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Prediction and association mapping of agronomic traits
in maize using multiple omic data

Y Xu1,2, C Xu2 and S Xu1

Genomic selection holds a great promise to accelerate plant breeding via early selection before phenotypes are measured, and it

offers major advantages over marker-assisted selection for highly polygenic traits. In addition to genomic data, metabolome and

transcriptome are increasingly receiving attention as new data sources for phenotype prediction. We used data available from

maize as a model to compare the predictive abilities of three different omic data sources using eight representative methods for

six traits. We found that the best linear unbiased prediction overall performs better than other methods across different traits

and different omic data, and genomic prediction performs better than transcriptomic and metabolomic predictions. For the same

maize data, we also conducted genome-wide association study, transcriptome-wide association studies and metabolome-wide

association studies for the six agronomic traits using both the genome-wide efficient mixed model association (GEMMA) method

and a modified least absolute shrinkage and selection operator (LASSO) method. The new LASSO method has the ability to

perform statistical tests. Simulation studies show that the modified LASSO performs better than GEMMA in terms of high power

and low Type 1 error.
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INTRODUCTION

Genome-wide association studies (GWAS) and genomic selection (GS)

are promising fields where genomic technologies are well integrated

into plant breeding practices. GWAS have enabled to dissect genetic

architecture of complex traits in more than a dozen plants (Zhu et al.,

2008). However, GWAS are less suitable for quantitative traits

influenced by a large number of genes with small effects, so its utility

to breeding is limited. GS has paved the way to overcome the

limitation by using all genomic information simultaneously to predict

phenotypes, thus avoiding information loss and reducing biases in

marker effect estimates (Desta and Ortiz, 2014). Moreover, GS can

increase the efficiency of plant breeding due to early selection before

phenotypes are measured. GS has been applied to breeding in many

aspects such as inbred performance prediction, parental selection and

hybrid prediction (Riedelsheimer et al., 2012a; Crossa et al., 2014;

Xu et al., 2014; Wang et al., 2017).

Since Meuwissen et al. (2001) first proposed this concept of GS

along with several models, numerous statistical methods, including

parametric and nonparametric methods, have been used to predict

quantitative traits. Parametric methods include best linear unbiased

prediction (BLUP; Henderson, 1975), least absolute shrinkage and

selection operator (LASSO; Tibshirani, 1996), partial least squares

(PLS; Gelandi and Kowalski, 1986) and Bayesian methods such as

BayesA, BayesB and Bayesian LASSO (Yi and Xu, 2008; González-

Recio and Forni, 2011); nonparametric methods include

random forest (Svetnik et al., 2003), support vector machine

(SVM; Maenhout et al., 2007) and reproducing kernel Hilbert spaces

regression (RKHS; de los Campos et al., 2010). Recently, many

investigators have evaluated the performance of various statistical

methods used in GS. de los Campos et al. (2013) gave an overview of

the parametric methods and concluded that BLUP performs well for

most traits and BayesB yields slightly higher predictive accuracy for

traits with large-effect quantitative trait loci (QTL). Riedelsheimer

et al. (2012b) compared the predictive performance of five different

GS methods for traits measured in maize inbred lines, and found that

these methods differ slightly in their predictive abilities. Heslot et al.

(2012) used 10 GS methods to predict the performance of 18 traits

measured in different species, and found that RKHS was the best

performer overall across traits and species. Howard et al. (2014)

compared the predictabilities of parametric methods with nonpara-

metric models using simulation data, and observed that parametric

methods performed slightly better than nonparametric methods for

predicting traits with more additive genetic component in their genetic

architectures. However, all of the above comparisons were based on

genomic data. As metabolomic and expression profiling technologies

develop, metabolomic and transcriptomic data provide new sources

for phenotypic prediction in several species, such as Arabidopsis

thaliana, maize and rice (Meyer et al., 2007; Gärtner et al., 2009;

Riedelsheimer et al., 2012a). It is still unknown how these parametric

and nonparametric methods perform when using metabolites and

transcripts for prediction.
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Although GWAS are not designed for detecting QTL for highly

polygenic traits, they help us gain insights into the genetic architecture

of several important traits in maize including leaf architecture and

disease resistance (Kump et al., 2011; Poland et al., 2011; Tian et al.,

2011). Numerous statistical approaches have been proposed to per-

form GWAS, among which the mixed linear model is one of the most

popular methods, as it is able to correct for population structure and

family relatedness (Yu et al., 2006). Under the framework of the mixed

linear model, several methods have been developed to reduce the

computational demand, such as the efficient mixed model association

(EMMA; Kang et al., 2008) and the genome-wide efficient mixed

model association (GEMMA; Zhou and Stephens, 2012). These

methods are single-locus methods that test the association between a

single locus and the trait of interest at a time. However, it is known

that quantitative traits are influenced by a number of QTL, so that

models considering association of single locus at a time result in model

misspecification, thus likely giving biased results (Gupta et al., 2013).

