S. Next, we have:

A(D)dD = C1 As(D)dD + C2 Av(D)dD (4)

where A(D)dD represents the activity in the interval from diameter D to D + dD as a
percentage of the total activity of all particles, and As(D) and Av(D) are the surface and
bulk distributions of particle activity, respectively: C1 = 0.32, C2 = 0.68.

In order to simplify the calculation, the particle scale is divided into several intervals,
and the percentage of the total activity in any particle size interval can be obtained by
integrating the particle size: activity expression for the particle size in the interval [Di, Di+1],
and the share of the total activity of the radioactive particles F(i) satisfies:

F(i) =
∫ Di+1

Di

A(D)dD (5)
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In this study, equal mass grading was used, i.e., the mass of particles in each subclass is
identical. The percentage of total radioactivity and gravitational settling velocity calculated
for the median particle radius of the 20 particle size intervals of the ground burst are listed
in Table 1.

Table 1. Percentage of total radioactivity and gravitational settling velocity in the radius of the
median particle of the ground burst.

Median
Particle

Radius/µm

Radioactivity
Percentage

Fi/%
Vg/(m/s)

Median
Particle

Radius/µm

Radioactivity
Percentage

Fi/%
Vg/(m/s)

4.3 9.35 0.006 70.8 3.95 0.915
8.6 7.99 0.023 84.4 3.87 1.444
13 6.44 0.053 101 3.8 1.427

17.7 5.65 0.096 122 3.73 1.78
22.7 5.15 0.153 149 3.68 2.228
28.3 4.8 0.224 185.7 3.62 2.816
34.6 4.55 0.306 238.7 3.58 3.622
41.7 5.35 0.391 323.8 3.53 4.812

2.1.3. Scale Distribution and Activity Distribution of Radioactive Particles

The horizontal transport and dispersion of radioactive particles is based on the Monte
Carlo model of smoke clouds; its dispersion is based on Gifford’s theory of relative tropo-
spheric dispersion, which is characterized by the stochastic nature of atmospheric motion
and the transient nature of explosive smoke cloud generation. The motion of the smoke
center could be computed as described previously in the following equation:{

xn+1 = xn + un+1∆t
yn+1 = yn + vn+1∆t

(6)

Among these, (xn+1, yn+1) is the central position of the puff at time t + ∆t, (xn, yn) is
the position at time and t, and (un+1, vn+1) is the wind speed at time t + ∆t, calculated by
the following formula: {

un+1 = unR(∆t) + σu
(
1− R2(∆t)

)1/2

vn+1 = vnR(∆t) + σv
(
1− R2(∆t)

)1/2 (7)

Among them, (un, vn) is the wind speed at time t, R(∆t) is the correlation coefficient,
and (σu, σv) is the turbulent velocity variance. Currently, there is no regular model result
of the turbulent velocity variance in the troposphere, and the assumption that the degree
of turbulence is not too large can be used, i.e., σu,v ∼ ux,y/10, where ux,y is the average
wind speed of the layer where the smoke cloud is located. The correlation coefficient
is in exponential form, i.e., R(∆t) = e−∆t/tL , where tL is the Lagrangian time scale of
tropospheric turbulence.

Typically, atmospheric nuclear explosions and radioactive fallout occur in the tropo-
sphere, where the tropospheric atmosphere inevitably contributes to nuclear smoke clouds
with the passage of time. However, the laws of tropospheric atmospheric dispersion have
not been well theorized, especially for contrail dispersion. Gifford et al. [53] proposed
a formula for the variance of the horizontal diffusion of puffs under uniform turbulent
conditions via random force theory:

σ2
y = σ2

0 + 2KtL

[
t

tL
−
(

1− e−
t

tL

)
− c

2

(
1− e−

t
tL

)2
]

(8)

where σ0 is the variance of the initial time of the smoke cloud, which is assumed to
be R/4.3, K is the vortex diffusion coefficient, and tL is the Lagrangian time scale of
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large-scale atmospheric motion. c is related to the characteristics of the original source,
obtained by comparing the results of the similarity theory using the following formula by
Gifford et al. [53]:

c ≈ 1− σ
2
3

0 /(2KtL)
1/3 (9)

