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Abstract

Pseudomonas aeruginosa (PA) is a ubiquitous opportunistic pathogen that is capable of causing highly problematic, chronic
infections in cystic fibrosis and chronic obstructive pulmonary disease patients. With the increased prevalence of multi-drug
resistant PA, the conventional ‘‘one gene, one drug, one disease’’ paradigm is losing effectiveness. Network pharmacology,
on the other hand, may hold the promise of discovering new drug targets to treat a variety of PA infections. However, given
the urgent need for novel drug target discovery, a PA protein-protein interaction (PPI) network of high accuracy and
coverage, has not yet been constructed. In this study, we predicted a genome-scale PPI network of PA by integrating various
genomic features of PA proteins/genes by a machine learning-based approach. A total of 54,107 interactions covering 4,181
proteins in PA were predicted. A high-confidence network combining predicted high-confidence interactions, a reference
set and verified interactions that consist of 3,343 proteins and 19,416 potential interactions was further assembled and
analyzed. The predicted interactome network from this study is the first large-scale PPI network in PA with significant
coverage and high accuracy. Subsequent analysis, including validations based on existing small-scale PPI data and the
network structure comparison with other model organisms, shows the validity of the predicted PPI network. Potential drug
targets were identified and prioritized based on their essentiality and topological importance in the high-confidence
network. Host-pathogen protein interactions between human and PA were further extracted and analyzed. In addition, case
studies were performed on protein interactions regarding anti-sigma factor MucA, negative periplasmic alginate regulator
MucB, and the transcriptional regulator RhlR. A web server to access the predicted PPI dataset is available at http://research.
cchmc.org/PPIdatabase/.
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Introduction

Pseudomonas aeruginosa (PA) is a ubiquitous opportunistic pathogen

that is especially notorious for causing highly problematic, chronic

infections within the lungs of cystic fibrosis (CF) and chronic

obstructive pulmonary disease (COPD) patients [1]. Complica-

tions due to intractable PA infections eventually compromise lung

function, especially in CF patients, leading to death at an average

age of ,38 [2]. PA possesses a remarkable capacity to resist

multiple front-line antibiotics, either intrinsically or following

acquisition of resistance genes. Once colonization of the lungs with

PA occurs, eradication of the organism is nearly impossible.

Making matters worse, the increasing frequency of multi-drug

resistant PA (MDRPA) strains has rendered ineffective many

existing drugs, including the most powerful anti-pseudomonal b-
lactams, such as expanded-spectrum cephalosporins and carbape-

nems [3], and the front-line aminoglycoside, tobramycin [4].

Unfortunately, over the past decade, we have seen an alarming

failure rate of drugs in late-stage clinical development [5]. Many

physicians and scientists foresee a crisis if novel therapeutic options

continue to be unavailable [6].

The dominant philosophy in rational drug design, i.e., the ‘‘one

gene, one drug, one disease’’ paradigm, focuses on the individual

properties of a protein; for instance, whether it is essential for

survival. However, many effective drugs with robust phenotypic

effects have been found to affect a group of molecular targets

rather than a single protein [7]. From a modern systems biology

perspective, a protein’s importance is rarely defined by its

individual biochemical function(s), but also its position in the

protein-protein interaction (PPI) network, i.e., its potential for

interacting with other proteins [8]. As the role of the functional

dysregulation of PPIs as the underlying cause of disease is

increasingly understood, network pharmacology, which advocates

combination therapies targeting multiple interconnected nodes in

a PPI network, represents a new venue in disease treatment [9,10].

With the potential benefits of reducing drug toxicity and
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expanding opportunity space for druggable targets, this new

concept has become increasingly plausible [9].

Curative drugs for PA infections could well arise through

network pharmacology. However, at this stage, little is known

about the PPI networks in PA. Because of the resources and time it

would require, a large-scale experimental survey of the PPI

network in PA has not yet been carried out, and no PPI

information is included in the major database for the organism,

Pseudomonas Genome Database (http://www.pseudomonas.

com/). Knowledge of PPIs in PA is limited to a handful of protein

pairs from individual small-scale studies [11].

In the past decade, computational methods based on a variety of

principles have been developed for predicting PPIs to circumvent

the expensive and labor-intensive large-scale experiments [12–15].

In a non-model organism, such as PA, the most common method is

to perform homology mapping to model organisms with available

large-scale PPI data [16]. Such an approach has several

limitations. First, its applicability often depends on the availability

of well-studied PPI networks from closely related organisms.

Because of limited resources, high-throughput (HTP) experiments

on determining PPIs have been carried out in only a handful of

model organisms, such as yeast [17–21] and humans [22–24].

Second, the high false-positive rate (FPR) associated with HTP

experiments appears inevitable, even in the most thoroughly

characterized model organism, Saccharomyces cerevisiae [25]. There-

fore, predicting PPIs by performing homology mapping to a single

source of HTP PPI data in a closely related organism will likely

generate a large number of spurious predictions. Third, the

coverage of predictions may be limited by the often low number of

orthologs between different bacteria, because of the rapid

divergence during bacterial evolution. For instance, Escherichia coli

and PA share only a small portion of the genome as orthologs

(0.205 as measured by Jaccard Index).