In addition, single-locus methods usually require multiple test

corrections for the P-value threshold, such as Bonferroni correction,

to control the Type 1 error rate. This criterion is too stringent and

many true associations may be missed (Zhang et al., 2011). In

contrast, multi-locus associations can overcome these problems

because these methods simultaneously use all genetic information of

multiple loci and there is no need for multiple testing corrections due

to the multi-locus nature (Zhang et al., 2011). Multi-locus methods

have shown to perform better than single-locus methods. In multi-

locus association studies, the number of markers is often larger than

the sample sizes. LASSO is a powerful approach to address the

problem, but it does not have a default method to calculate the

P-values for markers.

In this article, we used genomic, transcriptomic and metabolomic

data to predict the performance of six agronomic traits measured from

339 diverse maize inbred lines using eight representative methods

including BLUP, LASSO, PLS, BayesA and BayesB for the parametric

methods and RKHS, support vector machine using the radial basis

function kernel (SVM-RBF), support vector machine using the

polynomial kernel function (SVM-POLY) for the nonparametric

methods, and compared the predictive abilities of three omic data

and eight different methods. We also provided a new method based on

Bayesian theory to perform a significance test for LASSO estimated

marker effects, and we compared the modified LASSO method with

GEMMA in terms of their statistical power and Type 1 error through

simulations. We also used the LASSO method to detect significant

single-nucleotide polymorphisms (SNPs), metabolites and transcripts

for the six agronomic traits. Finally, we performed BLUP analysis in

conjunction with GWAS to see whether or not using markers selected

according to the result of GWAS can improve the predictive abilities.

MATERIALS AND METHODS

Material collection
Three omic (genomic, transcriptomic and metabolomic) data collected from

339 maize inbred lines were used for prediction. All lines were genotyped using

Illumina MaizeSNP50 BeadChip (Ganal et al., 2011). RNA sequencing (RNA-

seq) was subsequently performed on the immature seeds of 15 days after

pollination for these 339 lines using 90 base pair pair-end Illumina (Fu et al.,

2013). A total of 100K SNPs and 28 769 gene expression traits (transcriptomic

data) were obtained. Metabolic profiling was carried out on mature maize

kernels and 748 metabolites were detected using high-throughput liquid

chromatography-tandem mass spectrometry analysis (Wen et al., 2014). We

analyzed six yield-related traits to evaluate the efficacy of prediction: (1) ear

length (EL), (2) ear diameter (ED), (3) ear row number (RN), (4) kernel

number per row (KN), (5) ear weight (EW) and (6) cob weight (CW). Each

trait was measured from five replicated experiments (2009 from three locations,

2010 from another two locations), and in each replicate, five plants from each

line were sampled and the average phenotypic value was used for phenotypic

analysis (Yang et al., 2014).

Methods of prediction
We used eight representative methods including five parametric methods

(BLUP, LASSO, PLS, BayesA and BayesB) and three nonparametric methods

(RKHS, SVM-RBF and SVM-POLY). The predictabilities were evaluated using

a tenfold cross-validation where samples were randomly partitioned into 10

parts, 9 parts being used to estimate parameters and the remaining part being

predicted. Thus, all the parts were predicted once and used nine times to

estimate parameters. The predictive ability was defined as the correlation

coefficient between the observed and predicted phenotypic values.

BLUP method. Let y be an n×1 vector of phenotypic values of a quantitative

trait for n individuals. The phenotypic vector is described by the following

linear mixed model,

y ¼ Xbþ
X

m

k¼1

Zkgk þ ε ð1Þ

where X is a n× q design matrix, β is a q×1 vector of fixed effects, m is the

number of markers, Zk= {Zjk} is an n×1 vector of genotype indicators with

Zjk= 1 for the homozygote of the major allele, Zjk= 0 for the heterozygote

and Zjk=− 1 for the homozygote of the minor allele, γk is a random effect of

marker k, ε is an n×1 vector of residual errors. Assume that ε~N(0,Inσ
2) and

γk~N(0,ϕ2/m), where σ2 is the residual variance and ϕ2 is a polygenic variance

shared by all makers. The expectation of y is E(y)=Xβ and the variance–

covariance matrix is

varðyÞ ¼ V ¼
1

m

X

m

k¼1

ZkZ
T
k f

2 þ Is2 ¼ Kf2 þ Is2 ¼ ðKlþ IÞs2 ð2Þ

where l ¼ f2=s2 is the variance ratio and K is a marker-generated kinship

matrix defined as

K ¼
1

m

X

m

k¼1

ZkZ
T
k ð3Þ

The restricted maximum likelihood was used to estimate parameters. When

the sample size is large, it can be very costly to evaluate the likelihood function.

The eigen-decomposition algorithm was used to estimate parameters, details of

this algorithm can be found in Xu et al. (2014).

Let us partition the total number of individuals into a training sample and a

test sample. Let Y1 be a vector of phenotypic values in the training sample and

y2 be a vector of phenotypic values in the test sample. Accordingly, X can be

partitioned into X1 and X2. The kinship matrix and matrix V are partitioned

correspondingly, as shown below,

V ¼
V 11V 12

V 21V 22

� �

¼
K11K12

K21K22

� �

f2 þ
I 0

0 I

� �

s2 ð4Þ

The BLUP prediction of y2 is also the conditional expectation of Y2 given Y1,

ŷ2 ¼ X2b̂þ f̂
2
K21V

�1
11 y1 � X1b̂
� �

ð5Þ

where all the parameters are substituted by the restricted maximum-likelihood

estimates from the training sample. The predictability is defined as the Pearson

correlation between y (observed values) and ŷ (the predicted values). The BLUP

method was implemented in our own R program.