Since the diffusion coefficient K and the Lagrange time scale are difficult to determine,
statistical methods were applied, and K could be roughly estimated by the following formula:

K = 1.43× 104e0.144Zc (10)

2.2. Sedimentation Rate Diffusion Factor
2.2.1. Sedimentation Rate Function

The settling rate fitting nuclear explosion radioactive smoke cloud dispersion calcula-
tion model is based on the settling rate function, considering lateral, vertical, and turbulent
dispersion effects, calculating the accumulation of radioactive settling in time, and then
fitting the ground radiation dose by equivalent dose rate. The sedimentation rate function
selected for this model is as follows:

g(t) =
4sin[π(3− α)/2]

πT(3− α)

(
T
t

)α

[
1 +

(
T
t

)2
]2 (11)

where, g(t) is the unit activity sedimentation rate function (s−1), t is the time (s), and α is a
dimensionless parameter:

α = 1.06; 10−3 ≤W ≤ 10−1

α = 1.0875 + 0.0119431lnW; 10−1 < W < 103

α = 1.17; W ≥ 103

T is the time scale (s) that can pass through the maximum time point of g(t):

tmax = T

√
4− α

α
(12)

tmax = 30W0.41556; 10−3 ≤W ≤ 1kt
tmax = 30W0.65407; 1 < W ≤ 103

tmax = 893.616W0.16273; 103 < W ≤ 104

tmax = 2497.18W0.05115; 104 < W ≤ 105

2.2.2. Far-Field Correction

The above settling rate function fits the simulated data in the near field or early stages
of settling of the radioactive smoke cloud; however, there is a large gap in the far field, such
that a far-field correction has to be added.

F(t) = exp

{
−
[

ln
(

g(t)
k

)
+

(
t

T2

)2
][

1− exp
(

t
atc

)]}
(13)

where: a = 1.443; k = 9.867× 10−5w−0.26945(s−1); T2 = 8160W0.2406(s); and

tc = 14667W0.26208(s); W ≤ 98.787kt

tc = exp
[

10.124706 + 0.1861768lnw
−0.008660444(lnW)2

]
(s); W > 98.787kt
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2.2.3. Vertical Diffusion

The settling velocity of the particles of nominal particle size at different heights can be
expressed as:

f (z) = f0eςz (14)

where f0 = 1.6538 (m/s) and ς = 2.9× 10−5 (m−1). Then, the time for the particle to reach
the ground is:

tB = −
∫ 0

zB

dz/ f (z) =
1− exp(−ςzB)

ς f0
(15)

To make it easier to give the longitudinal diffusion parameters of a nuclear explosion,
first define a diffusion parameter related to the explosion yield σW :

σW = Ri; W ≤ 10kt
σW = Ri(1 + 3log10W)/4; 10 < W < 1000
σW = 2.5Ri; W ≥ 1000

Then, the longitudinal diffusion parameters at different times and downwind positions are:

σc = σσ; t ≤ t0

σc = σW + t−t0
tB−t0

(
Rs
2 − σW

)
; t0 < t < tB

σc =
Rs
2 ; t ≥ tB

2.2.4. Turbulent Diffusion Correction

Considering the correction for longitudinal diffusion by atmospheric turbulence, the
result is:

σ2 =

(
σ

2
3

c + 2
3 (ξ)

1
3 t
)3

; t ≤ t1

σ2 = 106
(

3σ
2
3

c + 2(ξ)
1
3 t− 2000

)3
; t > t1

(16)

where 2
3 (ξ)

1
3 = 0.016522W−0.10233 and t1 = 1000−σ

2
3

c
2
3 (ξ)

1
3

.

2.2.5. Lateral Diffusion Parameters

The lateral diffusion is mainly due to the influence of wind shear and its diffusion
parameters can be expressed as follows:

σ2
s =

[
Sy(zT − zB)t

10

]2

(17)

where Sy denotes the approximate vertical wind shear (m/s). Thus, the equation is as follows:

σ2
y = σ2 + σ2

s (18)

2.2.6. Sedimentation Rate Diffusion Factor

Based on the parameters provided above, the settling rate diffusion factor at different
arrival times and locations can be expressed as follows:

g f (x, y, t) =
g(t)

√
2ππσσy

[
1 +

(
x−Vt

σ

)2
exp

[
−1

2

(
y
σy

)2
]

(19)
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V is the equivalent wind speed (m/s). For the upwind direction, a correction is
required, multiplied by the wind correction factor Fup above.