In this study, we present a machine learning-based integrative

approach to predict a genome-scale PPI network in PA. We

previously developed a Bayesian network approach in the yeast S.

cerevisiae to combine various genomic features that can better

predict PPIs than does each individual feature [12,13,26]. We also

developed a logistic regression approach to combine genomic

features that are parameterized for membrane proteins to produce

a membrane interactome map [27]. The advantages of an

integrative approach are that, on one hand, genomic features

capture information beyond the similarity in nucleotide sequences,

and including novel interactions beyond orthologs can increase the

prediction coverage. On the other hand, the validation of

predicted interactions can be performed based on multiple

resources, such as available experimental data.

To predict a PPI network in PA, we have collected, compiled,

and integrated a variety of genomic and proteomic features of PA

and employed a random forest algorithm to combine eight

features with potential high predictive power. The predicted PA

interactome from this study is the first large-scale PPI network in

PA with high coverage and accuracy. A confidence score is

associated with each predicted PPI representing the probability of

the physical interaction or the co-involvement in a protein

complex, which is different from the confidence weight of the

protein functional linkage data from the STRING database [28].

Subsequent analysis, including validations based on existing small-

scale PPI data as well as the network structure comparison with

other model organisms, shows the validity of the predicted PPI

network. Potential drug targets were predicted based mainly on

their topological positions and essentiality. A set of essential

functional modules in the PA PPI network was identified, and

a map of host-pathogen interactions between human and PA

proteins was analyzed. Case studies were performed on important

PA proteins, including the anti-sigma factors MucA, negative

regulator for alginate biosynthesis MucB, and the quorum sensing

regulator RhlR, with their predicted interacting partners, shedding

light on their candidacy to be effective drug targets. The rationale

behind studying these particular proteins is that bacterial mutants

lacking MucA or RhlR are either very sensitive to slightly acidified

nitrite or commit a metabolic suicide during anaerobic growth,

conditions that prevail during chronic CF and COPD airway

disease [29,30].

Results

Constructing Reference Sets
A major challenge of applying a supervised machine learning

approach to predict PPIs in PA is to establish a reference dataset

with high accuracy and coverage. On one hand, only a limited

number of experimentally verified PPIs exist in PA. On the other

hand, E. coli, the most closely related model organism that has

large-scale PPI datasets, shares a small portion of orthologs (1656

proteins; 0.205 as measured by Jaccard Index) with PA. Therefore,

a reference interaction set based on the simple mapping from E.

coli to PA will lack coverage.

To increase both accuracy and coverage of the reference

dataset, we constructed a positive reference dataset of PA PPIs

mapped from large-scale PPIs of three closely related organisms:

C. jejuni, E. coli, and H. pylori. Each mapped PPI was weighted

according to the frequency of occurrence in source organisms, the

confidence of the PPI in the source organism, and the evolutionary

distance between the source organism and PA. The resulting

positive reference dataset contains 3,629 interactions above

a weight threshold, larger than possible datasets constructed from

PPIs in any single organism [Table S1a]. The negative reference

dataset contains 181,450 random interactions that include all

5,568 proteins in PA.

Feature Collection, Compilation, and Ranking
We next collected various genomic data for each PA gene or its

protein product from well-maintained sources. Genomic features

were then compiled for each pair of PA genes or their protein

products. Eight features with potential predictive power about

protein physical interactions were considered in this study: co-

essentiality (ESS), co-expression (EXP), co-functionality (FUN),

co-localization (LOC), domain-domain interaction (DDI), co-

pathway involvement (PAT), transmembrane helices (TRH), and

co-operon and co-gene cluster involvement (OPR).

A gene is considered essential or non-essential based upon

survival of the organism under defined conditions. ESS captures

the essentiality of a gene/protein pair. Because essential genes tend

to encode hubs and interact with each other in the PPI network,

protein pairs that are co-essential are more likely to interact

physically [26,31]. EXP measures whether two genes have similar

expression patterns, as measured by the Pearson correlation

coefficient of their mRNA expressions [26,32]. Physically inter-

acting proteins tend to have similar/same functions, and FUN

captures whether a pair of proteins have at least one common

function [26,33]. Interacting proteins should have the same

subcellular localization or domains that exist in the same locale,

and LOC indicates whether two proteins are co-localized [25,34].

Proteins physically interact through interactive domains. A pair of

proteins that contain known interacting domains tend to interact

with each other physically, which is captured by DDI [35–37].

Interacting proteins might have a better chance to be observed in

the same pathway, and PAT denotes whether two proteins are

Network-Based Drug Target Selection
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involved in the same pathway [38,39]. TRH indicates whether two

proteins may both have transmembrane helices, which might also

be an indication of their physical interaction [40]. Protein products

of genes in the same operon are transcribed together, and these

proteins are more likely to interact: OPR captures if a pair of genes

are from the same operon or cluster [26,41]. Among the eight

features, seven of them except for EXP have nominal values. The

feature value distribution for each of the features between positive

and negative reference interactions can be found in Table S2.