LASSO method. LASSO is a constrained form of ordinary least squares with

the sum of the absolute values of the regression coefficients being smaller than a

constant (Tibshirani, 1996). LASSO was first proposed as a tool in GS by Usai

et al. (2009). In this study, LASSO was implemented in the R/glmnet package

(Friedman et al., 2010).

PLS method. The PLS method incorporates the principal component analysis

into the multilinear regression model. It transforms the original data into a new

set of linearly uncorrelated components as predictors to predict the phenotype.
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However, it differs from principal component analysis in that components are

constructed by maximizing the covariance between the response variable and

the independent components. The PLS method was implemented in an R

program called pls (Mevik and Wehrens, 2007).

BayesA and BayesB. They are two popular Bayesian approaches to genomic

prediction. The only difference between these two methods lies in the prior

distribution of parameters. BayesA assumes that the prior distribution of

variances across markers follows a scaled inverse chi-square distribution, while

BayesB assumes that the prior distribution is a two-component mixture with

one component being a scaled inverse chi-square distribution and the other

being a point mass at 0. All parameters in BayesA and BayesB were sampled

using the Gibbs sampling algorithm and the Markov chain Monte Carlo

algorithm (Meuwissen et al., 2001). BayesA and BayesB were implemented in

an R package called BGLR (Perez and de los Campos, 2014).

SVM method. It is a kernel-based learning method for classification and

regression. Maenhout et al. (2007) first applied this method to predict maize

hybrid performance. SVM implicitly maps the input data into a high-

dimensional feature space via a kernel function (for example, polynomial,

Gaussian radial basis function, hyperbolic tangent kernel, the linear kernel). We

chose the radial basis function (SVM-RBF) and the polynomial kernel functions

(SVM-POLY; Karatzoglou et al., 2004), and implemented these two algorithms

using an R package called kernlab.

RKHS method. The RKHS method has been proved to be an efficient machine

learning tool, which has been used in many areas, such as spatial statistics and

smoothing splines (de los Campos et al., 2010). Gianola et al. (2006) first

applied the RKHS method to genomic prediction. The reproducing kernel is a

key factor of model specification in RKHS. Both single-kernel models and

multi-kernel models can be fitted in RKHS. Campos et al. Perez and de los

Campos (2014) showed that the multi-kernel model is very useful for kernel

selection. Here, we choose the multi-kernel approach and implemented the

method in the R/BGLR package (Perez and de los Campos, 2014).

The websites for all the R software packages of the prediction methods used

in this study are listed in Supplementary Table S1.

Integrating multiple omic data
For the BLUP method, the integration model is defined as

y ¼ Xbþ
X

m

k¼1

Gkak þ
X

p

h¼1

Thdh þ
X

q

i¼1

Migi þ ε ð6Þ

where Xβ represents some fixed effects; G, T and M are indicator variables of

genome, transcriptome and metabolome, respectively; m, p and q are the

number of SNPs, transcripts and metabolites, respectively; αk, δh and γi are

effects of SNPs, transcripts and metabolites with akBNð0; 1
m
f2
1Þ,dhBNð0; 1

p
f2
2Þ

and giBNð0; 1
q
f2
3Þ distributions, respectively; εBNð0; Ins

2Þ is a vector of

residual errors. The expectation of y is E(y)=Xβ and the variance–covariance

matrix is var(y)=V, where

V ¼ var
X

m

k¼1

Gkak

 !

þ var
X

p

h¼1

Thdh

 !

þ var
X

q

i¼1

Migi

 !

þ varðεÞ

¼
1

m

X

m

k¼1

GkG
T
k f

2
1 þ

1

p

X

p

h¼1

TkT
T
k f

2
2 þ

1

q

X

q

i¼1

MkM
T
k f

2
3 þ Is2

¼ K1f
2
1 þ K2f

2
2 þ K3f

2
3 þ Is2 ð7Þ

The variance components were estimated using the restricted maximum-

likelihood method. The procedure of prediction is the same as the above BLUP

method used for a single omic data set. For the other seven methods, we

rescaled the predictors and combined three omic data together as the overall

predictors for further prediction.

The LASSO method for GWAS
LASSO is a popular method in variable selection and we applied this method to

detect significant markers. The LASSO method was implemented using an R

package called R/glmnet. However, the software does not provide a standard

error for an estimated effect. Here we adopted a Bayesian method of Xu (2013)

to approximate the standard error for each selected marker effect. The LASSO

model can be redefined as

y ¼
X

m

k¼1

Xkbk þ ε ð8Þ

where y is a n×1 vector of the phenotypic values, Xkis a n×1 design matrix for

the kth selected markers, bk is the effect of this marker and ε is a n×1 vector of