Fup = exp
{

bx
[

1− exp
(

x
c1

)]}
; x < 0 (20)

If W ≤ 10, b = 0.0176 and c1 = 570; else if W > 10, b = 0.08045w−0.66 and
c1 = −8179.82 + 3800lnW. Settling is a cumulative effect in time and this model does not
consider resuspension; hence, the settling diffusion factor xq

(
m−2) is expressed as:

xq(x, y, t) =
∫ t

0
g f (x, y, τ)dτ (21)

3. Programming and Verification
3.1. Programming

The program was written using MATLAB language to simulate the dispersion of
radioactive contaminants from a nuclear explosion. Figure 2 shows the flowchart of
the program; the input file contains the initial module of a nuclear explosion and the
meteorological monitoring module. The initial module of the nuclear explosion includes
the explosion equivalent, the coordinates of the burst center, and the exit velocity. The
meteorological monitoring module includes the meteorological parameters, such as wind
speed, wind direction, and temperature, and transmits them to the simulation calculation
module. The simulation calculation module processes the source data, meteorological data,
the calculation area size, and other parameters, and substitutes them into the mathematical
model for the concentration distribution calculation. The final results of the theoretical
numerical prediction of the dose concentration distribution of the radioactive smoke cloud
deposition in the atmosphere of the nuclear explosion are obtained.
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3.2. Model Verification
3.2.1. Sedimentation Rate Diffusion Factor Validation

The nuclear explosion radioactive dispersion prediction model DNAF-1 [31] is a
computational tool for rapid assessment of the effects of radioactive fallout from a nuclear
explosion on the surface based on experimental and simulation data patterns summarized
in the USA in the early 1980s [32,33,37]. In order to achieve a rapid and effective evaluation
of the nuclear explosion radioactive contaminant dispersion model, compare its accuracy,
and verify its practical application. The major computational parameters are referred
to for comparison. In the rapid deposition model of the nuclear explosion radioactive
smoke cloud, the model for calculating the settling rate dispersion factor is the core of the
calculation that determines the whole model algorithm; hence, a direct comparison of its
consistency can illustrate the accuracy of the model. Figure 3 shows the distribution of the
settling rate diffusion factor with time for the different models at 1 KT explosion equivalent.
Compared to the case without adding the far-field approximation correction, each model
is calibrated to a specific degree; the comparison reveals that the settling rate diffusion
factor of our model is similar to that of the DELFIC model and of the DNAF-1 model with
a certain degree of confidence.
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of 1 kiloton.

3.2.2. Real Historical Data Verification

In this study, the historical nuclear explosion experimental data shown in Table 2 verified
the accuracy of the model. This model was then compared to the DELFIC, DNAF-1, and
WSEG-10 models and then with the real observed data. The contour points generated
by the model at the same dose were plotted by the visualization software R, as shown in
Figure 4. Their heat maps were supplemented with blank values on the grid points using linear
interpolation. The data were selected from the three historical nuclear explosions under code
names Sugar, Koon, and Zuni, with explosive yields of 1.2, 150, and 3380 kilotons, respectively,
to verify the prediction accuracy of the model for large, medium, and small yields.

Table 2. Information on historical nuclear test data [54,55].

Shot Time Height of
Burst (m) Total Yield (kt) Average Wind

Speed (m/s)
Average Wind
Direction (◦)

Average Wind
Shear (s−1)

Sugar 19 November 1951 1.067 1.2 13.1 14.6 0.00311
Koon 7 April 1954 4.145 150 6.2 11.3 0.00133
Zuni 28 May 1956 2.743 3380 4.9 −20.0 0.00225
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Figure 4. Dose distributions from model predictions and real historical observations for the three
nuclear tests.