To assess the relative predictive power of the features, we

ranked all eight features using popular feature ranking methods

and provided an average ranking for each feature [Table 1]. The
chi-squared feature evaluation method evaluates each feature by

measuring their chi-squared statistic with respect to the classes

[42]. Gain ratio [43], information gain [44], and symmetric

uncertainty [45] are commonly used entropy-based feature

evaluation methods with different realization of feature impor-

tance with respect to the class labels. FUN, OPR, and PAT were

ranked among the top three, their value distribution being

different in positive against negative reference interactions in-

tuitively [Table S2]. For example, for FUN, protein pairs with the

same function(s) that interact (1,218) are almost as many as those

that do not interact (1,330), while protein pairs with different

functions have small chance to interact physically (2,411 interac-

tions vs. 180,120 non-interactions); p-value ,1e-5, one-sided

Fisher’s exact test.

PPI Prediction
Based on the reference datasets and all eight features, we have

trained and tested a random forest classifier that outperforms

various other classification models including support vector

machines, Bayesian networks, logistic regression, and artificial

neural networks, in this study [Table S3]. 10-fold cross validation

using all eight features yields an area under receiver operator

characteristic curve (AUC) score of 0.865 [Table 2; Figure 1;
Figure S1]. The excellent AUC score indicates both the

effectiveness of the classification method and the high quality of

the reference dataset. The precision and recall scores for the

positive class are 0.659 and 0.414, respectively, with a false positive

rate of 0.003. This implies strong performance, albeit with an

influence by the dominance of negative interactions, or sparseness

in PPI networks.

Following training and validation, we applied the classifier to

label unknown protein pairs for physical interactions. The number

of protein pairs to be predicted is remarkably large (15,313,449),

consisting of all possible pairs between PA proteins except those in

the reference dataset. The classifier predicted a total of 54,107

positive interactions, including 4,181 proteins with a probability

higher than 0.5. Together with the positive reference set, the

resulting PA interactome consists of 4,255 proteins and 57,736

interactions, covering the majority of the PA proteome (4,255 out

of 5,568 PA protein ORFs, or 76.4%) [Table S1b]. Although the

number of predicted PPIs is large, applying a threshold of high

probability yields a smaller set of high-confidence predicted

interactions. For example, with 0.9 as the confidence cutoff,

a resulting high confidence set contains 15,777 interactions

between 3,207 proteins [Table S1c]. Combining this high-

confidence predicted dataset with the positive reference set results

in a set of 19,406 interactions between 3,341 proteins.

Validating Predicted PPIs
To verify the predicted PPIs, we performed validations based on

three independent criteria. We first used identified experimental

PPIs in PA that are not included in the positive reference dataset.

We then analyzed the network structure and properties of the

predicted network. Finally, we examined the position of known

drug targets in the predicted network.

We extracted a set of 35 experimentally verified PPIs from

MPIDB [11], 32 of which are not included in the positive

reference set. Many of these PPIs are between protein products of

neighboring genes. Of the 32 PPIs, 22 were predicted positive by

the random forest classifier [Table 3]. In contrast, when using

orthologs mapping from known PPIs of other bacteria organisms,

none of the 32 PPIs can be predicted as positive [Table 3]. In
bacteria such as PA, genes that are close to each other are often

organized in operons, and the protein products of the genes from

the same operon or neighboring genes tend to interact with each

other. These interactions are identifiable by gene neighborhood-

based methods, which will miss other PPIs between protein

products of non-neighboring genes [41]. In contrast, our approach

can also identify interactions between protein products of non-

neighboring genes, for example acpP2-spoT and qscR-rhlR. This

indicates better performance of our integrative approach com-

pared with commonly used orthologs mapping. Combining the 10

verified but not predicted PPIs with predicted high-confidence and

reference PPIs results in a high-confidence PPI network of 3,343

proteins and 19,416 interactions, henceforth referred to as the

high-confidence PPI network. It is an ideal PPI network with

which to carry out further validations and analysis.

The network structure and properties can be used to validate

predicted PPIs [46]. The whole predicted network, the predicted

network with only high-confidence edges, and the high-confidence

Table 1. Ranking of features to assess their relative predictive power.

Feature
Chi-squared Feature
Evaluation [42] Gain Ratio [43] Information Gain [44] Symmetric Uncertainty [45] Average Rank

FUN 1 2 1 1 1

OPR 2 1 3 2 2

PAT 3 3 4 3 3

LOC 5 5 2 5 4

DDI 6 4 6 4 5

ESS 4 6 5 6 6

EXP 7 7 7 7 7

TRH 8 8 8 8 8

doi:10.1371/journal.pone.0041202.t001
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PPI network all display scale-free topology with the degree

exponent ranging from 1.34 to 1.69 [Figure S2]. Network

statistics such as degree and clustering coefficient of the predicted

networks are in accord with other PPI networks. For example, the

high-confidence network contains 3,343 proteins and 19,416

interactions. Its average degree, clustering coefficient, and shortest

path length are 11.62, 0.22, and 4.37, respectively. The high

clustering coefficient and low shortest path length indicate desired

high modularity and small world properties in the PPI network

[46]. In addition, essential proteins are found more likely to be

topologically important in the high confidence network. Out of

478 essential proteins in the network, 237 are hubs and 214 are

bottlenecks, significantly higher than expected (p-values ,1e-5 by

Fisher’s exact tests; hubs and bottlenecks are defined as proteins

that have the top 20% degree and betweenness centrality values in

the network, respectively), consistent with the high correlation

between essentiality and topological importance [47]. These

results reinforce the validity of the network structure.