residual errors. All markers are selected (with non-zero effect). Let b̂k be the

LASSO estimated effect for marker k and varðb̂kÞ be the variance of b̂k, which

are interpreted as the Bayesian posterior mean and posterior variance,

respectively. Let ~bk be the estimated marker effect from the data alone and

its variance is defined as

var ~bk

� �

¼ XT
k Xk

� ��1
ŝ2 ð9Þ

where ŝ2 is the estimated residual error variance, which is defined as

ŝ2 ¼

1
n
y �

Pm
k¼1 Xkb̂k

� �T

y �
Pm

k¼1 Xkb̂k

� �

1
n
trðI �HÞ
� 	2

ð10Þ

where

H ¼ XðXTXÞ�1
XT ð11Þ

is the hat matrix. Here, X denotes the design matrix for all markers with non-

zero effects after LASSO variable selection. The above residual error variance is

the estimated residual variance from a generalized cross-validation analysis

(Golub et al., 1979). This residual variance has corrected the overfitting caused

by too many predictors in the model. Let s2k be the prior variance of bk. The

prior variance can be defined as the expectation of b2k ,

s2k ¼ Eðb2kÞ ¼ b̂
2

k þ varðb̂kÞ ð12Þ

The posterior variance can be obtained from the prior variance s2k and the

variance from the data, and described as

varðb̂kÞ ¼
1

s2k
þ

1

varð~bkÞ

 !�1

¼
s2k ŝ

2

ŝ2 þ s2kX
T
k Xk

ð13Þ

Substituting equation (13) into equation (12) yields

s2k ¼ b̂
2

k þ
s2k ŝ

2

ŝ2 þ s2kX
T
k Xk

ð14Þ

Solving for s2k , we get

ŝ2k ¼
b̂
2

kX
T
k Xk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðb̂
2

kX
T
k XkÞ

2 þ 4ŝ2b̂
2

kX
T
k Xk

q

2XT
k Xk

ð15Þ

Substituting equation (15) into equation (13), we will have an estimated

varðb̂kÞ. Given the LASSO estimate b̂k, we have a Wald test statistic for

H0:bk= 0,

W k ¼
b̂
2

k

varðb̂kÞ
ð16Þ

Assume that Wk follows a Chi-square distribution with one degree of

freedom, the P-value is calculated from,

pk ¼ 1� Pr w21rWk

� �

ð17Þ

Simulation studies for GWAS
To test the power and Type 1 error of the proposed LASSO method for GWAS,

we performed simulation experiments based on the genotypic data of 339

maize inbred lines. We assigned a total of 10 QTL distributed on the first eight

chromosomes of the maize genome. The last two chromosomes contained no

QTL and were used to evaluate the Type 1 error. The proportion of the

phenotypic variance contributed by the 10 simulated QTL was 60%. Detailed

information about the 10 simulated QTL is shown in Table 1. The polygenic
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and residual error variances were set at ϕ2
= 1 and σ2= 1, respectively. We also

simulated population structure effects using the first four principal components

of the marker data. The population structure explained 10% of the total

phenotypic variation. Phenotypes were simulated as the sum of the effects of

the 10 QTL, the polygenic effect, the residual error and the population structure

effect. We also compared the results of our method with GEMMA (Zhou and

Stephens, 2012) in the simulation studies. A total of 100 replications were

generated and analyzed by both the LASSO method and the GEMMA method.

The statistical power of a QTL was calculated as the proportion of replicates

where the P-value of the QTL was less than 0.05 for the LASSO method and

0.05/m or 1/m for the GEMMA method. The Type 1 error was defined as the

average proportion of false positives for all markers in the last two chromo-

somes that contain no QTL.

RESULTS

Comparison of predictive abilities

The predictive abilities of the six traits in maize obtained from all the

eight methods (BLUP, LASSO, PLS, BayesA and BayesB, RKHS, SVM-

RBF and SVM-POLY) are presented in Table 2. For genome, traits RN

and ED have the highest predictive abilities across all methods,

followed by traits EL and EW, with trait KN being the worst

predictable trait. The largest differences in predictive ability among

the eight methods range from 0.02 to 0.12 for the same trait. For

transcriptome, the average predictive abilities of all traits are lower

than those obtained from genome, and the predictive abilities are

highest for RN (0.55) and lowest for CW (0.33). For CW and EL, the

predictive abilities vary greatly across different methods with SVM-

POLY being the best and LASSO being the worst, but for the other

traits, the eight approaches have similar performances. For metabo-

lome, the predictive abilities for the six traits are lower than those

from genomic prediction, and metabolomic predictions for CW and

EL are only around half of the genomic predictions. Large differences

in predictive ability (40.2) are observed between LASSO and BayesB

for traits CW, ED and EW.

Using the predictive abilities of all 3 × 6× 8= 144 omic-trait-

method combinations, we performed analyses of variances under a

factorial design. All main effects and two-way interaction effects are

significant except the interaction effect of method× trait (Table 3).

Results of multiple comparisons for the main effects are illustrated in

Figure 1. Predictabilities of the three omic data are significantly

different, with genomic prediction being the best followed by

transcriptomic and metabolomic predictions (Figure 1a). Among the

six traits, RN and ED are the best predictable traits followed by EW

and KN, and CW is the worst (Figure 1b). By comparing eight

methods, BLUP performs the best and BayesB performs the worst,

with other methods ranging between the two (Figure 1c). All two-way

interaction effects are given in Supplementary Data S1, from which we

find that RKHS is the best for genome prediction and metabolome

prediction, whereas it is not efficient for transcriptome prediction.