The inter-model validation and comparison with real recorded observations can be
obtained in medium- and small-yield nuclear explosion tests. Our model showed good
prediction accuracy, indicating considerable credibility and practical value. However, in
large yields, similar to the other three models, our model showed large deviations from
the real recorded observations, which might be due to the fact that large-yield nuclear
explosions have a high altitude of the radioactive smoke cloud, which spreads over a wide
area and is severely affected by the complex meteorological conditions; therefore, all models
are less effective in predicting the cloud. Owing to the fact that the Zuni experiment was
a nuclear test conducted on Bikini Island, the actual dose detection records were affected
by the constraints of the marine environment and the number of ships, mobility, and
observation errors, and their observations were not fully accurate isochronous distribution
values of the actual dose dispersion; hence, the credibility of the observation data was
limited and could only be used as a reference.

3.2.3. General Validation

Suppose that a nuclear explosion equivalent to 100 kilotons occurs at a certain location
and the meteorological conditions of the explosion are an average wind speed of 6 m/s,
an average wind direction of 90◦, and an average wind shear of 0. The nuclear explosion
and meteorological parameters are input into our model, and the predicted contamination
dose of radioactive fallout from 1 to 6 h after the explosion is presented by the visualization
method described in Figure 5. The radioactive smoke cloud deposition from a nuclear
explosion has the following characteristics:



Pollutants 2023, 3 53

• The maximum radioactive dose and the area of radioactive contamination increase
with time in 1–6 h;

• A hot line of radioactive dose extends continuously along the downwind direction;
• The general trend of dose distribution along the direction of the hot line is a gradual

decrease with increasing distance;
• The predicted map of radioactive deposition dose varies for each nuclear explosion;
• Radioactive deposition is strongly influenced by the equivalent dose, meteorological

conditions, topographic environment, and blast mode.
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Figure 5. Predicted dose dispersion of radioactive hazardous substances from 1 to 6 h after a
nuclear explosion.

Therefore, through the above historical data model comparison verification and gen-
eral verification, it is reasonable to judge that our model as the prediction of nuclear
explosion radioactive smoke cloud deposition in terms of time distribution or accuracy has
certain reference value and can be used as one of the theoretical bases for nuclear explosion
hazard prediction judgment analysis.

4. Conclusions

Nuclear explosion radioactive fallout is the nuclear reaction after the fission or fusion
production in the condensation of particles formed in the explosion of the fireball of buoy-
ancy to rise to high altitude [46,49]. Then in the atmosphere under the action of diffusion,
settlement to the ground, the formation of a vast area of radioactive contamination. The
effect of nuclear explosion radioactive fallout in the nuclear weapons destruction effect
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is the largest and the duration is the longest [11,12]. Numerical computational models
are the most effective tools for simulating radioactive fallout from nuclear explosions,
but model accuracy is still an important factor limiting the accuracy of predictions [22].
However, the prediction accuracy of nuclear explosion radioactive smoke cloud deposition
is not only related to the diffusion model, but also closely related to the accuracy of the
input nuclear explosion equivalent, coupling with the atmospheric diffusion model, etc. In
this paper, a hybrid model calculation program for nuclear explosion radioactive smoke
cloud deposition with variable wind direction was developed using MATLAB based on the
deposition model, which can simulate and calculate the dose distribution of ground-level
radioactive deposition with time under the scenario of changing wind conditions. Based
on this, the effects of wind speed and atmospheric stability on the dispersion of radioactive
contaminants are simulated and analyzed. And through historical data validation, model
comparison, and general validation it can be concluded that our model can predict the
occurrence range and intensity of radioactive deposition based on the explosion equiv-
alent and the meteorological data at the moment of explosion, and it can be applied to
develop the corresponding preventive protection and rescue measures with a certain degree
of confidence.

The limitation of this paper is that the subsidence model itself is a simplified model
for predicting the dispersion of radioactive smoke clouds, which is fast in calculation but
sacrifices some prediction accuracy. In future work, we can try to combine the Gaussian
smoke cluster model, the Lagrangian model, or the Eulerian hybrid model for comprehen-
sive testing and comparison, which will hopefully further improve the prediction accuracy
of radioactive smoke cloud dispersion of nuclear explosion.
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