If the predicted interactome is valid, functionally important

proteins such as drug target proteins should exhibit topological

importance. Indeed, we found that known drug targets of PA tend

to be hubs in the predicted network. We extracted 23 proteins that

are approved drug targets related to PA infections from DrugBank

[48], 20 of which exist in the high-confidence PPI network [Table
S4]. Twelve of the 20 proteins are hubs in the high-confidence PPI

network, significantly more than expected (p-value = 7.35e-5 by

a one-sided Fisher’s exact test). In addition, six of the 23 drug

target proteins that are essential are all hubs in the high-confidence

PPI network, a finding consistent with the high correlation

between essentiality and topological importance [47].

Table 2. Performance of the random forest classifier for the positive class in 10-fold cross-validation.

Features used for cross-validation TP Rate FP Rate Precision F-measure AUC

FUN and OPR 0.118 ,0.001 0.907 0.209 0.684

FUN, OPR, and PAT 0.267 0.002 0.717 0.389 0.705

Seven features, no TRH 0.279 0.003 0.642 0.389 0.855

All eight features 0.301 0.003 0.659 0.414 0.865

doi:10.1371/journal.pone.0041202.t002

Figure 1. Receiver operator characteristic (ROC) curves of testing by 10-fold cross-validation. The ROC curve indicate the performance of
10-fold cross-validation by using eight features. The area under curve (AUC) is 0.865.
doi:10.1371/journal.pone.0041202.g001
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Network-based Drug Target Identification and
Prioritization
Based on the fact that drug targets are likely to be essential,

hubs, and bottlenecks in the predicted high-confidence network (p-

values are 3.0e-2, 1.4e-4, and 9.4e-4, respectively, by Fisher’s exact

tests), we designed a simple method to rank and prioritize potential

drug targets by incorporating both topological importance and

essentiality. In additional to being essential, the higher the degree

and betweenness values a protein has, the higher the rank it

receives (see Methods). The resulting list yields a total of 276

proteins that are prioritized for further filtering [Table S5a].
Filters were then applied to the list based on a set of properties that

an ideal drug target should possess, including: (a) a relatively well

elucidated function, (b) no close homologs in humans to reduce

toxicity, and (c) location in the cytoplasmic membrane, periplasm,

or outer membrane to be easily accessible by drugs. After the

filtering, 28 of 276 proteins were selected to serve as potential drug

targets that may merit further investigation [Table S5b].

Modular Analysis Reveals Essential Modules and Potential
Modular Drug Targets
Protein networks consist of modular subnetwork structures that

perform specific functions [49,50]. To identify functional modules

from the PA PPI network, we applied a widely used molecular

complex detection method, MCODE, on the high-confidence PPI

network [51]. This method selects densely connected subnetwork

regions and ignores the rest of the network. It yielded 113 modules

from the high-confidence network, including 1,154 proteins and

Table 3. Validation of predicted PPIs by experimentally verified interactions.

Protein 1 ID Protein 1 Symbol Protein 2 ID Protein 2 Symbol
In the positive
reference set?

Confidence (if
predicted positive)

PA0425 mexA PA0426 mexB Yes

PA0425 mexA PA0427 oprM 0.933

PA0426 mexB PA0427 oprM 1

PA0763 mucA PA0762 algU 1

PA0763 mucA PA0764 mucB 0.967

PA0763 mucA PA4446 algW

PA0843 plcR PA0844 plcH 1

PA1156 nrdA PA1155 nrdB 1

PA1249 aprA PA1250 aprI

PA1454 fleN PA1097 fleQ

PA1665 PA0074 ppkA

PA1665 PA0090 clpV1

PA1706 pcrV PA1705 pcrG 0.733

PA1707 pcrH PA1708 popB 0.894

PA1709 popD PA1707 pcrH 0.933

PA1709 popD PA1708 popB 0.828

PA1710 exsC PA1711 exsE 0.667

PA1714 exsD PA1710 exsC

PA1714 exsD PA1713 exsA

PA1869 acpP2 PA5338 spoT 0.551

PA1898 qscR PA3477 rhlR 0.744

PA2494 mexF PA2493 mexE 0.886

PA3008 sulA PA4407 ftsZ

PA3096 xcpY PA3095 xcpZ 1

PA3101 xcpT PA3097 xcpX 0.833

PA3101 xcpT PA3098 xcpW 0.533

PA3101 xcpT PA3099 xcpV 0.7

PA3101 xcpT PA3100 xcpU 0.636

PA3101 xcpT PA4525 pilA

PA3104 xcpP PA3105 xcpQ 0.547

PA3363 amiR PA3374 amiC 0.967

PA4003 pbpA PA4001 mltB 0.933

PA4407 ftsZ PA5227 zapA

PA5255 algQ PA0576 rpoD Yes

PA5338 spoT PA2966 acpP1 Yes

doi:10.1371/journal.pone.0041202.t003
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2,909 interactions [Table S6a]. Interestingly, although identified

modules cover only about one third of all proteins in the network,

the majority of essential genes in the high-confidence network (274

of 328, or 83.5%) remain in the modules, reflecting their

functional essentiality by topological importance. In addition,

220 of 274 (or 80.3%) essential proteins were found in 31 of 113

(or 27.4%) modules that contain at least 25% essential proteins,

suggesting that these essential proteins tend to interact with other

essential proteins and form ‘‘essential modules’’ that perform

designated functions. Notably, nine of 20 known drug targets in

the network (PA0004 gyrB, PA3168 gyrA, PA3482 metG, PA3834

valS, PA3987 leuS, PA4238 rpoA, PA4268 rpsL, PA4269 rpoC,

and PA4967 parE) were involved in identified modules. Eight of

them, PA3987 leuS being the sole exception, were in ‘‘essential

modules’’, reflecting the importance of these essential modules.