Although BLUP is not the best for each omic prediction, it consistently

ranks near the top. BayesB works well in genomic prediction and

transcriptomic prediction. However, it performs poorly for metabo-

lomic prediction, which has an enormous negative impact on the

overall performance of BayesB.

Combined prediction

We also combined all three omic data into a single model to perform a

combined prediction. Overall, the combined prediction has no

obvious advantage over the best single omic prediction (Figure 2).

For the BLUP method, combining data from different sources slightly

improves the prediction for all traits except KN, whereas for other

methods, the combined prediction rarely increases the predictive

ability compared with the use of single source of data. For trait EW,

metabolomic prediction is better than combined prediction when

using LASSO, PLS, RKHS and SVM-RBF.

Simulation studies for GWAS

We used LASSO and other methods to predict six quantitative traits of

maize. LASSO, however, can also be used for genome-wide association

studies. We compared our LASSO method with GEMMA for

GWAS under two criteria of Bonferroni correction (GEMMA-A and

GEMMA-B). The statistical powers and Type 1 error obtained from

100 replicated simulations for the 10 QTL are given in Table 1. In

general, both LASSO and GEMMA are powerful for QTL with large

simulated effects that explain more than six percent of phenotypic

variance. The LASSO method has substantially higher powers for the

four small QTL than the GEMMA method, regardless of what P-value

criteria are used. The Type 1 error are well controlled in all the cases,

Table 1 True effects and statistical powers of 10 simulated QTL and Type 1 error rates for the modified LASSO method and GEMMA drawn

from 100 replicated simulation experiments

QTL Chromosome Position (bp) Effect R2a (%)

Statistical power (%)

LASSO GEMMA-Ab GEMMA-Bc

QTL-1 1 64 397 509 0.6137 2 36 2 0

QTL-2 1 217 180 912 0.4196 2 49 10 1

QTL-3 2 40 411 229 0.5500 4 68 5 0

QTL-4 3 28 354 373 0.9151 4 72 58 27

QTL-5 4 17 376 169 0.6681 6 95 89 58

QTL-6 5 11 600 672 1.1541 6 98 88 65

QTL-7 5 216 767 558 1.3985 8 99 98 91

QTL-8 6 142 446 480 0.7337 8 98 99 87

QTL-9 7 21 638 945 1.4079 10 99 100 100

QTL-10 8 172 759 416 1.5636 10 99 100 98

Type 1 error 0.00139 0.00446 0.00056

Abbreviations: GEMMA, genome-wide efficient mixed model association; LASSO, least absolute shrinkage and selection operator; QTL, quantitative trait loci.
aR2: Proportion of the total phenotypic variation explained by the QTL.
bGEMMA-A: Bonferroni correction with P-value less than 1/m, where m is the total number of markers.
cGEMMA-B: Bonferroni correction with P-value less than 0.05/m, where m is the total number of markers.
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where GEMMA-B provides the best control of Type 1 error, followed

by LASSO and GEMMA-B. Overall, the LASSO method performs

better than GEMMA-A in statistical power and Type 1 error. Although

GEMMA-B achieves better control of Type 1 error than the LASSO

method, it has a much lower power in detection of small QTL.

GWAS for six traits of maize using LASSO and GEMMA

Manhattan plots of all six traits of maize using the GEMMA and

LASSO methods are shown in Figure 3. When we set the Bonferrroni-

corrected P-value threshold at 0.05/m= 5.0E− 7 for the GEMMA

method, no SNPs were detected for any of the six traits. This criterion

may be too stringent for GEMMA, so we set the threshold at

1/m= 1.0E− 5. The criterion for LASSO remains at 0.05 because it

is a multiple marker model. A total of eight SNPs for three agronomic

traits (CW, EW and RN) were identified from the two GWAS

methods, of which four SNPs were detected by LASSO and the others

were detected by GEMMA (Table 4). Neither method detected any

significant SNP associated with the other three traits (ED, EL and KN).

With GEMMA, two SNPs associated with CW were detected on

chromosomes 2 and 7. Also, the LASSO method detected one SNP on

chromosome 2. Two SNPs influencing EW located in chromosomes 5

and 8 were identified by GEMMA and LASSO, respectively. All three

SNPs associated with RN are located on chromosome 1; the one

detected by the LASSO method is located in 28 Kb upstream of a

known gene ZmADF3 (GRMZM2G060702), a key regulator of actin

dynamics in plant cells, which has an important role in kernel

development (Qiao et al., 2016).