We further identified the over-represented functions in identi-

fied modules. Despite the highly insufficient functional annotations

for Pseudomonas proteins (only 1,519 or 27.3% of all 5,568 PA

protein ORFs are annotated with Gene Ontology terms [33] to

date), 32 out of 113 modules were found enriched in at least one

function based on the Gene Ontology annotations (p-value ,1e-3

by a Fisher’s exact test) [33] [Table S6b]. In addition, over-

represented functions were found in all six modules that contain

the nine known drug targets. Several enriched functions that are

common in at least two modules include cellular amino acid metabolic

process (GO:0006520), cellular protein metabolic process (GO:0044267),

cofactor biosynthetic process (GO:0051188), nucleotide metabolic process

(GO:0009117), and RNA metabolic process (GO:0016070), all of

which are essential functions for the survival of the organism.

Based on the topological and functional importance of essential

modules, we have devised a method to rank and prioritize these

essential modules that may contain multiple proteins to be targeted

simultaneously by drug molecules. An integrative score is

associated with each essential module. The score is calculated by

combining measures based on the percentage of essential proteins,

the percentage of topologically important proteins, and the

existence of over-represented functions [Table S6c] (see Meth-

ods). The higher the score, the more topological and functional

importance a module exhibits. Protein members in highly

important modules may be selected and targeted simultaneously.

The top five essential modules that might contain multiple

potential drug targets are illustrated in Figure 2. For example,

one of the top ranked modules contains six protein members

(PA4047 ribA, PA0024 hemF, PA4529 coaE, PA4056 ribD,

PA4669 ipk, and PA5243 hemB), all of which are both essential

and hubs in the high-confidence network and three of which

(PA0024 hemF, PA4529 coaE, and PA4056 ribD) are bottlenecks

in the network. These six essential proteins are enriched in cofactor

biosynthetic process (GO:0051188; p-value = 8.9e-9) and riboflavin

biosynthetic process (GO:0009231; p-value = 3.6e-5). Four of the six

essential proteins (except PA4529 coaE or PA5243 hemB) that do

not have human orthologs might be targeted simultaneously by

drug molecules.

A Map of Human-Pseudomonas Interactions Supports
Identified Potential Drug Targets
The infectious process of bacterial pathogenesis often involves

interaction of bacterial and host proteins. Thus, a map of human-

PA protein interactions will arguably help elucidate the disease

mechanisms of CF and COPD triggered by PA infection. We

extracted and processed 12 human-PA protein interactions

between 11 human proteins and three PA proteins from pathogen

interaction gateway (PIG) [52], either from direct human-PA

interactions or by human-E. coli interactions and ortholog

mapping between E. coli and PA proteins [Table S7a]. Together
with the interactions from a human PPI network from human

protein reference database (HPRD) [53] and those from the high-

confidence PPI network from this study that contain proteins

involved in human-PA protein interactions, a map of human-PA

interactions was constructed [Figure 3] [Table S7b and S7c].
Top over-represented GO annotations by human proteins in the

network are cytosol (GO:0005829) and cytoplasm (GO:0005737) of

cellular components, protein binding (GO:0005515), nucleotide binding

(GO:0000166), protein serine/threonine kinase activity (GO:0004674),

and ATP binding (GO:0005524) of molecular functions, and nerve

growth factor receptor signaling pathway (GO:0048011), blood coagulation

(GO:0007596), intracellular signaling pathway (GO:0023034), and

platelet activation (GO:0030168) of biological processes (p-value

,1e-12) [Table S8]. Cellular protein metabolic process (GO:0044267) is

enriched among PA proteins (p-value = 7.9e-6). Surprisingly, 10 of

22 PA proteins in the map are essential, and three proteins (TonB,

thioredoxin TrxA, and lipoprotein signal peptidase LspA) were

predicted as potential drug targets by this study [Table S5b], with
both numbers being significantly higher than random expectation

(p-values are 1.6e-5 and 5.2e-4, respectively). This intensified

relevance of the proteins in the map supports the validity of them

as potential drug targets, and further investigations are required to

experimentally verify this hypothesis.

Case Studies: Anti-sigma Factor MucA, Negative
Periplasmic Alginate Regulator MucB, and the Quorum
Sensing Transcriptional Regulator RhlR
As reviewed by Hassett et al. [54], the cytoplasmic membrane

bound anti-sigma factor MucA and the transcriptional regulator

RhlR are promising PA drug targets of CF airway disease. There is

burgeoning evidence that during chronic CF airway disease, the

airway mucus has either significantly reduced oxygen tension or is,

in fact, anaerobic. Mutant strains lacking MucA or RhlR are

either exquisitely sensitive to slightly acidified sodium nitrite

(NaNO2) [29] or commit a metabolic suicide by overproduction of

NO during anaerobic respiration [30], respectively. Using our

integrative approach, 15 and 29 interacting partners are predicted

for anti-sigma factor MucA and related negative periplasmic

alginate regulator MucB, respectively, with a confidence cutoff of

0.5. Six common interacting partners are shared by MucA and

MucB, including AlgT(U), MreB, MucC, MucD, PrtN, and RfaE,

respectively, and mucABCD are in the same module with high

connectivity [Table S6a]. A level-1 PPI network of 39 proteins

and 199 interactions is constructed among MucA, MucB, and

their interacting partners, capturing all predicted interactions

among these proteins [Figure 4]. Essential proteins are signifi-

cantly enriched in this rather densely connected subnetwork (17 of

39 proteins are essential; p-value = 6.9e-6). The importance of this

subnetwork to the survival of the pathogen highlights the potential

of its protein members as druggable targets. Top over-represented

functions by MucA, MucB, and their interacting partners include

lipopolysaccharide biosynthetic process (GO:0009103) and Gram-negative-

bacterium-type cell wall (GO:0009276) (p-value ,1e-5) [Table S9a].

The transcriptional regulator RhlR is a regulatory hub that

interacts with 60 partners in the predicted protein interaction

network, many of which are transcription factors or two-

component regulators [Figure S3]. The components of the

RhlR-focused subnetwork are well reflected by enriched functions

of the protein members, including transcription regulator activity

(GO:0030528), two-component response regulator activity (GO:0000156),

regulation of transcription, DNA-dependent (GO:0006355), two-component

signal transduction system (phosphorelay) (GO:0000160), and response

to stimulus (GO:0050896) (p-value ,1e-5)[Table S9b].
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Web Server
We have developed a Web server to store and display the

predicted PPIs [Figure 5]. The Web server can be accessed at

http://research.cchmc.org/PPIdatabase/. We used techniques

including HTML, XML, CSS, and PHP to construct the Web

page and MySQL to build the database for query. Our Web server

provides query and download services of the identified PA PPI

interactome. The interface is simple and straightforward. Specif-

ically, users can perform two types of queries: query the interacting

partners of particular PA proteins and query common interacting

partners of two selected PA proteins. Three networks are available

for download: the whole PA PPI interactome (combining all

predicted and reference PPIs), the high-confidence PPI network as

used in our analyses, and the PPIs involved in host-pathogen

interactions.

Discussion

In this study, we employed a supervised learning approach to

generate a protein interactome map for the important pathogen P.

aeruginosa PAO1 (PA), an organism that is particularly problematic

in chronic airway infections of CF and COPD patients. The main

advantage of machine learning-based approaches to mapping PPIs

based on sequence similarity lies in the high coverage of the

prediction, because the predictions are not restricted to proteins

with orthologs in other organisms. Indeed, the interactome map

generated from our study covers the majority of PA proteins (4,255

out of 5,568, or 76.4%) while recent studies on predicting

interactome maps of Pseudomonas putida KT2440 and Leishmania

major reached only 60.8% and 43.6% of all P. putida KT2440 and

L. major proteins, respectively [55,56].

Figure 2. The top five essential modules that may contain multiple potential drug targets. In the figure, a diamond node represents a hub
protein, and a hexagon node represents a hub and bottleneck protein in the high-confidence network. Larger nodes indicate essential proteins, and
smaller ones are non-essential. The majority of module members are hubs and/or bottlenecks in the network, reflecting their essentiality. Figures 2, 3,
and 4 were drawn using Cytoscape [72].
doi:10.1371/journal.pone.0041202.g002
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A successful prediction by a supervised learning approach relies

on the quality of the reference set, the relevance of selected

features to the classification, and the specific machine learning

algorithm. For a non-model organism such as PA, the reference set

assembly is challenging because few experimentally verified

interactions exist. To construct a reference set of good coverage

Figure 3. A map of human-P. aeruginosa protein interactions. In the figure, a round node represents a human protein, and a diamond node
represents a PAO1 protein. Blue nodes are proteins involved in human-Pseudomonas protein interactions that represented by yellow edges, based
on the data from the pathogen interaction gateway [52]. Blue edges denote corresponding protein-protein interactions in a human interactome and
the high-confidence PA PPI network. Yellow and red PAO1 proteins are essential proteins, and red ones are predicted to be potential drug targets by
this study. The full lists of proteins for abbreviated nodes, e.g., ‘30 Proteins with YWHAZ’, can be found in Table S7c.
doi:10.1371/journal.pone.0041202.g003
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and accuracy, instead of using PPIs from a single model organism,

we used a novel approach, combining multiple large-scale PPI

datasets from closely related bacteria species (C. jejuni, E. coli, and

H. pylori). Potential PA PPIs were mapped from these datasets via

ortholog mapping, and each mapped PA interaction was

associated with a confidence score. The resulting reference set

covers more PPIs than one that is mapped from any single PPI

dataset of a model organism, and its quality is retained by selecting

only high-confidence PPIs based on a ranked list of all PPIs. This

approach of constructing reference sets may be applied for the

interactome network predictions in other non-model organisms.

For genomic features used for classification in this study, we

selected those that have been proven useful in PPI predictions

[25,26,31,32,34,37,39–41]. The random forest classifier was

chosen because of its superior performance over many other

algorithms and methods in the training and testing, including

decision trees, several regression models, support vector machines,

and Bayesian network-based methods [Table S3].