Metabolome-wide association studies using LASSO and GEMMA

We used the LASSO and GEMMA methods to detect significant

metabolites associated with the six agronomic traits. Only two

metabolites (n499 and n790) were detected for two traits (EN

and KW) by GEMMA at the Bonferroni-corrected threshold

(0.05/m= 6.7E− 05). The LASSO method identified a total of 15

significant metabolites for the six traits, which include the two

metabolites detected by GEMMA (Supplementary Data S2). Some

metabolites are significantly associated with more than one trait. For

example, both metabolites n0710 and n0768 control CW and EW, and

metabolite n0967 has a significant effect on three traits (EW, EL and

KN). These metabolites may have an important role in maize ear

development. Several metabolites have been detected in other species,

such as n0710, n0075 and n0691. All the significant metabolites

detected by LASSO explain a small fraction of phenotypic variation,

and the strongest metabolite (n0499) only explains 3% of phenotypic

variation for trait KN. However, this is not to say that the detected

metabolites are not important. The small proportion of phenotypic

variance explained may be due to the shrinkage nature of the LASSO

method. It is worth noting that the number of metabolites is far less

than the number of SNPs, whereas the number of significant

metabolites is greater than the number of significant SNPs.

Transcriptome-wide association studies using LASSO and GEMMA

The LASSO and GEMMA methods were also used to detect significant

transcripts associated with the six agronomic traits. No significant

transcripts were identified for the six traits by GEMMA at Bonferroni-

Table 2 Predictive abilities of six traits from three sources of omic data using eight statistical methods

Source of data Trait BLUP LASSO PLS BayesA BayesB RKHS SVM-RBF SVM-POLY Mean

Genome CW 0.4763 0.4517 0.4665 0.4692 0.4797 0.4707 0.4712 0.4774 0.4703

ED 0.5766 0.5515 0.5146 0.5781 0.5728 0.5962 0.5908 0.5677 0.5685

EL 0.5262 0.4164 0.5195 0.5009 0.5162 0.5243 0.4985 0.5237 0.5032

EW 0.5222 0.4696 0.4546 0.5133 0.5135 0.5264 0.5224 0.4926 0.5018

KN 0.4667 0.3591 0.4402 0.4711 0.4609 0.4698 0.4537 0.4792 0.4501

RN 0.5821 0.5256 0.5701 0.5834 0.5972 0.5756 0.5734 0.5845 0.5740

Transcriptome CW 0.3719 0.2050 0.3580 0.3534 0.3457 0.2976 0.3198 0.3819 0.3292

ED 0.5469 0.5248 0.5078 0.5477 0.5369 0.5257 0.5051 0.5402 0.5294

EL 0.3412 0.2160 0.3903 0.3526 0.3504 0.2918 0.3251 0.3971 0.3331

EW 0.4584 0.4565 0.4007 0.4593 0.4578 0.4285 0.4352 0.4363 0.4416

KN 0.3937 0.4207 0.3440 0.3959 0.3941 0.3554 0.3600 0.3902 0.3817

RN 0.5682 0.5077 0.5717 0.5686 0.5595 0.5403 0.5068 0.5791 0.5502

Metabolome CW 0.2840 0.3524 0.2461 0.2041 0.0725 0.3236 0.3313 0.2541 0.2585

ED 0.5633 0.5708 0.5382 0.5082 0.2040 0.5543 0.5204 0.4590 0.4898

EL 0.2957 0.2603 0.2989 0.2767 0.1831 0.3122 0.3141 0.2885 0.2787

EW 0.5149 0.5354 0.5024 0.4442 0.3221 0.5378 0.5267 0.4118 0.4744

KN 0.3768 0.4079 0.3213 0.3543 0.2875 0.4118 0.4097 0.3021 0.3589

RN 0.5088 0.4616 0.4732 0.4772 0.3121 0.5059 0.5045 0.3486 0.4490

Abbreviations: BLUP, best linear unbiased prediction; ED, ear diameter; EL, ear length; EW, ear weight; CW, cob weight; KN, kernel number per row; LASSO, least absolute shrinkage and selection

operator; PLS, partial least square; RKHS, reproducing kernel Hilbert space; RN, ear row number; SVM-POLY, support vector machine using the polynomial kernel function; SVM-RBF, support

vector machine using the radial basis function kernel.

Table 3 Analyses of variances of predictability from a 3×8×6

factorial design with three sources of omic data, eight prediction

methods and six traits

Source of variation DF Sum of squares Mean squares F-test P-value

Ome 2 0.3973 0.19863 221.152 o0.0001

Method 7 0.0561 0.00802 8.929 o0.0001

Trait 5 0.727 0.14541 161.895 o0.0001

Ome×method 14 0.1987 0.01419 15.803 o0.0001

Ome× trait 10 0.1543 0.01543 17.179 o0.0001

Method× trait 35 0.0481 0.00138 1.531 0.0654

Residual 70 0.0629 0.0009
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corrected P-value threshold (0.05/m = 1.74E-6). Four significant

transcripts for three agronomic traits (ED, KN and EW) were

identified by LASSO (Supplementary Table S2). The two transcripts,

GRMZM2G045243 and GRMZM2G126128, influencing EW were

detected on chromosomes 2 and 4, respectively, both of which are

protein-coding genes. Functions of the other two transcripts remain

unknown. The strongest transcript (GRMZM2G001648) only explains

1.3% of phenotypic variation for trait ED. This may explain why

GEMMA fails to detect any transcripts.

Genomic prediction using selected markers from GWAS

In a usual genomic prediction study, genome-wide markers are

simultaneously included in a single model to predict the phenotypic

values of a trait. However, most people outside the genomic selection

community believe that markers with small or no effects on a trait

may be detrimental to genomic selection if included in the model.