Recent developments in network pharmacology suggests that

the selection of potential drug target proteins may be based on

their relationships with other members in a molecular network in

addition to their individual biochemical properties [9,55,57]. In

our study, in addition to identifying and prioritizing potential drug

targets based on network topology and protein essentiality, we

identified groups of multiple potential target proteins from

extracted modules with essential functions. These proteins may

correspond to members of the same pathway or the same complex

and together provide alternative mechanisms to perform the same

Figure 4. A level-1 interaction map for MucA and MucB. Each node is a protein and each edge is a predicted PPI from the high-confidence
network (except the interaction MucA-AlgW, which comes from experimental PPI data). A total of 39 proteins and 199 interactions were captured by
the level-1 PPI network for MucA and MucB. 17 Red nodes are essential proteins. Yellow edges indicate high confidence interactions included in the
high-confidence network.
doi:10.1371/journal.pone.0041202.g004
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essential function(s) for the overall survival of PA. Drug resistance,

for example, might thus be relieved by disrupting the functioning

of essential modules via simultaneously targeting multiple of their

essential members. In this study, we employed a network-based

systematic approach and identified both individual and inter-

related putative drug target proteins. Hypotheses concerning the

effectiveness of these drug targets will be tested via future

experimental verifications.

Materials and Methods

Data Sources
Protein sequences of all 5,568 P. aeruginosa PAO1 open reading

frame proteins were downloaded from the Pseudomonas Genome

Database (http://www.pseudomonas.com/). Gene expression

data of wild type PAO1 under normal condition were collected

from GEO and ArrayExpress (http://www.ncbi.nlm.nih.gov/

geo/) [58]. Functional annotations for PAO1 genes were extracted

from GO [33]. Pathway information of strain PAO1 was retrieved

from KEGG [59]. A list of essential genes of PAO1 was

downloaded from Database of Essential Genes (DEG) [60].

Construction of the Reference Datasets
We collected large-scale experimentally determined PPI data

of three bacteria species (C. jejuni, E. coli, and H. pylori) that are

closely related to PA from DIP, BIND, and literature [61–63]

(http://bond.unleashedinformatics.com/) [Table S1d]. We then

associated a weight with each PPI according to the evolutionary

distance between the particular bacterium and PA, as calculated

by PHYLIP [64]. If a PPI is in a core set with high-confidence,

0.2 is added to its weight. PPIs in each source organism were

then mapped to PA based on strict orthologs by a reciprocal

best hit approach between the organism and PA [65]. The

weight of each mapped PPI is summed from the weights of

corresponding PPIs in the source organisms, and the interac-

tions that exist in multiple organisms receive more weight. 3,629

mapped PPIs between 1,215 proteins that have weight higher

than 0.8 are considered positive reference interactions in PA.

Negative reference interactions were 181,450 randomly selected

between protein pairs that do not overlap with positive

reference interactions.

Feature Collection and Compilation
(1) Co-expression data (EXP). Gene expression data of 18

wide type PA PAO1 samples under normal conditions were

extracted from public data sources GEO and ArrayExpress

Figure 5. A screen shot of the Web server of the PA PPI interactome. (A) To query interacting partners based on our predicted PA PPI
interactome, users can either query PPIs of a single PA protein (e.g., PA0001) or query common interacting partners of two different PA proteins (e.g.,
PA0001 and PA0002). (B) The results of querying common interacting partners of two PA proteins include the number of interacting partners for each
protein, whether the two query proteins interact, and all common partners (only five were shown in the figure).
doi:10.1371/journal.pone.0041202.g005
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(http://www.ncbi.nlm.nih.gov/geo/) [58]. Pearson correlation

coefficients were then calculated for the expression levels of every

pair of genes in 18 samples. We used numerical values of these

coefficients as a feature vector.

(2) Co-functionality (FUN). Functional annotations of PA

PAO1 proteins were extracted from Gene Ontology database [33].

A total of 4,227 non-redundant functional annotations exist for

1,520 PA proteins, covering less than one third of all PA proteins.

Due to the relatively small coverage of functional annotations, we

define the co-functionality value for any pair of genes as a binary

value that is either true (the two genes have at least one common

function) or false (no common function is shared by a pair of

genes).

(3) Co-essentiality (ESS). Gene essentiality data were re-

trieved from DEG [60]. Each gene of PA PAO1 is either essential

(678 genes) or non-essential (4,890 genes). Based on gene

essentiality, every pair of genes has a categorical value for co-

essentiality: both being essential, both being non-essential, one

being essential and the other non-essential.

(4) Co-pathway involvement (PAT). The pathway infor-

mation of PA PAO1 genes were retrieved from KEGG [59]. A

protein is either involved in a pathway or not. The co-pathway

involvement score for a pair of proteins has a binary value

indicating whether the two proteins are in the same pathway.

(5) Co-localization (LOC). Five different localization motifs

exist for PAO1 proteins: cytoplasmic membrane, extracellular,

cytoplasm, periplasm, and outer membrane. The subcellular

localization data for each PAO1 protein is predicted by Proteome

Analyst Specialized Subcellular Localization (PASSL) Server v2.5

(http://www.cs.ualberta.ca/̃bioinfo/PA/Sub/). A categorical co-

localization value is then compiled for each pair of proteins. A pair

of proteins can either have the same or different predicted

subcellular localization, or none prediction can be made for at

least one of the proteins.