They prefer using only selected markers that are associated with the

trait of interest for prediction. In this study, we will answer the

question whether using selected markers can improve genomic

selection or not. We used selected markers from GWAS of the

GEMMA method to predict phenotypes with the BLUP method under

two different scenarios. Scenario A: markers were selected from the

whole sample and only selected markers were used in the prediction,

where predictabilities were drawn from 10-fold cross-validation.

Scenario B: markers were selected within folds, where a GWAS was

performed from each training sample and markers selected from the

training sample were used to predict the trait values of the test sample.

The markers were selected based on their P-values from the following

sequences: 0.01, 0.05, 0.10, 0.2, 0.3, 0.4, 0.5 and 1.0, where P-value

equal to 1.0 is equivalent to using all markers for prediction. The

predictive abilities obtained from these two scenarios are illustrated in

Figure 4. Figure 4a (the top panel) shows the result of scenario A,

where markers were selected from the whole sample. When the

P-value is small, the predictabilities are very high and they continue to

increase until they reach a plateau when P≈ 0.05. After the plateau, the

predictabilities start to decline and eventually reach the minimum

values when P= 1.0. This trend of the predictability change can

mislead many investigators because the cross-validation using markers

selected from the whole sample does not reflect the true prediction.

The predictabilities are seriously biased upward. Using this result to

report predictability is a kind of ‘cheating’, though unintentionally in

many cases. Figure 4b (bottom panel) represents the actual predict-

abilities when markers were selected from training samples only.

When the P-values are very small, the predictabilities are very low in

four of the six traits. As the P-value increases, the predictability starts

to increase and then quickly reaches a plateau. Further increase in P-

value does not change the predictability very much. Overall, the

integration of GWAS and prediction can significantly improve

Figure 1 Multiple comparisons illustrated by boxplots. In each panel, different capital letters above the group labels indicate significant differences between

groups. In each box plot, the plus sign represents the mean predictability, the box defines the first and the third quantiles, the bold line in the box defines

the second quantile (median), the open circles represent outliers. (a) Compares the predictabilities of the three omic data across six traits and eight methods.

(b) Compares the predictabilities for the six traits over three omic data and eight methods. (c) Compares the predictabilities of the eight methods across three

omic data and six traits.
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predictive ability in scenario A, but fail to increase predictive ability in

scenario B. As scenario A cannot be achieved in actual genomic

selection programs, we conclude that using selected markers for

genomic selection does not help very much.

DISCUSSION

In this study, the average predictive ability was 0.38 from metabolomic

data, 0.43 from transcriptomic data and 0.51 from genomic data

across all traits and methods. Genome is still the most important

predictor for maize. Riedelsheimer et al. (2012a) predicted seven

heterotic traits in hybrid maize using 56 110 SNPs and 130 metabolites

and found that the average predictive ability across seven traits was

0.73 from genome and 0.57 from metabolome. Gärtner et al. (2009)

proposed to use 110 genetic markers and 181 metabolic markers to

predict the heterosis of Arabidopsis thaliana and also found that

predictive ability from metabolome was slightly lower than those from

genome. Despite the fact that metabolites have proven to be useful in

phenotypic prediction, they have the limitation that metabolites were

measured at a specific moment, while some traits change dynamically

at different developmental stages (Riedelsheimer et al., 2012a). In

addition, we performed a combined prediction of three omic data and

found no benefit from the combined analysis across traits and

methods. However, Gärtner et al. (2009) proposed that combining

data of both metabolites and SNPs leads to a substantial improvement

of predictive ability. This may be due to the fact that they used a small

number of genetic markers that were not able to capture information

of the entire genome.

We also observed that the BLUP method slightly improved the

combined prediction for most traits, while other methods slightly

decreased the combined prediction for most traits. This may be

because we assigned three different variances to three different sources

of data in the mixed model analysis and these different variances were

eventually used for BLUP prediction, whereas we simply combined the

three types of predictors, albeit standardized, and placed them in a

single model for other methods. Therefore, if we can give different

sources of omic data a different set of weights, we may improve the

combined prediction for other methods.

From the comparison of different prediction methods, we found that

the BLUP method is the overall best performer, while BayesB is the

worst one. Many studies have discovered that the genetic architecture

has a strong impact on differences of predictive abilities among

different prediction methods(Coster et al., 2010; Clark et al., 2011).

Figure 2 Comparison of predictability for three sources of omic data and the combined analysis of the three omic data over six traits and eight methods. The

three omic data are genomic, transcriptomic and metabolomic data. The six traits are labeled as CW, ED, EL, EW, KN and RN. The eight statistical methods

are BLUP, LASSO, PLS, BayesA, BayesB, RKHS, SVM-RBF and SVM-POLY.
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Figure 3 Manhattan plots for six traits obtained from two GWAS methods (GEMMA and LASSO). The six traits are labeled as CW, ED, EL, EW, KN and RN.