(6) Domain-domain interaction (DDI). Two proteins are

likely to interact with each other if they contain interacting

domains. The domain-domain interaction data are predicted from

DOMINE [66]. And the domain information of each PAO1

protein is retrieved from Pfam database [67]. The feature value for

DDI is a binary value, indicating either or not predicted domain-

domain interaction exists between a protein pair.

(7) Transmembrane helices (TRH). The transmembrane

helix is a domain structure type useful to describe the gene

sequences. Combining this feature may help us to find the essential

genes cluster in features space. The potential helices for PAO1

proteins are predicted by the TMHMM Server v. 2.0 (http://

www.cbs.dtu.dk/services/TMHMM/). The TRH feature is a bi-

nary feature that describes whether both proteins have predicted

transmembrane helices for each pair of proteins.

(8) Co-operon involvement and gene clusters (OPR). The

operon information for PAO1 genes were downloaded from

database of prokaryotic operons (DOOR) [68]. Gene cluster

information is from the PA PAO1 genome database (http://www.

pseudomonas.com/). The OPR feature value is a binary value

describes whether or not two proteins are from the same operon or

cluster.

Random Forest Classifier
We used a random forest classifier as the learning method [69].

A random forest method is an ensemble classifier of many decision

trees. The output class of the method is the class that occurs most

frequently by different decision trees. We used the Weka

implementation of the random forest classifier, and selected the

parameters as four features for each decision tree, 30 decision trees

and 10 seeds [70].

Ranking Potential Drug Target Proteins
Essential proteins in the high-confidence network were ranked

according to their degree values and betweenness values. In

addition, an overall rank score is associated with each essential

protein combining its ranks in degree and betweenness values.

Specifically, a score is associated with each essential protein P as

Score(P)~Rankde(P)zRankbe(P),

where Rankde(P) and Rankbe(P) are the ranks of degree and

betweenness values, respectively, for protein P. The score indicates

the overall rank of the importance of a protein: The lower the

score is, the higher final rank the protein receives. For example,

the overall rank of a protein which is the top number 5 in its

degree value and the top number 4 with a Score of 9 in its

betweenness value is high than one which is the top number 4 in

its degree value and the top number 6 in its betweenness value

with a Score of 10.

Ranking Potential Modular Drug Targets
Essential modules extracted from the high-confidence network

were ranked based on an integrative score combining the measure

of the percentage of essential protein members, the percentage of

hubs and bottlenecks, and the existence of over-represented

function(s). Specifically, a score is associated with each module M

as

MScore(M)~Percentess(M)zPercenthub(M)

zPercentbott(M)zFunc(M),

where Percentess(M), Percenthub(M), and Percentbott(M) are the percent-

ages of essential proteins, hubs, and bottlenecks in module M,

respectively, and Func(M) is 1 if moduleM has at least one enriched

function or 0 otherwise.

Filtering Potential Drug Target Proteins
We applied three independent filters after obtaining 237

essential proteins in PA that are topologically important in the

predicted high-confidence network. First, two proteins were

filtered out due to no known functional annotation from GO.

Second, 43 more proteins were filtered out because they have

orthologous proteins in humans determined by a reciprocal best

hit method based on Blastp [71] [65]. Finally, 167 remaining

proteins that do not have subcellular localization in membrane or

periplasm were filtered out, yielding a final list of 25 proteins that

are likely to be potential drug targets. The subcellular localization

data were obtained from prediction by PASSL Server v2.5

(http://www.cs.ualberta.ca/̃bioinfo/PA/Sub/).

Identifying Host-pathogen Interactions between Human
and PA Proteins
We used the pathogen interaction gateway database to

extracted human-pseudomonas protein interactions [52]. Host-

pathogen protein interactions between human and PA (nine

human proteins, two PA proteins, and nine interactions) and those

between human and E. coli (18 human proteins, four E. coli

proteins, and 19 interactions) were extracted. One of the four E.

coli proteins can be mapped to one PA protein based on homology

mapping by a reciprocal best hit method [65], resulting in two
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additional interactions between human and PA proteins (two

human proteins and one PA protein).
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high-confidence interactions based on our prediction, and red

proteins denote essential proteins.
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ship of known drug targets. The essentiality, existence in the

networks and modules, and the hub status of 23 known drug

targets are listed along with p-values by Fisher’s exact tests.
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Table S5 Topologically important essential proteins
and predicted drug targets. Detailed network statistics, ranks,

and other properties are listed for all essential proteins in the

network (Table S5A) and the 28 potential drug targets (Table

S5B).

(XLSX)

Table S6 Identified modules, over-represented func-
tions of their protein members, and potential modular
drug targets. All identified modules are listed in Table S6A.

Functional enrichment of module members is shown in Table

S6B. And essential modules are ranked in Table S6C.

(XLSX)

Table S7 A summary of human-PA PPIs. 12 human-PA

PPIs are listed in Table S7A, and interacting partners of proteins

involved in human-PA PPIs from PA and human are listed in
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Table S8 Functional enrichment by human proteins
involved in human-PA PPIs. The most significantly enriched

functions of the three GO categories are high-lighted.
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