The dashed blue horizontal line in each Manhattan plot depicts the significance threshold and the red dot indicates significant SNPs. The significance

thresholds are 1.002×10−5 (after Bonferroni correction) and 0.05 for GEMMA and LASSO, respectively. A full color version of this figure is available at the

Heredity journal online.
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The GWAS performed on this population did not detect any large-

effect QTL, which suggests a polygenic genetic architecture for these

agronomic traits. In the simulation study of Daetwyler, BLUP was not

affected by the QTL number, whereas BayesB outperformed BLUP with

lower numbers of QTL, but performed poorly compared with BLUP

when the number of QTL was high (Daetwyler et al., 2010). Coster

et al. (2010) also found that the predictive ability of selective shrinkage

methods (LASSO and BayesB) decreased with an increased number of

simulated QTL, whereas the PLS method was insensitive to the number

of QTL. However, some analyses of real data showed that there were

only small differences in predictive performance between different

methods, regardless of the number and effects of QTL. Overall,

shrinkage methods perform better for traits controlled by a few QTL

with relatively large effects and BLUP is better suited for highly

polygenic traits. In addition, we observed that predictive abilities

obtained with the parametric and nonparametric methods were similar.

It has been demonstrated that parametric methods had difficulty in

capturing complex interactions such as epistatic effects, whereas

Table 4 Significant SNPs identified for six traits using GEMMA and the modified LASSO method

Trait Method Chr Position (kb) Allele Candidate gene Annotation P-value R2(%)

CW GEMMA 2 185 583 A/G GRMZM2G414252 Putative HLH DNA-binding domain superfamily protein 6.23E−06 7.15

GEMMA 7 123 850 T/C GRMZM2G305406 Unknown 9.60E−06 7.50

LASSO 2 59 011 C/T GRMZM2G412524 Protein kinase G11A-like 0.045 0.59

EW GEMMA 5 213 292 G/A GRMZM2G018573 Unknown 6.15E−06 6.35

LASSO 8 14 542 G/T GRMZM2G052869 Metallothionein-like protein 2A 0.046 0.51

RN GEMMA 1 294 137 C/T GRMZM2G055834 Unknown 7.12E−06 9.69

LASSO 1 1877 C/G GRMZM2G060265 Scarecrow-like protein 6 0.024 0.76

LASSO 1 293 269 G/A GRMZM2G060702 Actin depolymerizing factor 0.042 0.4

Abbreviations: Chr, chromosome; CW, cob weight; EW, ear weight; GEMMA, genome-wide efficient mixed model association; LASSO, least absolute shrinkage and selection operator; RN, ear row

number; SNP, single-nucleotide polymorphism.

Figure 4 Predictive abilities of BLUP for six traits using selected markers obtained via GWAS. Markers included in the prediction model are selected at seven

different levels of P-value: 0.01, 0.05, 0.10, 0.2, 0.3, 0.4 and 0.5 (horizontal axis). (a) Markers are selected from the whole sample before cross-validation.

(b) Markers are selected within folds of cross-validation.
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nonparametric methods performed well for traits under epistatic

genetic architectures (Gianola et al., 2006; Howard et al., 2014).

Therefore, our similar predictive performance of parametric and

nonparametric methods suggested that epistatic genetic effects may

be negligible for these agronomic traits.

Currently, there is no method that fits all the data universally well.

However, BLUP is often the best choice because its performance is

good, in general, for all traits with omic data. In addition, BLUP is

computationally more effective than other methods because we do not

need to estimated marker effects. The fact that different methods

perform differently across different traits and across different popula-

tions (Xu et al., 2014) leads to a new strategy of genomic selection. We

should use all available methods to perform genomic selection and

report the result from the ‘best’ method. Essentially, we are treating

‘method’ as a parameter and the best method is the maximum

predictability estimate of the parameter method.

In this study, we provided an effective way to calculate the P-value

of each marker for GWAS using the LASSO method. Although

nonparametric methods, such as bootstrap, can also be used to

calculate the standard error of an estimated marker effect and

eventually provide a P-value, they are often costly in terms of

computation. Simulation studies based on real genotype data of the

maize population showed that the LASSO method performed well in

terms of high power and low Type 1 error. One advantage of the

multi-locus method over a genome-scanning approach is that no

multiple test correction for P-value is needed. However, this method

has its own limitation in that the number of markers cannot be too

large, say 4500k, because simultaneous estimation of that many

effects in a single model is a real challenge without resort to a parallel

computing scheme. In that case, we can perform multi-locus analysis

on individual chromosomes. Recently, several two-step multi-locus

methods have been developed to overcome that limitation (Li et al.,

2011; Wang et al., 2016). The first step of these methods is to select a

small fraction of makers using a less stringent criterion and then use

the selected markers to conduct a multi-locus analysis in the second

step. One issue with these methods is how to choose the appropriate

critical value for marker selection in the first step.

We already demonstrated that using selected markers for genomic

prediction does not improve the predictability. This does not mean

that we cannot select markers for genomic selection. Figure 4b shows

that when P= 0.10 is used to select markers, the predictabilities of

most traits already reach the plateaus. The number of markers that

passed this criterion is about 9000 on average across traits. When a

DNA chip is designed for genomic selection, a chip with 9K markers

can be substantially cheaper than a chip with 90K markers. Therefore,

selection of markers in genomic selection can be beneficial if

genotyping more markers represents a proportional increase in cost.
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